首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The N-terminal SH3 domain of Drosophila drk (drkN SH3 domain) exists in equilibrium between a folded (F(exch)) state and a relatively compact unfolded (U(exch)) state under nondenaturing conditions. Selectively labeled samples of the domain have been analyzed by NOESY NMR experiments to probe residual hydrophobic clustering in the U(exch) state. The labeling strategy included selective protonation of aromatic rings or delta-methyl groups on Ile and Leu residues in a highly deuterated background. Combined with long mixing times, the methods permitted observation of significant numbers of long-range interactions between hydrophobic side chains, providing evidence for multiple conformers involving non-native hydrophobic clusters around the Trp 36 indole. Comparison of these data with previously reported HN-HN NOEs yields structural insight into the diversity of structures within the U(exch) ensemble in the drkN SH3 domain. Many of the HN-HN NOEs are consistent with models containing compact residual nativelike secondary structure and greater exposure of the Trp 36 indole to solvent, similar to kinetic intermediates formed in the hierarchic condensation model of folding. However, the methyl and aromatic NOE data better fit conformations with non-native burial of the Trp indole surrounded by hydrophobic groups and more loosely formed beta-structure; these structural characteristics are more consistent with those of kinetic intermediates formed during the hydrophobic collapse mechanism of folding. This suite of NOE data provides a more complete picture of the structures that span the U(exch) state ensemble, from conformers with non-native structure but long-range contacts to those that are highly nativelike. Together, the results are also consistent with the folding funnel view involving multiple folding pathways for this molecule.  相似文献   

2.
The presence of residual structure in the unfolded state of the N-terminal SH3 domain of Drosophila drk (drkN SH3 domain) has been investigated using far- and near-UV circular dichroism (CD), fluorescence, and NMR spectroscopy. The unfolded (U(exch)) state of the drkN SH3 domain is significantly populated and exists in equilibrium with the folded (F(exch)) state under non-denaturing conditions near physiological pH. Denaturation experiments have been performed on the drkN SH3 domain in order to monitor the change in ellipticity, fluorescence intensity, and chemical shift between the U(exch) state and chemically or thermally denatured states. Differences between the unfolded and chemically or thermally denatured states highlight specific areas of residual structure in the unfolded state that are cooperatively disrupted upon denaturation. Results provide evidence for cooperative interactions in the unfolded state involving residues of the central beta-sheet, particularly the beta4 strand. Denaturation as well as hydrogen-exchange experiments demonstrate a non-native burial of the Trp ring within this "cooperative" core of the unfolded state. These findings support the presence of non-native hydrophobic clusters, organised by Trp rings, within disordered states.  相似文献   

3.
4.
The N-terminal SH3 domain of the Drosophila adapter protein Drk (drkN SH3 domain) is marginally stable (DeltaG(U) = 1 kcal/mol) and exists in equilibrium between folded and highly populated unfolded states. The single substitution T22G, however, completely stabilizes the protein (DeltaG(U) = 4.0 kcal/mol). To probe the causes of instability of the wild-type (WT) protein and the dramatic stabilization of the mutant, we determined and compared nuclear magnetic resonance structures of the folded WT and mutant drkN SH3 domains. Residual dipolar coupling (RDC) and carbonyl chemical-shift anisotropy (C'-CSA) restraints measured for the WT and T22G domains were used for calculating the structures. The structures for the WT and mutant are highly similar. Thr22 of the WT and Gly22 of the mutant are at the i + 2 position of the diverging, type-II beta-turn. Interestingly, not only Gly22 but also Thr22 successfully adopt an alpha(L) conformation, required at this position of the turn, despite the fact that positive phi values are energetically unfavorable and normally disallowed for threonine residues. Forcing the Thr22 residue into this unnatural conformation increases the free energy of the folded state of the WT domain relative to its T22G mutant. Evidence for residual helix formation in the diverging turn region has been previously reported for the unfolded state of the WT drkN SH3 domain, and this, in addition to other residual structure, has been proposed to play a role in decreasing the free energy of the unfolded state of the protein. Together these data provide evidence that both increasing the free energy of the folded state and decreasing the free energy of the unfolded state of the protein contribute to instability of the WT drkN SH3 domain.  相似文献   

5.
Due to their dynamic ensemble nature and a deficiency of experimental restraints, disordered states of proteins are difficult to characterize structurally. Here, we have expanded upon our previous work on the unfolded state of the Drosophila drk N-terminal (drkN) SH3 domain with our program ENSEMBLE, which assigns population weights to pregenerated conformers in order to calculate ensembles of structures whose properties are collectively consistent with experimental measurements. The experimental restraint set has been enlarged with newly measured paramagnetic relaxation enhancements from Cu(2+) bound to an amino terminal Cu(2+)-Ni(2+) binding (ATCUN) motif as well as nuclear Overhauser effect (NOE) and hydrogen exchange data from recent studies. In addition, two new pseudo-energy minimization algorithms have been implemented that have dramatically improved the speed of ENSEMBLE population weight assignment. Finally, we have greatly improved our conformational sampling by utilizing a variety of techniques to generate both random structures and structures that are biased to contain elements of native-like or non-native structure. Although it is not possible to uniquely define a representative structural ensemble, we have been able to assess various properties of the drkN SH3 domain unfolded state by performing ENSEMBLE minimizations of different conformer pools. Specifically, we have found that the experimental restraint set enforces a compact structural distribution that is not consistent with an overall native-like topology but shows preference for local non-native structure in the regions corresponding to the diverging turn and the beta5 strand of the folded state and for local native-like structure in the region corresponding to the beta6 and beta7 strands. We suggest that this approach could be generally useful for the structural characterization of disordered states.  相似文献   

6.
The N-terminal SH3 domain of drk (drkN SH3) is unstable, existing in equilibrium between a folded state (Fexch) and an unfolded state (Uexch) under non-denaturing buffer conditions. Using a15N/2H-labeled sample, long range amide NOEs can be observed in the Uexchstate as a result of reduced relaxation, in some cases correlating protons over 40 residues apart. These long range NOEs disappear upon addition of 2 M guanidinium chloride, demonstrating that there are substantial differences between the Uexchand the guanidine denatured states. Calculations using the long range NOEs of the Uexchstate yield highly compact structures having non-native turns and a non-native buried tryptophan residue. These structures agree with experimental stopped-flow fluorescence data and analytical ultracentrifugation results. Since protein stability depends on the structural and dynamic properties of both the folded and unfolded states, this study provides insights into the stability of the drkN SH3 domain. These results provide the first strong NOE-based evidence for compact unfolded states of proteins and suggest that some unfolded states under physiological conditions have specific interactions leading to compact structures.  相似文献   

7.
Single-molecule fluorescence (F?rster) resonance energy transfer (FRET) experiments were performed on surface-immobilized RNase H molecules as a function of the concentration of the chemical denaturant guanidinium chloride (GdmCl). For comparison, we measured ensemble FRET on RNase H solutions. The single-molecule approach allowed us to study FRET distributions of the subpopulation of unfolded molecules without interference from the folded population. The unfolded ensemble experienced a continuous shift of the FRET efficiency distribution with increasing concentration of GdmCl, indicating a heterogeneous population of expanding, unfolded polypeptide chains. We have analyzed the behavior of the unfolded state quantitatively with a model in which the unfolded state is described by a continuum of substates, with the free energy of each substate linearly coupled to its m-value, the proportionality coefficient between free energy and denaturant activity. By fitting this model to the data, we have derived energetic and structural parameters that describe the unfolded state ensemble. Specifically, we have found that the average size of the unfolded state increases from 23-38 A between 0 and 6 M denaturant. Excellent agreement was achieved between the fitted model and our FRET measurements, and with previously published nuclear magnetic resonance and small-angle X-ray scattering data.  相似文献   

8.
It is generally held that random-coil polypeptide chains undergo a barrier-less continuous collapse when the solvent conditions are changed to favor the fully folded native conformation. We test this hypothesis by probing intramolecular distance distributions during folding in one of the paradigms of folding reactions, that of cytochrome c. The Trp59-to-heme distance was probed by time-resolved Förster resonance energy transfer in the microsecond time range of refolding. Contrary to expectation, a state with a Trp59–heme distance close to that of the guanidinium hydrochloride (GdnHCl) denatured state is present after ~ 27 μs of folding. A concomitant decrease in the population of this state and an increase in the population of a compact high-FRET (Förster resonance energy transfer) state (efficiency > 90%) show that the collapse is barrier limited. Small-angle X-ray scattering (SAXS) measurements over a similar time range show that the radius of gyration under native favoring conditions is comparable to that of the GdnHCl denatured unfolded state. An independent comprehensive global thermodynamic analysis reveals that marginally stable partially folded structures are also present in the nominally unfolded GdnHCl denatured state. These observations suggest that specifically collapsed intermediate structures with low stability in rapid equilibrium with the unfolded state may contribute to the apparent chain contraction observed in previous fluorescence studies using steady-state detection. In the absence of significant dynamic averaging of marginally stable partially folded states and with the use of probes sensitive to distance distributions, barrier-limited chain contraction is observed upon transfer of the GdnHCl denatured state ensemble to native-like conditions.  相似文献   

9.
The effect of osmolyte sucrose on the stability and compaction of the folded and unfolded states of ribosomal protein S6 from Thermus thermophilus was analyzed. Confirming previous results obtained with sodium sulfate and trehalose, refolding stopped-flow measurements of S6 show that sucrose favors the conversion of the unfolded state ensemble to a highly compact structure (75% as compact as the folded state). This conversion occurs when the unfolded state is suddenly placed under native conditions and the compact state accumulates in a transient off-folding pathway. This effect of sucrose on the compaction of the unfolded state ensemble is counteracted by guanidinium hydrochloride. The compact state does not accumulate at higher guanidinium concentrations and the unfolded state ensemble does not display increased compaction in the presence of 6 M guanidinium as evaluated by collisional quenching of tryptophan fluorescence. In contrast, accessibility of the tryptophan residue of folded S6 above 1 M sucrose concentration decreased as a result of an increased compaction of the folded state. Unfolding stopped-flow measurements of S6 reflect this increased compaction of the folded state, but the unfolding pathway is not affected by sucrose. Compaction of folded and unfolded S6 induced by sucrose occurs under native conditions indicating that decreased protein conformational entropy significantly contributes to the mechanism of protein stabilization by osmolytes.  相似文献   

10.
Pradeep L  Udgaonkar JB 《Biochemistry》2004,43(36):11393-11402
To probe for residual structure present in the urea-unfolded form of the small protein barstar, to determine how salt might modulate such structure, and to determine how such structure might affect the stability of the protein, mutant variants that display m values different from that of the wild-type protein have been studied. The mutant proteins were obtained by site-directed mutagenesis at residue positions located on the surface of the folded protein. The m value, which represents the preferential free energy of interaction of urea with the unfolded form in comparison to that with the folded state, was determined from equilibrium urea-induced unfolding curves. Mutant proteins for which the m values were significantly greater than (m(+) mutant forms), significantly smaller than (m(-) mutant forms), or similar to (m(0) mutant forms) the m value determined for the wild-type protein were studied. The unfolded forms of the m(0), m(+) and m(-) mutant proteins represent different components within the unfolded form ensemble, which differ from each other in their solvent-exposed surface areas. Hence, the m value has been used as a measure of residual structure in the unfolded form. To further understand the nature of structures present in the unfolded form ensemble, the effects of the salt KCl on the stabilities of the wild-type and the mutant proteins, as well as on the structures present in the unfolded form ensemble, were also studied. It was found that the m values of the m(0), m(+) and m(-) mutant proteins all converge to the wild-type m value in the presence of KCl. This result indicates that the salt modulates residual structure in the unfolded form by screening electrostatic interactions that maintain compact and expanded components in the unfolded protein ensemble. The use of free energy cycles has allowed the effect of salt on the structure and free energy of the unfolded protein to be related to the stability of the protein.  相似文献   

11.
Obtaining detailed structural models of disordered states of proteins under nondenaturing conditions is important for a better understanding of both functional intrinsically disordered proteins and unfolded states of folded proteins. Extensive experimental characterization of the drk N-terminal SH3 domain unfolded state has shown that, although it appears to be highly disordered, it possesses significant nonrandom secondary and tertiary structure. In our previous attempts to generate structural models of the unfolded state using the program ENSEMBLE, we were limited by insufficient experimental restraints and conformational sampling. In this study, we have vastly expanded our experimental restraint set to include 1H-15N residual dipolar couplings, small-angle X-ray scattering measurements, nitroxide paramagnetic relaxation enhancements, O2-induced 13C paramagnetic shifts, hydrogen-exchange protection factors, and 15N R2 data, in addition to the previously used nuclear Overhauser effects, amino terminal Cu2+-Ni2+ binding paramagnetic relaxation enhancements, J-couplings, chemical shifts, hydrodynamic radius, and solvent accessibility restraints. We have also implemented a new ensemble calculation methodology that uses iterative conformational sampling and seeks to calculate the simplest possible ensemble models. As a result, we can now generate ensembles that are consistent with much larger experimental data sets than was previously possible. Although highly heterogeneous and having broad molecular size distributions, the calculated drk N-terminal SH3 domain unfolded-state ensembles have very different properties than expected for random or statistical coils and possess significant nonnative α-helical structure and both native-like and nonnative tertiary structure.  相似文献   

12.
Yoshiharu Mori 《Molecular simulation》2015,41(10-12):1035-1040
While most proteins unfold under high-pressure conditions, some high-pressure experiments suggest that an AK16 peptide forms more helical structures. In order to understand this abnormality, molecular dynamics simulations with the simulated tempering method for the isobaric–isothermal ensemble were performed in a wide pressure range from 0.1 MPa to 1.4 GPa. It was found that the fraction of the folded state decreases once and increases after that with increasing pressure. The partial molar volume change from the folded state to unfolded state increases monotonically from a negative value to a positive value with pressure. The behaviour under high-pressure conditions is consistent with the experimental results. The radius of gyration of highly helical structures decreases with increasing pressure. Moreover, interatomic distances of AK16 become shorter at high pressure than at low pressure. These behaviours indicate that the helical structures are squeezed by high pressure.  相似文献   

13.
Proteins, which behave as random coils in high denaturant concentrations undergo collapse transition similar to polymers on denaturant dilution. We study collapse in the denatured ensemble of single-chain monellin (MNEI) using a coarse-grained protein model and molecular dynamics simulations. The model is validated by quantitatively comparing the computed guanidinium chloride and pH-dependent thermodynamic properties of MNEI folding with the experiments. The computed properties such as the fraction of the protein in the folded state and radius of gyration (Rg) as function of [GuHCl] are in good agreement with the experiments. The folded state of MNEI is destabilized with an increase in pH due to the deprotonation of the residues Glu24 and Cys42. On decreasing [GuHCl], the protein in the unfolded ensemble showed specific compaction. The Rg of the protein decreased steadily with [GuHCl] dilution due to increase in the number of native contacts in all the secondary structural elements present in the protein. MNEI folding kinetics is complex with multiple folding pathways and transiently stable intermediates are populated in these pathways. In strong stabilizing conditions, the protein in the unfolded ensemble showed transition to a more compact unfolded state where Rg decreased by ≈ 17% due to the formation of specific native contacts in the protein. The intermediate populated in the dominant MNEI folding pathway satisfies the structural features of the dry molten globule inferred from experiments.  相似文献   

14.
Dafforn TR  Smith CJ 《EMBO reports》2004,5(11):1046-1052
It is commonly assumed that a protein must adopt a tertiary structure to achieve its active native state and that regions of a protein that are devoid of alpha-helix or beta-sheet structures are functionally inert. Although extended proline-rich regions are recognized as presenting binding motifs to, for example, Src homology 2 (SH2) and SH3 domains, the idea persists that natively unfolded regions in functional proteins are simply 'spacers' between the folded domains. Such a view has been challenged in recent years and the importance of natively unfolded proteins in biology is now being recognized. In this review, we highlight the role of natively unfolded domains in the field of endocytosis, and show that some important endocytic proteins lack a traditionally folded structure and harbour important binding motifs in their unstructured linker regions.  相似文献   

15.
A 2D (13)C Chemical Exchange Saturation Transfer (CEST) experiment is presented for studying slowly exchanging protein systems using methyl groups as probes. The utility of the method is first established through studies of protein L, a small protein, for which chemical exchange on the millisecond time-scale is not observed. Subsequently the approach is applied to a folding exchange reaction of a G48M mutant Fyn SH3 domain, for which only cross-peaks derived from the folded ('ground') state are present in spectra. Fits of (15)N and methyl (13)C CEST profiles of the Fyn SH3 domain establish that the exchange reaction involves an interchange between folded and unfolded conformers, although elevated methyl (13)C transverse relaxation rates for some of the residues of the unfolded ('invisible, excited') state indicate that it likely exchanges with a third conformation as well. In addition to the kinetics of the exchange reaction, methyl carbon chemical shifts of the excited state are also obtained from analysis of the (13)C CEST data.  相似文献   

16.
A structural interpretation of the thermodynamic stability of proteins requires an understanding of the structural properties of the unfolded state. High-pressure small-angle x-ray scattering was used to measure the effects of temperature, pressure, denaturants, and stabilizing osmolytes on the radii of gyration of folded and unfolded state ensembles of staphylococcal nuclease. A set of variants with the internal Val-66 replaced with Ala, Tyr, or Arg was used to examine how changes in the volume and polarity of an internal microcavity affect the dimensions of the native state and the pressure sensitivity of the ensemble. The unfolded state ensembles achieved for these proteins with high pressure were more compact than those achieved at high temperature, and were all very sensitive to the presence of urea and glycerol. Substitutions at the hydrophobic core detectably altered the conformation of the protein, even in the folded state. The introduction of a charged residue, such as Arg, inside the hydrophobic interior of a protein could dramatically alter the structural properties, even those of the unfolded state. The data suggest that a charge at an internal position can interfere with the formation of transient hydrophobic clusters in the unfolded state, and ensure that the pressure-unfolded form of a protein occupies the maximum volume possible. Only at high temperatures does the radius of gyration of the unfolded state ensemble approach the value for a statistical random coil.  相似文献   

17.
The native states of proteins exist as an ensemble of conformationally similar microstates. The fluctuations among different microstates are of great importance for the functions and structural stability of proteins. Here, we demonstrate that single molecule atomic force microscopy (AFM) can be used to directly probe the existence of multiple folded microstates. We used the AFM to repeatedly stretch and relax a recombinant tenascin fragment TNfnALL to allow the fibronectin type III (FnIII) domains to undergo repeated unfolding/refolding cycles. In addition to the native state, we discovered that some FnIII domains can refold from the unfolded state into a previously unrecognized microstate, N* state. This novel state is conformationally similar to the native state, but mechanically less stable. The native state unfolds at approximately 120 pN, while the N* state unfolds at approximately 50 pN. These two distinct populations of microstates constitute the ensemble of the folded states for some FnIII domains. An unfolded FnIII domain can fold into either one of the two microstates via two distinct folding routes. These results reveal the dynamic and heterogeneous picture of the folded ensemble for some FnIII domains of tenascin, which may carry important implications for the mechanical functions of tenascins in vivo.  相似文献   

18.
Protein folding kinetic data have been obtained for the marginally stable N-terminal Src homology 3 domain of the Drosophila protein drk (drkN SH3) in an investigation of the hydrodynamic properties of its folding transition state. Due to the presence of NMR resonances of both folded and unfolded states at equilibrium, kinetic data can be derived from NMR magnetization transfer techniques under equilibrium conditions. Kinetic analysis as a function of urea (less than approximately 1 M) and glycerol enables determination of alpha values, measures of the energetic sensitivity of the transition state to the perturbation relative to the end states of the protein folding reaction (the folded and unfolded states). Both end states have previously been studied experimentally by NMR spectroscopic and other biophysical methods in great detail and under nondenaturing conditions. Combining these results with the kinetic folding data obtained here, we can characterize the folding transition state without requiring empirical models for the unfolded state structure. We are thus able to give a reliable measure of the solvent-accessible surface area of the transition state of the drkN SH3 domain (4730 +/- 360 A(2)) based on urea titration data. Glycerol titration data give similar results and additionally demonstrate that folding of this SH3 domain is dependent on solvent viscosity, which is indicative of at least partial hydration of the transition state. Because SH3 domains appear to fold by a common folding mechanism, the data presented here provide valuable insight into the transition states of the drkN and other SH3 domains.  相似文献   

19.
RNAs are highly negatively charged chain molecules. Metal ions play a crucial role in RNA folding stability and conformational changes. In this work, we employ the recently developed tightly bound ion (TBI) model, which accounts for the correlation between ions and the fluctuation of ion distributions, to investigate the ion-dependent free energy landscape for the three-way RNA junction in a 16S rRNA domain. The predicted electrostatic free energy landscape suggests that 1), ion-mediated electrostatic interactions cause an ensemble of unfolded conformations narrowly populated around the maximally extended structure; and 2), Mg2+ ion-induced correlation effects help bring the helices to the folded state. Nonelectrostatic interactions, such as noncanonical interactions within the junctions and between junctions and helix stems, might further limit the conformational diversity of the unfolded state, resulting in a more ordered unfolded state than the one predicted from the electrostatic effect. Moreover, the folded state is predominantly stabilized by the coaxial stacking force. The TBI-predicted folding stability agrees well with the experimental measurements for the different Na+ and Mg2+ ion concentrations. For Mg2+ solutions, the TBI model, which accounts for the Mg2+ ion correlation effect, gives more improved predictions than the Poisson-Boltzmann theory, which tends to underestimate the role of Mg2+ in stabilizing the folded structure. Detailed control tests indicate that the dominant ion correlation effect comes from the charge-charge Coulombic correlation rather than the size (excluded volume) correlation between the ions. Furthermore, the model gives quantitative predictions for the ion size effect in the folding energy landscape and folding cooperativity.  相似文献   

20.
The contribution of interactions involving the imidazole ring of His41 to the pH-dependent stability of the villin headpiece (HP67) N-terminal subdomain has been investigated by nuclear magnetic resonance (NMR) spin relaxation. NMR-derived backbone N-H order parameters (S2) for wild-type (WT) HP67 and H41Y HP67 indicate that reduced conformational flexibility of the N-terminal subdomain in WT HP67 is due to intramolecular interactions with the His41 imidazole ring. These interactions, together with desolvation effects, contribute to significantly depress the pKa of the buried imidazole ring in the native state. 15N R1rho relaxation dispersion data indicate that WT HP67 populates a partially folded intermediate state that is 10.9 kJ mol(-1) higher in free energy than the native state under non-denaturing conditions at neutral pH. The partially folded intermediate is characterized as having an unfolded N-terminal subdomain while the C-terminal subdomain retains a native-like fold. Although the majority of the residues in the N-terminal subdomain sample a random-coil distribution of conformations, deviations of backbone amide 1H and 15N chemical shifts from canonical random-coil values for residues within 5A of the His41 imidazole ring indicate that a significant degree of residual structure is maintained in the partially folded ensemble. The pH-dependence of exchange broadening is consistent with a linear three-state exchange model whereby unfolding of the N-terminal subdomain is coupled to titration of His41 in the partially folded intermediate with a pKa,I=5.69+/-0.07. Although maintenance of residual interactions with the imidazole ring in the unfolded N-terminal subdomain appears to reduce pKa,I compared to model histidine compounds, protonation of His41 disrupts these interactions and reduces the difference in free energy between the native state and partially folded intermediate under acidic conditions. In addition, chemical shift changes for residues Lys70-Phe76 in the C-terminal subdomain suggest that the HP67 actin binding site is disrupted upon unfolding of the N-terminal subdomain, providing a potential mechanism for regulating the villin-dependent bundling of actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号