首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We present an approach that generates an oligomer-based library with minimal need for restriction site modification of sequences in the target vector. The technique has the advantage that it can be applied for generating peptide aptamer libraries at sites within proteins without the need for introducing flanking enzyme sites. As an example we present a phagemid retroviral shuttle vector that can be used to achieve stable expression of the library in mammalian cells for the purpose of screening for peptides with desired biological activity.  相似文献   

2.
Antigenic peptide binding to MHC class II molecules in the endocytic pathway occurs via a multifactorial process that requires the support of a specialized lysosomal chaperone called HLA-DM. DM shows both in primary amino acid sequence and quaternary structure a high homology to both MHC class I and class II molecules. Like the peptide presenting class II molecules, DM is expressed in all professional antigen presenting cells. DM catalyzes the dissociation of peptides that do not bind stably to the class II peptide-binding groove, thereby leading to the preferential presentation of stably binding antigenic peptides. The recently discovered HLA-DO molecule is mainly expressed in B cells and associates with DM, thereby markedly affecting DM function. Like DM, the genes encoding the HLA-DO heterodimer lie within the MHC class II region and exhibit strong homology to classical class II molecules. This review evaluates the unique effects of DO on DM-mediated antigen presentation by MHC class II molecules and discusses the possible physiological relevance for the B cell-specific expression of DO and its function.  相似文献   

3.
Eight to eleven amino acid residues are the sizes of predominant peptides found to be associated with MHC class I molecules. Proteasomes have been implicated in antigen processing and generation of such peptides. Advanced methodologies in peptide elution together with sequence determination have led to the characterisation of MHC class I binding motifs. More recently, screening of random peptide phage display libraries and synthetic combinatorial peptide libraries have also been successfully used. This has led to the development and use of predictive algorithms to screen antigens for potential CTL epitopes. Not all predicted epitopes will be generated in vivo and the emerging picture suggests differential presentation of predicted CTL epitopes ranging from cryptic to immunodominant. The scope of this review is to discuss antigen processing by proteasomes, and to put forward a hypothesis that the molecular basis of immunogenicity can be a function of proteasomal processing. This may explain how pathogens and tumours are able to escape immunosurveillance by altering sequences required by proteasomes for epitope generation. Abbreviations: CTL – cytotoxic T lymphocytes; DRiPs – defective ribosomal products; ER – endoplasmic reticulum; Hsps – heat shock proteins; LMP – low molecular weight peptide; MHC – major histocompatibility complex; TAP – transporter associated with antigen processing.  相似文献   

4.
Function of the transport complex TAP in cellular immune recognition   总被引:9,自引:0,他引:9  
The transporter associated with antigen processing (TAP) is essential for peptide loading onto major histocompatibility complex (MHC) class I molecules by translocating peptides into the endoplasmic reticulum. The MHC-encoded ABC transporter works in concert with the proteasome and MHC class I molecules for the antigen presentation on the cell surface for T cell recognition. TAP forms a heterodimer where each subunit consists of a hydrophilic nucleotide binding domain and a hydrophobic transmembrane domain. The transport mechanism is a multistep process composed of an ATP-independent peptide association step which induces a structural reorganization of the transport complex that may trigger the ATP-driven transport of the peptide into the endoplasmic reticulum lumen. By using combinatorial peptide libraries, the substrate selectivity and the recognition principle of TAP have been elucidated. TAP maximizes the degree of substrate diversity in combination with high substrate affinity. This ABC transporter is also unique as it is closely associated with chaperone-like proteins involved in bonding of the substrate onto MHC molecules. Most interestingly, virus-infected and malignant cells have developed strategies to escape immune surveillance by affecting TAP expression or function.  相似文献   

5.
Presentation of antigen-derived peptides by major histocompatibility complex (MHC) class I molecules is dependent on an endoplasmic reticulum (ER) resident glycoprotein, tapasin, which mediates their interaction with the transporter associated with antigen processing (TAP). Independently of TAP, tapasin was required for the presentation of peptides targeted to the ER by signal sequences in MHC class I-transfected insect cells. Tapasin increased MHC class I peptide loading by retaining empty but not peptide-containing MHC class I molecules in the ER. Upon co-expression of TAP, this retention/release function of tapasin was sufficient to reconstitute MHC class I antigen presentation in insect cells, thus defining the minimal non-housekeeping functions required for MHC class I antigen presentation.  相似文献   

6.
Cytotoxic CD8(+) T cells recognize the antigenic peptides presented by class I major histocompatibility complex (MHC) molecules. These T cells have key roles in infectious diseases, autoimmunity and tumor immunology, but there is currently no unbiased method for the reliable identification of their target antigens. This is because of the low affinities of antigen-specific T cell receptors (TCR) to their target MHC-peptide complexes, the polyspecificity of these TCRs and the requirement that these TCRs recognize protein antigens that have been processed by antigen-presenting cells (APCs). Here we describe a technology for the unbiased identification of the antigenic peptides presented by MHC class I molecules. The technology uses plasmid-encoded combinatorial peptide libraries and a single-cell detection system. We validated this approach using a well-characterized influenza-virus–specific TCR, MHC and peptide combination. Single APCs carrying antigenic peptides can be detected among several million APCs that carry irrelevant peptides. The identified peptide sequences showed a converging pattern of mimotopes that revealed the parent influenza antigen. This technique should be generally applicable to the identification of disease-relevant T cell antigens.  相似文献   

7.
Specificities of three mouse major histocompatibility complex (MHC) class I molecules, Kb, Db, and Ld, were analyzed by positional scanning using combinatorial peptide libraries. The result of the analysis was used to create a scoring program to predict MHC-binding peptides in proteins. The capacity of the scoring was then challenged with a number of peptides by comparing the prediction with the experimental binding. The score and the experimental binding exhibited a linear correlation but with substantial deviations of data points. Statistically, for approximately 80% of randomly chosen peptides, MHC-binding capacity could be predicted within one log concentration of peptides for a half-maximal binding. Known cytotoxic T-lymphocyte epitope peptides could be predicted, with a few exceptions. In addition, frequent findings of MHC-binding peptides with incomplete or no anchor amino acid(s) suggested a substantial bias introduced by natural antigen processing in peptide selection by MHC class I molecules.  相似文献   

8.
T cell receptors (TCR) recognize antigenic peptides in complex with the major histocompatibility complex (MHC) molecules and this trimolecular interaction initiates antigen-specific signaling pathways in the responding T lymphocytes. For the study of autoimmune diseases and vaccine development, it is important to identify peptides (epitopes) that can stimulate a given TCR. The use of combinatorial peptide libraries has recently been introduced as a powerful tool for this purpose. A combinatorial library of n-mer peptides is a set of complex mixtures each characterized by one position fixed to be a specified amino acid and all other positions randomized. A given TCR can be fingerprinted by screening a variety of combinatorial libraries using a proliferation assay. Here, we present statistical models for elucidating the recognition profile of a TCR using combinatorial library proliferation assay data and known MHC binding data.  相似文献   

9.
Peptides displayed on the cell surface by major histocompatibility class I molecules (MHC class I) are generated by proteolytic processing of protein-antigens in the cytoplasm. Initially, antigens are degraded by the 26 S proteasome, most probably following ubiquitination. However, it is unclear whether this proteolysis results in the generation of MHC class I ligands or if further processing is required. To investigate the role of the 26 S proteasome in antigen presentation, we analyzed the processing of an intact antigen by purified 26 S proteasome. A recombinant ornithine decarboxylase was produced harboring the H-2K(b)-restricted peptide epitope, derived from ovalbumin SIINFEKL (termed ODC-ova). Utilizing recombinant antizyme to target the antigen to the 26 S proteasome, we found that proteolysis of ODC-ova by the 26 S proteasome resulted in the generation of the K(b)-ligand. Mass spectrometry analysis indicated that in addition to SIINFEKL, the N-terminally extended ligand, HSIINFEKL, was also generated. Production of SIINFEKL was linear with time and directly proportional to the rate of ODC-ova degradation. The overall yield of SIINFEKL was approximately 5% of the amount of ODC-ova degraded. The addition of PA28, the 20 S, or the 20 S-PA28 complex to the 26 S proteasome did not significantly affect the yield of the antigenic peptide. These findings demonstrate that the 26 S proteasome can efficiently digest an intact physiological substrate and generate an authentic MHC class I-restricted epitope.  相似文献   

10.
Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen‐specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; while bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross‐presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells.  相似文献   

11.
Vacuolar alternate class I MHC (MHC-I) Ag processing allows presentation of exogenous Ag by MHC-I molecules with binding of antigenic peptides to post-Golgi MHC-I molecules. We investigated the role of previously bound peptides and their dissociation in generating peptide-receptive MHC-I molecules. TAP1-knockout macrophages were incubated overnight with an initial exogenous peptide, producing a large cohort of peptide-K(b) complexes that could influence subsequent peptide dissociation/exchange. Initial incubation with FAPGNYPAL, KVVRFDKL, or RGYVYQGL enhanced rather than reduced subsequent binding and presentation of a readout peptide (SIINFEKL or FAPGNYPAL) to T cells. Thus, K(b) molecules may be stabilized by an initial (stabilizing) peptide, enhancing their ability to bind readout peptide and implicating peptide dissociation/exchange. In contrast, incubation with SIINFEKL as stabilizing peptide reduced presentation of readout peptide. SIINFEKL-K(b) complexes were more stable than other peptide-K(b) complexes, which may limit their contribution to peptide exchange. Stabilizing peptides (FAPGNYPAL, KVVRFDKL, or RGYVYQGL) enhanced alternate MHC-I processing of HB101.Crl-OVA (Escherichia coli expressing an OVA fusion protein), indicating that alternate MHC-I Ag processing involves peptide dissociation/exchange. Stabilizing peptide enhanced processing of HB101.Crl-OVA more than presentation of exogenous OVA peptide (SIINFEKL), suggesting that peptide dissociation/exchange may be enhanced in the acidic phagosomal processing environment. Furthermore, exposure of cells to acidic pH increased subsequent binding and presentation of readout peptide. Thus, peptide dissociation/exchange contributes to alternate MHC-I Ag processing and may be influenced by both stability of peptide-MHC-I complexes and pH.  相似文献   

12.
Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general.  相似文献   

13.
Testing the role of gp96 as peptide chaperone in antigen processing   总被引:5,自引:0,他引:5  
gp96 is a 96-kDa glycoprotein of the endoplasmic reticulum that is believed to be involved in antigen processing as an intermediate carrier of peptides for presentation by major histocompatibility complex (MHC) class I molecules. This function implies that gp96 carries a large array of different peptides that represent the antigenicity of the cell and can serve all MHC class I molecules. So far, the evidence regarding these peptides is largely indirect and based on experiments where mice immunized with gp96 from tumor or virus-infected cells developed T cellular immune responses with the corresponding specificities. We analyzed by mass spectrometry peptides isolated from gp96 and found a number of different peptides derived from the proteins of different cellular compartments but mostly cytoplasm and nucleus. The sequences of these peptides provide information on the specificity of antigen processing and reveal structural requirements for binding to gp96 that only partially correspond to those of peptides presented by MHC class I molecules. The yield of peptides extracted from gp96 was far substoichiometric with an estimated occupancy of this chaperone of between 0.1% and 0.4%. These results strongly argue against a regular role for gp96 as a peptide chaperone in antigen processing.  相似文献   

14.
Protein degradation by proteasomes is the source of most antigenic peptides presented on MHC class I molecules. To determine whether proteasomes generate these peptides directly or longer precursors, we developed new methods to measure the efficiency with which 26S and 20S particles, during degradation of a protein, generate the presented epitope or potential precursors. Breakdown of ovalbumin by the 26S and 20S proteasomes yielded the immunodominant peptide SIINFEKL, but produced primarily variants containing 1-7 additional N-terminal residues. Only 6-8% of the times that ovalbumin molecules were digested was a SIINFEKL or an N-extended version produced. Surprisingly, immunoproteasomes which contain the interferon-gamma-induced beta-subunits and are more efficient in antigen presentation, produced no more SIINFEKL than proteasomes. However, the immunoproteasomes released 2-4 times more of certain N-extended versions. These observations show that the changes in cleavage specificity of immunoproteasomes influence not only the C-terminus, but also the N-terminus of potential antigenic peptides, and suggest that most MHC-presented peptides result from N-terminal trimming of larger proteasome products by aminopeptidases (e.g. the interferon-gamma-induced enzyme leucine aminopeptidase).  相似文献   

15.
APCs process mammalian heat shock protein (HSP):peptide complexes to present HSP-chaperoned peptides on class I MHC (MHC-I) molecules to CD8(+) T cells. HSPs are also expressed in prokaryotes and chaperone microbial peptides, but the ability of prokaryotic HSPs to contribute chaperoned peptides for Ag presentation is unknown. Our studies revealed that exogenous bacterial HSPs (Escherichia coli DnaK and Mycobacterium tuberculosis HSP70) delivered an extended OVA peptide for processing and MHC-I presentation by both murine macrophages and dendritic cells. HSP-enhanced MHC-I peptide presentation occurred only if peptide was complexed to the prokaryotic HSP and was dependent on CD91, establishing CD91 as a receptor for prokaryotic as well as mammalian HSPs. Inhibition of cytosolic processing mechanisms (e.g., by transporter for Ag presentation deficiency or brefeldin A) blocked HSP-enhanced peptide presentation in dendritic cells but not macrophages. Thus, prokaryotic HSPs deliver chaperoned peptide for alternate MHC-I Ag processing and cross-presentation via cytosolic mechanisms in dendritic cells and vacuolar mechanisms in macrophages. Prokaryotic HSPs are a potential source of microbial peptide Ags during phagocytic processing of bacteria during infection and could potentially be incorporated in vaccines to enhance presentation of peptides to CD8(+) T cells.  相似文献   

16.
目的:建立可表达随机12肽库的逆转录病毒表达系统。方法:体外合成编码随机12肽的DNA片段;在最优化的实验参数和反应条件下将DNA片段克隆入带有EGFP标记的逆转录病毒载体后分批次电击转化大肠杆菌,合并转化所得菌液即为可表达随机12肽库的逆转录病毒原始载体库;半固体扩增法扩增该原始载体库,提取质粒并转染GP2-293包装细胞,在EGFP表达最强的时间点收集细胞培养上清,即为可表达随机12肽库的逆转录病毒库。结果:可表达随机12肽库的逆转录病毒原始载体库的库容量为3.14×10^6cfu;扩增后的逆转录病毒载体库滴度为5.2×109cfu/mL,库容量为2.34×1011cfu;转染了已扩增的载体库质粒后的GP2-293包装细胞可以成功地表达随机12肽库。结论:建立了可表达随机12肽库的逆转录病毒表达系统,为抗病毒寡肽的筛选以及进一步的深入研究奠定了良好的基础。  相似文献   

17.
The use of peptide libraries for the identification and characterization of T cell antigen peptide epitopes and mimotopes has been hampered by the need to form complexes between the peptides and an appropriate MHC molecule in order to construct a complete T cell ligand. We have developed a baculovirus-based peptide library method in which the sequence encoding the peptide is embedded within the genes for the MHC molecule in the viral DNA, such that insect cells infected with virus encoding a library of different peptides each displays a unique peptide–MHC complex on its surface. We have fished in such a library with two different fluorescent soluble T cell receptors (TCRs), one highly peptide specific and the other broadly allo-MHC specific and hypothesized to be much less focused on the peptide portion of the ligand. A single peptide sequence was selected by the former αβTCR that, not unexpectedly, was highly related to the immunizing peptide. As hypothesized, the other αβTCR selected a large family of peptides, related only by a similarity to the immunizing peptide at the p5 position. These findings have implications for the relative importance of peptide and MHC in TCR ligand recognition. This display method has broad applications in T cell epitope identification and manipulation and should be useful in general in studying interactions between complex proteins.  相似文献   

18.
Synthetic immunogens, containing built-in adjuvanticity, B cell, T helper cell and CTL epitopes or mimotopes, are ideal and invaluable tools to study the immune response with respect to antigen processing and presentation. This serves as a basis for the development of complete and minimal vaccines which do not need large carrier proteins, further adjuvants, liposome formulations or other delivery systems. Combinatorial peptide libraries, either completely random or characterized by one or several defined positions, are useful tools for the identification of the critical features of B cell epitopes and of MHC class I and class II binding natural and synthetic epitopes. The complete activity pattern of an O/Xn library with hundreds of peptide collections, each made up from billions of different peptides, represents the ranking of amino acid residues mediating contact to the target proteins of the immune system. Combinatorial libraries support the design of peptides applicable in vaccination against infectious agents as well as therapeutic tumour vaccines. Using the principle of lipopeptide vaccines, strong humoral and cellular immune responses could be elicited. The lipopeptide vaccines are heat-stable, non-toxic, fully biodegradable and can be prepared on the basis of minimized epitopes by modern methods of multiple peptide synthesis. The lipopeptides activate the antigen-presenting macrophages and B cells and have been recently shown to stimulate innate immunity by specific interaction with receptors of the Toll family.  相似文献   

19.
The use of peptide libraries for the identification and characterization of T cell antigen peptide epitopes and mimotopes has been hampered by the need to form complexes between the peptides and an appropriate MHC molecule in order to construct a complete T cell ligand. We have developed a baculovirus-based peptide library method in which the sequence encoding the peptide is embedded within the genes for the MHC molecule in the viral DNA, such that insect cells infected with virus encoding a library of different peptides each displays a unique peptide–MHC complex on its surface. We have fished in such a library with two different fluorescent soluble T cell receptors (TCRs), one highly peptide specific and the other broadly allo-MHC specific and hypothesized to be much less focused on the peptide portion of the ligand. A single peptide sequence was selected by the former αβTCR that, not unexpectedly, was highly related to the immunizing peptide. As hypothesized, the other αβTCR selected a large family of peptides, related only by a similarity to the immunizing peptide at the p5 position. These findings have implications for the relative importance of peptide and MHC in TCR ligand recognition. This display method has broad applications in T cell epitope identification and manipulation and should be useful in general in studying interactions between complex proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号