首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenylate cyclase activity and the effects of EGTA, 5'-guanylylimidodiphosphate (GPP(NH)P), and dopamine were measured in microdissected layers of rod-dominant (rabbit) and cone-dominant (ground squirrel) retinas, The distribution of basal enzyme activity was similar in both species, with the highest levels found in the inner plexiform and photoreceptor cell inner segment layers, EGTA inhibited adenylate cyclase in the inner retina of both species and stimulated activity in rabbit outer and inner segment layers, but had no effect in these layers from ground squirrel. Enzyme activity was stimulated in all regions by GPP(NH)P, except in the outer segments of the photoreceptors. Dopamine stimulated the enzyme in the outer and inner plexiform and inner nuclear layers in rabbit, but only in the inner plexiform layer in ground squirrel. These data demonstrate that the enzymatic characteristics of adenylate cyclase vary extensively from region to region in vertebrate retina and suggest that cyclic AMP may have multiple roles in this tissue. A model for the distribution of the different forms of adenylate cyclase in retina is proposed.  相似文献   

2.
The distribution of the components of the cyclic GMP cycle in retina   总被引:3,自引:0,他引:3  
Frozen sections of retinas from rabbit (mostly rods), ground squirrel (mostly cones), and monkey (mixed rods and cones) were freeze dried, and samples from all the discrete layers analyzed for the enzymes which form cyclic GMP and subsequently convert it back to GTP. The distribution of cyclic GMP was also measured in monkey retina, and the retinal layers of both monkey and rabbit were analyzed for GTP, GTP plus GDP, ATP, ATP plus ADP, and UTP plus CTP. The ratio of guanylates to adenylates was found to be about 1:1 in photoreceptor cell layers, but only 1:4 or 5 in deeper layers. In all species, guanylate cyclase (EC 4.6.1.2) and cyclic GMP phosphodiesterase were highest in the outer segment layer. Other layers were lower by factors of 10 to 500. Guanylate kinase (EC 2.7.4.8) was extremely high in all photoreceptor cell layers except the outer segments, but was much lower elsewhere. Nucleoside diphosphokinase (EC 2.7.4.6) paralleled guanylate kinase throughout the photoreceptor cell layers, but did not fall to such low levels in the deeper layers of the retina. Although there were significant differences among the three species, they all displayed the same general enzyme pattern.  相似文献   

3.
Abstract: The distributions of glutamate decarboxylase (EC 4.1.1.15), γ-aminobutyric acid transaminase (EC 2.6.1.19), and succinate semialdehyde dehydrogenase (EC 1.2.1.24) were determined in monkey retina. The decarboxylase was almost restricted to the inner plexiform layer. The transaminase was also highest in this layer, but activities were 40% as high in the adjacent third of the inner nuclear layer and in the ganglion cell and fiber layers. Succinate semialdehyde dehydrogenase was distributed very differently. Although it also showed a peak of activity in the inner plexiform layer, there was a second equal peak in the photoreceptor inner segment layer and a smaller peak in the outer plexiform layer, regions where both γ-aminobutyric acid transaminase and glutamate decarboxylase were essentially absent.  相似文献   

4.
The levels of NADP+, NADPH, NAD+ and NADH were measured in the different layers of retinas from rabbit and monkey. Samples (0.1 μg) were dissected from frozen-dried sections. The sum of oxidized and reduced forms was obtained by analysis of samples diluted several thousand fold in 0.02 n -NaOH at 0°. The reduced forms were measured by analysis of the same alkaline preparation after heating to destroy NADP+ and NAD+. All assays were made at 1:100,000 tissue dilution by enzymic cycling, which is capable of measuring 10−14 moles of nucleotides. Profiles of nicotinamide adenine nucleotide levels werecomparable in monkey and rabbit. Both total NADP and NAD were lowest in the outer segments of the retina and highest in the inner layers. NADP of the outer layers (1-2b) was oxidized to a high degree. This was particularly striking for layer 2b, which is rich in mitochondria. In the inner layers the fraction of NADPH rose to 0.7 of the total NADP. NAD on the contrary was highly oxidized in all ten layers of the retina. Three aspects of these results seem significant: (1) The profile for NADP was not related to the distribution of any of four major NADP-requiring dehydrogenases or their sum; (2) the ratio of total NADP/NADPH in the mitochondrial layer was much higher than expected from studies with isolated mitochondria; and (3) the amount of total NADP was surprisingly high in non-mitochondrial layers.  相似文献   

5.
Summary Neurons displaying somatostatin or vasoactive intestinal polypeptide (VIP) immunoreactivity were detected among the amacrine cells in the retina of baboon, cynomolgus monkey, squirrel monkey, cow, pig, cat, rabbit, guinea-pig, rat, mouse, frog and goldfish. Generally, immunoreactive cell bodies were located in the inner nuclear layer with processes ramifying in three more or less well-defined sublayers in the inner plexiform layer. The density of the sublayers and their location varied with the peptide and species investigated. In most cases there was a sublayer in the outermost part (Ramon y Cajal's sublamina 1) of the inner plexiform layer and this sublayer was usually the best developed. In some species a few somatostatin fibres were also detected in the outer plexiform layer, suggesting that some interplexiform cells contain somatostatin. In the baboon VIP was found exclusively in interstitial amacrine cells which have their cell bodies and processes entirely within the inner plexiform layer.  相似文献   

6.
Somatostatin and VIP neurons in the retina of different species   总被引:6,自引:0,他引:6  
Neurons displaying somatostatin or vasoactive intestinal polypeptide (VIP) immunoreactivity were detected among the amacrine cells in the retina of baboon, cynomolgus monkey, squirrel monkey, cow, pig, cat, rabbit, guinea-pig, rat, mouse, frog and goldfish. Generally, immunoreactive cell bodies were located in the inner nuclear layer with processes ramifying in three more or less well-defined sublayers in the inner plexiform layer. The density of the sublayers and their location varied with the peptide and species investigated. In most cases there was a sublayer in the outermost part (Ramon y Cajal's sublamina 1) of the inner plexiform layer and this sublayer was usually the best developed. In some species a few somatostatin fibres were also detected in the outer plexiform layer, suggesting that some interplexiform cells contain somatostatin. In the baboon VIP was found exclusively in interstitial amacrine cells which have their cell bodies and processes entirely within the inner plexiform layer.  相似文献   

7.
Summary The distribution of neuropeptide Y (NPY)-like immunoreactivity in rat, rabbit, chick, frog and goldfish retinas was investigated by immunohistochemistry. Positive results were observed only in the frog and goldfish retinas. NPY immunoreactivity was associated with a small population of amacrine cell bodies in the inner nuclear layer and cell processes in the inner plexiform layer of both retinas. In the frog retina, three distinct layers containing immunoreactivity were observed in the inner plexiform layer. In contrast, the immunoreactivity in the same area of the goldfish retina was more or less separated into two layers. Convincing evidence could not be found for the co-existence of NPY-like material with other putative transmitter-like substances in the two retinas.Radioimmunoassay revealed the presence of small amounts of NPY-like immunoreactivity in the rabbit retina; the goldfish and frog retinas contained significantly more immunoreactive material. High performance liquid chromatography of the immunoreactive material in frog and goldfish retinas showed each retina containing different molecular forms of NPY-like proteins, neither of which resembled porcine NPY or PYY.The endogenous NPY-like material of the frog retina can be released by potassium depolarisation in a calciumdependent way. In view of all these data an NPY-like protein must now be considered a potential retinal transmitter.  相似文献   

8.
Abstract: The distributions of glycine, γ-aminobutyric acid (GABA), glutamate decarboxylase (EC 4.1.1.15), and GABA transaminase (EC 2.6.1.19) were determined in rabbit and mudpuppy retinas. In both species, peak levels of the amino acids and the enzymes occurred in the inner plexiform layer. Glutamate decarboxylase was almost entirely confined to the inner plexiform layer. Determinations were also made of the GABA content of 107 individual putative amacrine cell somas from mudpuppy retina. About 30% of those somas were found to have high endogenous GABA levels.  相似文献   

9.
The synthesis of metabolically stable methylenebis(phosphonate) analogues of 2-, 4-, and 6-pyridones of nicotinamide adenine dinucleotide (NAD) is reported. In contrast to natural pyrophosphates, these NAD analogues are able to penetrate the cell membrane and can be used as probes in cellular assays.  相似文献   

10.
Freeze-dried sections were prepared from retinas of frogs which were dark-adapted or exposed to varying periods of light. Samples of the discrete layers were dissected, weighed, and analyzed for energy metabolites, guanylate compounds, and the enzyme guanylate cyclase. ATP and P-creatine were measured in both dark- and light-adapted retinas. There was a gradient in ATP and P-creatine levels in dark-adapted retinas, with the lower concentrations in the photoreceptors, and increasing concentrations in the inner retina. After light adaptation, concentrations increased, an observation which supports the concept that transmitter release occurs in the dark and ceases in the light. The sum of GTP plus GDP, GDP, and cyclic GMP were analyzed in dark-adapted retinas and after exposure to 2 min or 2 h of room light. GDP was rather uniformly distributed in the retinal layers, was increased by 2 min of light in all layers but the outer nuclear, and remained elevated at 2 h in the inner retina. GTP values showed a marked localization in the outer nuclear layer, which increased after 2 min or 2 h of illumination; in all other layers GTP was decreased by light. Cyclic GMP in the dark was highest in the photoreceptor cells, decreasing to one-third after 2 min of light; there were significant increases in the outer plexiform and inner nuclear layers at this time. Cyclic GMP remained low in the photoreceptor cells even after 2 h of light, while the inner layers returned to dark values. Guanylate cyclase, like cyclic GMP, was largely confined to the photoreceptor cells and showed a maximal increase after 2 min of light exposure.  相似文献   

11.
Interphotoreceptor retinoid binding protein (IRBP) is a soluble glycolipoprotein located between the neurosensory retina and pigment epithelium, which may serve to transport vitamin A derivatives between these tissues. The specific cell type responsible for IRBP synthesis has not been well established. To address this issue, we have examined the expression of IRBP mRNA in human and cone-dominant ground squirrel retinas by in situ hybridization. Optimal labeling and histological resolution were achieved with 35S- and 3H-labeled anti-sense riboprobes made from a human IRBP cDNA clone, and semi-thin wax-embedded retinal sections. In human retina, label was localized over the inner segments of both rod and cone photoreceptors. Quantitative analysis demonstrated a fourfold higher density of label over rod inner segments. In ground squirrel retina, labeling was found almost exclusively over the inner segments of cones. The results indicate that in human retina both rods and cones express IRBP mRNA, albeit at different levels. In cone-dominant species such as the ground squirrel, cones are the principal cell type responsible for IRBP mRNA synthesis.  相似文献   

12.
Abstract— Choline acetyltransferase (ChAc) activity was determined in retinal layers from 10 vertebrates. In all animals, the highest activity was in the inner plexiform layer, intermediate activity in the inner nuclear and ganglion cell layers, and very low activity in the photoreceptor and outer plexiform layers and optic nerve. The pattern of distribution of enzyme activity within the inner nuclear layer corresponds quantitatively to the distribution of amacrine cells within that layer. A species difference of almost 90-fold was found between the lowest and highest values for ChAc activity in inner plexiform layer. The variation in enzyme activity found among homeotherms in inner nuclear and inner plexiform layers is related to the number of amacrine cell synapses in the inner plexiform layer. But the differences in enzyme activity are generally greater than those which have been found in numbers of amacrine cell synapses between species. The data suggest that cholinergic neurons in retina are to be found predominantly among the amacrine cell types and that not all amacrine cells will be found to be cholinergic.  相似文献   

13.
Summary The retina of Aotes monkeys, Cebus monkeys, squirrel monkeys, and marmosets were investigated. Adrenergic perikarya were found in the innermost cell rows of the inner nuclear layer of all the investigated species. In addition, the Cebus monkey was found to have a special type of adrenergic neurons in the inner nuclear layer. This cell type was called the adrenergic pleomorph cell. Its processes ramify in the inner nuclear and inner plexiform layers. Adrenergic terminals occur in three more or less well developed sublayers of the inner plexiform layer, the layers being best developed in the Cebus monkey. Adrenergic terminals were also found around the cells of the inner nuclear layer and at the horizontal cells, where a scant sublayer is formed. More than one adrenergic sublayer of the inner plexiform layer has not been observed in primates previously, nor have the adrenergic terminals in the inner nuclear layer been observed previously in any species. The adrenergic pleomorph cells of the Cebus monkey also seem to be unique. The marked differences even between animals as closely related as some platyrhine monkeys call for caution when comparing the detailed function of the retina in different animals.This study was supported by grants from the Swedish Medical Research Council (B69-14X-2321-02) and the Faculty of Medicine, University of Lund, and was carried out within a research group sponsored by the Swedish Medical Research Council (projects No. B69-14X-56-05C and B69-14X-712-04C).  相似文献   

14.
Cuenca  Nicolas  Deng  Ping  Linberg  Ken A.  Lewis  Geoffrey P.  Fisher  Steven K.  Kolb  Helga 《Brain Cell Biology》2002,31(8-9):649-666
Ground squirrel retinas were immunostained with antibodies against calcium binding proteins (CBPs) and classical neurotransmitters in order to describe neuronal phenotypes in a diurnal mammalian retina and to then compare these neurons with those of more commonly studied nocturnal retinas like cats' and rabbits'. Double immunostained tissue was examined by confocal microscopy using antibodies against the following: rhodopsin and the CBPs, calbindin, calretinin, parvalbumin, calmodulin and recoverin (CB, CR, PV, CM, RV), glycine, GABA, choline acetyltransferase (CHAT) and tyrosine hydroxylase (TOH). In ground squirrel retina, the traditional cholinergic mirror symmetric amacrine cells colocalize CHAT with PV and GABA and faintly with glycine. A second cholinergic amacrine cell type colocalizes glycine alone. CR is found in at least 3 different amacrine cell types. The CR-immunoreactive (IR) cell population is a mixture of glycinergic and GABAergic types. The dopamine cell type IR to tyrosine hydroxylase has the typical morphology of a wide field cell with dendrites in S1 but the “rings” seen in cat or rabbit retina are not as numerous. TOH-IR amacrine cells send large club-shaped processes to the outer plexiform layer. CB and CR are in bipolar cells, A- and B-type horizontal cells and several amacrine cell types. Anti-rhodopsin labels the low density rod photoreceptor population in this species. Anti-recoverin labels cones and some bipolar cells while PKC is found in several different bipolar cell types. One ganglion cell with dendritic branching in S3 is strongly CR-IR. We find no evidence for an AII amacrine cell in the ground squirrel, with either anti-CR or anti-PV. An amacrine cell with similarity to the DAP1-3 cell of rabbit is CR-IR and glycine-IR. We discuss this labeling pattern in relationship to other mammalian species. The differences in staining patterns and phenotypes revealed suggest a functional diversity in the populations of amacrine cells according to whether the retinas are rod or cone dominated.  相似文献   

15.
Summary In the normal histogenesis of mouse retina localized distribution of acid phosphatase positive granules has been seen around the photoreceptor cell nuclei along the outer limiting membrane. These granules disappear during the development of the rod elements. Temporarily increased activity is also seen along the nuclei of the inner layer adjacent to and in the course of the development of the outer and the inner plexiform layers. Within the inner nuclear layer, the cells at the outer and inner rows develop localized acid phosphatase positive granules which persist in the adult retina. Ganglion cells and the layer of nerve fibres show little change. In the pigment epithelium the enzyme gradually increases. In mice, homozygous for the retinal degeneration gene, degenerating photoreceptor cell nuclei, characterized by perinuclear acid phosphatase staining, can be detected before morphological signs of degeneration. Increased frequency of such nuclei and intensity of staining are recorded with the progress of degeneration. Enzyme activity in the photoreceptor cells, within the inner nuclear layer and in the degenerating photoreceptor cell nuclei is demonstrable using naphthol substrates but not -glycerophosphate. Positive reaction with -glycerophosphate is obtained in these sites in the presence of dimethyl sulphoxide. Existence of differential permeability among the retinal lysosomes is tentatively suggested.  相似文献   

16.
Eleven regions of mouse brain and twelve layers of monkey retina were assayed for choline acetyl transferase (ChAT), acetylcholine esterase (AChE), and 4 enzymes that synthesize acetyl CoA. The purpose was to seek evidence concerning the source of acetyl CoA for acetylcholine generation. In brain ATP citrate lyase was strongly correlated with ChAT as well as AChE (r=0.914 in both cases). Weak, but statistically significant correlation, was observed between ChAT and both cytoplasmic and mitochondrial thiolase, whereas there was a significant negative correlation between ChAT and acetyl thiokinase. In retina ChAT was essentially limited to the inner plexiform and ganglion cell layers, whereas substantial AChE activity extended as well into inner nuclear, outer plexiform and fiber layers, but no further. ATP citrate lyase activity was also highest in the inner four retinal layers, but was not strongly correlated with either ChAT or AChE (r=0.724 and 0.761, respectively). Correlation between ChAT and acetyl thiokinase was at least as strong (r=0.757), and in the six inner layers of retina, the correlation between ChAT and acetylthiokinase was very strong (r=0.932).Special issue dedicated to Dr. Lawrence Austin  相似文献   

17.
Summary The localisation of GABA immunoreactive neurones in retinas of a variety of animals was examined. Immunoreactivity was associated with specific populations of amacrine neurones in all species examined, viz. rat, rabbit, goldfish, frog, pigeon and guinea-pig. All species, with the exception of the frog, possessed immunoreactive perikarya in their retinal ganglion cell layers. These perikarya are probably displaced amacrine cells because GABA immunoreactivity was absent from the optic nerves and destruction of the rat optic nerve did not result in degeneration of these cells. GABA immunoreactivity was also associated with the outer plexiform layers of all the retinas studied; these processes are derived from GABA-positive horizontal cells in rat, rabbit, frog, pigeon and goldfish retinas, from bipolar-like cells in the frog, and probably from interplexiform cells in the guinea-pig retina.The development of GABA-positive neurones in the rabbit retina was also analysed. Immunoreactivity was clearly associated with subpopulations of amacrine and horizontal cells on the second postnatal day. The immunoreactivity at this stage is strong, and fairly well developed processes are apparent. The intensity of the immunoreactivity increases with development in the case of the amacrine cells. The immunoreactive neurones appear fully developed at about the 8th postnatal day, although the immunoreactivity in the inner plexiform layer becomes more dispersed as development proceeds. The immunoreactive horizontal cells become less apparent as development proceeds, but they can still be seen in the adult retina.The GABA immunoreactive cells in rabbit retinas can be maintained in culture. Cultures of retinal cells derived from 2-day-old animals can be maintained for up to 20 days and show the presence of GABA-positive cells at all stages. In one-day-old cultures the GABA immunoreactive cells lacked processes but within three days had clearly defined processes. After maintenance for 10 days a meshwork of GABA-positive fibres could also be seen in the cultures.  相似文献   

18.
An analysis of the dopamine-β-hydroxylase activity in various ocular tissues revealed low enzymatic activity in all the retinas analysed. Bovine and monkey retinas had the highest enzyme activity. The enzyme is also present in bovine optic nerve and pigment epithelium/choroid complex, and low levels are present in the vitreous. Immunohistochemical analysis of various retinas with an antiserum raised to bovine adrenal dopamine-β-hydroxylase-showed positive staining only in monkey and bovine retinas. In both instances dopamine-β-hydroxylase immunoreactivity was associated with cells in the ganglion cell layer. These cells are probably ganglion cells since some positive staining was also observed in the bovine optic nerve. Autoradiographical analysis of the uptake of [3H]noradrenaline showed that grains were associated with some structures in the ganglion cell layer. A single prominent layer of terminals at the junction of the inner nuclear and inner plexiform layer of the bovine retina was also apparent. This was considered to be due to [3H]noradrenaline accumulation by dopaminergic amacrine cells. The results suggest that a small number of noradrenergic and/or adrenergic ganglion cells may exist in certain retinas.  相似文献   

19.
Freeze-dried sections (14 microns thick) of retinal layers were prepared from mice with retinal degeneration (C3H strain) and control mice (C57BL strain). The weighed sections (2-30 ng dry weight) were analyzed using our microassay methods. In the control retina, gamma-aminobutyric acid (GABA) concentration and glutamate decarboxylase (GAD) activity, on a dry weight basis, increased from birth to 9 weeks of age and decreased slightly at 20 weeks. In the degenerated retina, the levels of GABA and GAD activity were higher at birth than in the control retina, and continued to increase until 20 weeks of age, at which time the GAD activity reached a markedly high level. This increase was found when the total GABA and GAD levels per retina were determined. In the normal retinal layers, GABA and GAD were confined primarily to the inner plexiform layer. In the degenerated retina, GAD activity gradually increased in the inner layers during postnatal development, but by 20 weeks the increase was most prominent in the inner part of inner nuclear layer and in the outer part of inner plexiform layer. GABA transaminase activity and its distribution were not much different in both normal and degenerated retinas during development.  相似文献   

20.
Nicotinamide adenine dinucleotide (NAD) and reduced NAD (NADH) levels have been measured in bacterial cultures. The cofactors were assayed by using the very sensitive cycling assay described previously by Cartier. Control experiments showed that the level of total NAD(H) falls during harvesting, and so samples were taken quickly from growing cultures and extracted immediately without separating the cells from the medium. Total NAD(H) ranged from 4.0 to 11.7 mumoles/g of dry cells for three facultative organisms, Klebsiella aerogenes, Escherichia coli, and Staphylococcus albus. NADH was remarkably constant in these bacteria; only one out of ten series of determinations was outside the range 1.4 to 1.9 mumoles/g of dry cells. NAD(+) showed much greater variation. An anaerobe (Clostridium welchii) had significantly more total NAD(H) whereas an aerobe Pseudomonas aeruginosa had about as much NAD(H) as the facultative organisms. NAD and NADH were measured during growth: once more NADH was much more constant than NAD. During change-over between aerobiosis and anaerobiosis, NADH showed a temporary increase but then returned to a constant level, whereas NAD changed from high aerobically to low anaerobically. These results are discussed in terms of the control mechanisms that may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号