首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C-banding patterns ofH. brevisubulatum subsp.brevisubulatum (2x) and subsp.turkestanicum (4x) had conspicuous telomeric C-bands in at least one chromosome arm with a minor difference in average band size between subspecies. Other conspicuous bands were few in number as in other taxa of the species complex. The C-banded area of the chromosomes was estimated to be 7 to 8 and 6 per cent, respectively. C-banding- and SAT-chromosome polymorphisms were observed in both subspecies. The latter and previous observations indicate that the number of SAT-chromosomes is a less reliable diagnostic character. Nucleolar organizer region polymorphisms were demonstrated through silver nitrate staining of nucleoli. C-banding patterns corroborated that tetra- and hexaploid cytotypes of subsp.turkestanicum form an autopolyploid series. Reliable identification ofH. brevisubulatum taxa based on cytological criteria should include the simultaneous use of C-banding patterns, and number and morphology of marker chromosomes.  相似文献   

2.
Boroń A 《Genetica》2001,111(1-3):387-395
The present work provides new data on the banding pattern of two cyprinid fish species Phoxinus phoxinus and Eupallasella perenurus from Poland. C-banding, silver-staining (Ag), and fluorescent staining with chromomycin A3 techniques were used to describe the karyotypes. Both of the species karyotypes of 2n=50 were characterised by one pair of acrocentric chromosomes, the largest in the set, and by two pairs of NOR-bearing chromosomes. In the chromosome set of Ph. phoxinus Ag-stained NORs were located on telomeres of two metacentric and two submetacentric chromosomes, but in most metaphases only one of the two homologous was observed. The karyotype of E. perenurus was characterised by Ag-NOR regions at a telomeric position on the shorter arm of two submetacentric chromosome pairs. In most metaphases only three NOR-bearing chromosomes were observed. In both investigated species the location of the A3 positive signals corresponded with the location of Ag-stained NORs and these sites were associated with heterochromatin shown as C-bands. The results of cytogenetical studies on other related, mainly the North American phoxinins, species are compared and discussed.  相似文献   

3.
Summary C-banding patterns were analysed in 19 different accessions of Aegilops caudata (= Ae. markgrafii, = Triticum dichasians) (2n = 14, genomically CC) from Turkey, Greece and the USSR, and a generalized C-banded karyotype was established. Chromosome specific C-bands are present in all C-genome chromosomes, allowing the identification of each of the seven chromosome pairs. While only minor variations in the C-banding pattern was observed within the accessions, a large amount of polymorphic variation was found between different accessions. C-banding analysis was carried out to identify Ae. caudata chromosomes in the amphiploid Triticum aestivum cv Alcedo — Ae. caudata and in six derived chromosome addition lines. The results show that the amphiploid carries the complete Ae. Caudate chromosome complement and that the addition lines I, II, III, IV, V and VIII carry the Ae. caudata chromosome pairs B, C, D, F, E and G, respectively. One of the two SAT chromosome pairs (A) is missing from the set. C-banding patterns of the added Ae. caudata chromosomes are identical to those present in the ancestor species, indicating that these chromosomes are not structurally rearranged. The results are discussed with respect to the homoeologous relationships of the Ae. caudata chromosomes.  相似文献   

4.
The somatic karyotypes of six North AmericanAllium species and the EuropeanA. scorzonerifolium have been investigated using a Giemsa C-banding technique. All species have a chromosome number of 2n = 14. InA. scorzonerifolium and the three North American speciesA. dichlamydeum, A. fibrillum andA. unifolium C-bands are restricted to two pairs of nucleolar chromosomes. Each chromosome has a band proximal to the nucleolar constriction and a positively banded satellite. InA. acuminatum, in addition to the bands associated with the nucleolar constrictions, all chromosomes also have pericentromeric bands.A. cernuum exhibits a distinctive banding style: two chromosome pairs with bands adjacent to the nucleolar constrictions and four pairs with telomeric bands on their short arms. In the karyotype ofA. geyeri neither C-bands nor nucleolar chromosomes were found.—A comparison of the banding styles together with other cytological and morphological characters of these species with old world members ofAllium reveals:A. cernuum closely resembles species within subgenusRhizirideum, whereas the other species studies exhibit many similarities with subgenusMolium. Their sectional grouping and their relationships with Old World species are discussed.  相似文献   

5.
Summary The karyotype of 82 regenerated plants from callus cultures of interspecific hybrids between cultivated barley (Hordeum vulgare L.) and seven polyploid wild barley species was examined by C-banding or Feulgen staining. The karyotypic changes observed in 46 plants included aneuploidy, double haploidy, amphidiploidy, deletions, inversions, extra C-bands, and extra euchromatic segments. Apparently, chromosome 5, 6, and 7 of H. vulgare were more frequently exposed to elimination or structural change than the other chromosomes of this species. Irradiation of calli seemed to enhance the occurrence of karyotypic variants.  相似文献   

6.
Summary Psathyrostachys juncea (synonymous to Elymus junceus; 2n=2x=14, NN) has unique biotic and abiotic attributes that could contribute towards wheat improvement. The effectiveness of such an intergeneric hybridization program depends greatly on being able to establish diagnostic markers of the alien chromosomes. Isoelectric focusing (IEF) analyses of six enzyme systems have identified five biochemical markers — malate dehydrogenase (MDH), esterase (EST), shikimate dehydrogenase (SKDH), phosphoglucomutase (PGM), and -amylase (-AMY) — to be of positive diagnostic value; glucosephosphate isomerase (GPI) banding profiles were of no definite value in the background of Triticum aestivum cvs Chinese Spring and Seri-82, the potential recipients of Ps. juncea chromosomes. The Giemsa C-banding karyotype distinctively separates the Ps. Juncea chromosomes from each other and from those of T. aestivum with little banding site polymorphisms prevalent among its accessions analyzed, indicating the usefulness of C-bands as cytological markers.  相似文献   

7.
The somatic karyotypes of 10 taxa belonging toAllium subgen.Molium (Liliaceae) from the Mediterranean area have been investigated using Giemsa C-band and fluorochrome (Hoechst, Quinacrine) banding techniques. A wide range of banding patterns has been revealed. InAllium moly (2n = 14),A. oreophilum (2n = 16) andA. paradoxum (2n = 16) C-banding is restricted to a region on each side of the nucleolar organisers and the satellites show reduced fluorescence with fluorochromes. The satellites are also C-banded and with reduced fluorescence inA. triquetrum (2n = 18), but two other chromosome pairs also have telomeric bands which are not distinguished by fluorochrome treatment. InA. erdelii (2n = 16) 4 pairs of metacentric chromosomes have telomeric C-bands while 2 pairs of telocentric chromosomes have centromeric C-banding. InA. subhirsutum (2n = 14),A. neapolitanum (2n = 28),A. trifoliatum subsp.hirsutum (2n = 14) andA. trifoliatum subsp.trifoliatum (2n = 21) chromosomes with long centromeres, consisting of a centromere and nucleolar organiser are positively C-banded on each side of the constriction. InA. subhirsutum banding is confined to the pair of chromosomes with this feature, whereas inA. neapolitanum one additional chromosome pair has telomeric bands and inA. trifoliatum there are varying numbers of chromosomes with centromeric and telomeric bands, depending on the subspecies.A. zebdanense (2n = 18) shows no C-bands. The banding patterns in this subgenus are compared with those recorded for otherAllium species and with the sectional divisions in the genus. Evidence from the banding patterns for allopolyploidy inA. trifoliatum subsp.trifoliatum andA. neapolitanum is discussed.  相似文献   

8.
The supernumerary B chromosomes ofTriticum speltoides andT. tripsacoides were analyzed in mitotic metaphases of spike primordium cells by C-banding and in situ hybridization (ISH) analyzes. B chromosomes ofT. speltoides have larger telomeric and interstitial C-bands, whereas those ofT. tripsacoides are almost completely devoid of C-bands. A prominent ISH site of rye related DNA sequences (using probe pSc119) was detected on B chromosomes ofT. tripsacoides and only a minor ISH site was observed on theT. speltoides B chromosomes. However, two ISH sites of 5S rRNA loci were detected at a terminal and an interstitial location of theT. speltoides B chromosomes. These sites were absent on B chromosomes ofT. tripsacoides. The results are discussed with respect to the phylogenetic origin of these B chromosomes.  相似文献   

9.
Summary The Agropyron intermedium chromosome 7Ai #2 is the source of the leaf rust resistance gene Lr38 which was transferred to wheat by irradiation. The chromosomal constitutions of eight radiation-induced rust-resistant wheat-Agropyron intermedium derivatives were analyzed by C-banding and genomic in-situ hybridization (GISH). Five lines were identified as wheat Ag. intermedium chromosome translocation lines with the translocation chromosomes T2AS·2AL-7Ai#2L, T5AL · 5AS-7Ai # 2L, T1DS · 1DL-7Ai # 2L, T3DL · 3DS-7Ai#2L, and T6DS · 6DL-7Ai#2L. The sizes of the 7Ai#2L segments in mitotic metaphases of these translocations are 2.42 m, 4.20 m, 2.55 m, 2.78 m, and 4.19 m, respectively. One line was identified as a wheat-Ag. intermedium chromosome addition line. The added Ag. intermedium chromosome in this line is different from 7Ai # 2. This line has resistance to leaf rust and stem rust. Based on the rust reactions, and the C-banding and GISH results, the remaining two lines do not contain any Ag. intermedium-derived chromatin.  相似文献   

10.
E. R. Kalkman 《Genetica》1984,65(2):141-148
The C-banded karyotypes of three Allium cepa plants of different background are described. Identification of all chromosomes of Allium cepa is possible on the basis of complex telomeric and intercalary C-bands. A standard system of chromosome nomenclature is proposed. Infraspecific variation in heterochromatin amount per genome, number of intercalary bands per genome, relative area of telomeric bands, relative chromosome length, relative chromosome arm length and centromeric index are statistically analysed. Although extensive polymorphism in Allium cepa chromosomes is found especially with respect to the size of telomeric bands, the overall similarity of the karyotypes is obvious. The value of C-banding for biosystematics of cultivated plants related to Allium cepa and for their breeding is suggested.  相似文献   

11.
The karyotypes ofElymus dentatus from Kashmir andE. glaucescens from Tierra del Fuego, both carrying genomesS andH, were investigated by C- and N-banding. Both taxa had 2n = 4x = 28. The karyotype ofE. dentatus was symmetrical with large chromosomes. It had 18 metacentric, four submetacentric and six satellited chromosomes. The karyotype ofE. glaucescens resembled that ofE. dentatus, but a satellited chromosome pair was replaced by a morphologically similar, non-satellited pair. The C-banding patterns of both species had from one to five conspicuous and a few inconspicuous bands per chromosome. N-banding differentiated the chromosomes of the constituent genomes by producing bands in theH genome only. TheS genomes of both species were similar with five metacentric and two satellited chromosomes having most conspicuous C-bands at telomeric and distal positions. They resembled theS genome of the genusPseudoroegneria. TheH genomes had four similar metacentric and two submetacentric chromosomes. The seventhH genome chromosome ofE. dentatus was satellited, that ofE. glaucescens nonsatellited, but otherwise morphologically similar. The C-bands were distributed at no preferential positions. TheH genome ofE. dentatus resembles theH genomes of some diploidHordeum taxa.  相似文献   

12.
Summary Seeds formed in crosses Hordeum lechleri (6x) x H. vulgare (2x and 4x), H. arizonicum (6x) x H. v. (2x), H. parodii (6x) x H. v. (2x), and H. tetraploidum (4x) x H. v. (2x) produced plants at high or rather high frequencies through embryo rescue. Giemsa C-banding patterns were used to analyze chromosomal constitutions and chromosomal locations on the methaphase plate. Among 100 plants obtained from H. vulgare (2x) crosses, 32 plants were aneuploid with 2n=29 (1), 28 (3), 27 (13), 26 (5), 25 (4), 24 (4), or 22 (2); 50 were euploid (12 analyzed), and 18 were polyhaploid (5 analyzed). Four plants had two sectors differing in chromosome number. Two of four hybrids with H. vulgare (4x) were euploid and two were aneuploid. Parental genomes were concentrically arranged with that of H. vulgare always found closest to the metaphase centre. Many plants showed a certain level of intraplant variation in chromosome numbers. Except for one H. vulgare (4x) hybrids, this variation was restricted to peripherally located non-H. vulgare genomes. This may reflect a less firm attachment of the chromosomes from these genomes to the spindle. Interplant variation in chromosome numbers was due to the permanent elimination or, far less common, duplication of the centrally located H. vulgare chromosomes in all 34 aneuploids, and in a few also to loss/gain of non-H, vulgare chromosomes. This selective elimination of chromosomes of the centrally located genome contrasts conditions found in diploid interspecific hybrids, which eliminate the peripherally located genome. The difference is attributed to changed genomic ratios. Derivatives of various H. vulgare lines were differently distributed among euploid hybrids, aneuploids, and polyhaploids. Chromosomal constitutions of hypoploid hybrids revealed a preferential elimination of H. vulgare chromosomes 1, 5, 6, and 7, but did not support the idea that H. vulgare chromosomes should be lost in a specific order. H. vulgare SAT-chromosomes 6 and 7 showed nucleolar dominance. Aneuploidy is ascribed to the same chromosome elimination mechanism that produces haploids in cross-combinations with H. vulgare (2x). The findings have implications for the utilization of interspecific Hordeum hybrids.  相似文献   

13.
Summary Previous C-banding analysis of wheat (Triticum aestivum)X rye (Secale cereale) hybrids regenerated from tissue culture revealed enlarged C-bands in some rye chromosomes, but the molecular nature of the change was not determined. In situ hybridization using two DNA probes containing repeated sequences from rye telomeric heterochromatin was conducted on these wheatX rye hybrids and their progeny to investigate the occurrence of amplification in repeated sequences. Clones pSC 74 and pSC 119, which contain sequences from the 480-bp and 120-bp repeated DNA families of rye, respectively, were used as probes. Amplification of 480-bp repeated sequences in the short arm telomere of chromosome 7R was detected in three wheatxrye hybrids and their progeny. The amplified 480-bp sequences were detected by an enlarged hybridization site for pSC 74 at the 7RS telomere, and by the appearance at this same telomeric site of an unlabeled, blue chromosome segment in an otherwise completely brown chromosome hybridizing entirely to the biotin-labeled pSC 119 probe. This variant form of chromosome 7R was not observed in several Chaupon plants, or in the other hybrids derived from the same embryos, indicating the origin of the change in tissue culture. The amplified sequences were inherited up to at least three generations. Deletions and translocations were also observed.Contribution No. 87-9-J, Kansas Agricultural Experiment Station, Kansas State University  相似文献   

14.
15.
C-banding polymorphism was analyzed in 14 accessions of Triticum searsii from Israel, and a generalized idiogram of the species was established. One accession was homozygous for whole arm translocations T1SsS·4SsS and T1SsL·4SsL. C-banding analysis was also used to identify 7 T. aestivum cv Chinese Spring-T. searsii disomic chromosome addition lines, 14 ditelosomic chromosome addition lines, 21 disomic whole chromosome, and 31 ditelosomic chromosome substitution lines. The identity of these lines was further confirmed by meiotic pairing analysis. Sporophytic and gametophytic compensation tests were used to determine the homoeologous relationships of the T. searsii chromosomes. The results show that the T. searsii chromosomes do not compensate well for their wheat homoeologues. The C-banding patterns of T. searsii chromosomes are distinct from those of other S-genome species and from the B-genome chromosomes of wheat, indicating that T. searsii is not a direct B-genome donor species of T. turgidum and T. aestivum.Contribution No. 95-72-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas, USA  相似文献   

16.
A species-specific repeated sequence, pHvNAU62, was cloned from Haynaldia villosa, a wheat relative of great importance. It strongly hybridized to H. villosa, but not to wheat. In situ hybridization localized this sequence to six of seven H. villosa chromosome pairs in telomeric or sub-telomeric regions. Southern hybridization to whea-H. villosa addition lines showed that chromosomes 1V through 6V gave strong signals in ladders while chromosome 7V escaped detection. In addition to H. villosa, several Triticeae species were identified for a high abundance of the pHvNAU62 repeated sequence, among which Thinopyrum bassarabicum and Leymus racemosus produced the strongest signals. Sequence analysis indicated that the cloned fragment was 292 bp long, being AT rich (61%), and showed 67% homology of pSc7235, a rye repeated sequence. Isochizomer analysis suggested that the present repeated sequence was heavily methylated at the cytosine of the CpG dimer in the genome of H. villosa.It was also demonstrated that pHvNAU62 is useful in tagging the introduced 6VS chromosome arm, which confers a resistance gene to wheat powdery mildew, in the segregating generations.  相似文献   

17.
Comparative Genome Analysis in Two Flax Species by C-Banding Patterns   总被引:1,自引:0,他引:1  
C-banding patterns of the karyotypes of two closely related wild flax species, Linum austriacumL. (2n= 18) and Linum grandiflorumDesf. (2n= 16), were studied. The karyotypes of both species were similar in the chromosome morphology and size. In each species, metacentric and acrocentric chromosomes (1.7–4.3 m) and one satellite chromosome were observed. In the karyotypes of the species studied, all homologous chromosome pairs were identified, and quantitative idiograms were constructed. Eight chromosome pairs in the two species had similar C-banding patterns. A low level of intraspecific polymorphism in the intercalary and telomeric C-bands was shown in both species. The results indicate that the genomes of two flax species originated from one ancestral genome with the basic chromosome number of 8 or 9. Apparently, the duplication or loss of one chromosome with subsequent redistribution of the chromosome material in the ancestral form resulted in the divergence into two species,L. austriacumL. and L. grandiflorumDesf. A considerable similarity of chromosomes in these species provides evidence for their close phylogenetic relatedness, which makes it possible to place them in one section within the Linumgenus.  相似文献   

18.
Summary The Giemsa C-banding technique was used to identify individual meiotic and somatic chromosomes in 21 monosomic lines of Avena byzantina C. Koch cv Kanota (genome designation AACCDD). The hexaploid complement is composed of three sets of seven chromosome pairs. The heterochromatin in the putative diploid progenitors is located at the telomeres (genome A), at the centromeric and interstitial regions (genome C), or more evenly spread throughout the set (genome D). Comparisons based on C-banding between A. byzantina and its diploid progenitor species allowed us to allocate individual chromosomes into specific genomes. The C-banding technique may be useful for interspecific chromosome pairing analyses. Nucleolar activity and competition were studied using a silver-staining procedure. Only three chromosome pairs showed nucleolar organizer regions, thus indicating that nucleolar competition occurs naturally in hexaploid oats.  相似文献   

19.
Summary The C-banding pattern of nine meiotic chromosomes of common wheat (Triticum aestivum L.) as described. In F1s of crosses between monosomics of Chinese Spring and two Spanish wheat cultivars, univalent chromosomes were used to aid the recognition and analysis of the C-banding pattern for the individual chromosomes. The identification of one chromosome involved in one translocation in Chinese Spring x Pané 247 has been made through heterochromatin bands observed in the chromosomes involved in multivalents.  相似文献   

20.
The karyotypes of two populations ofFestucopsis serpentini (2n = 2x = 14) endemic to Albania were investigated in detail by Giemsa C- and N-banding, AgNO3 staining, and in situ hybridization with an rDNA probe. The complements consisted of 14 large chromosomes, 10 metacentric and 4 SAT-chromosomes, a metacentric and a submetacentric pair. SAT-chromosomes from one population carried exclusively minute satellites, whereas SAT-chromosomes from another population also carried larger polymorphic satellites, suggesting a geographical differentiation. The existence of four chromosomes with nucleolus forming activity was established through AgNO3 staining; however, the rDNA probe additionally hybridized to intercalary positions in the short arms of two metacentric chromosomes revealing two inactive rDNA sites. C-banding patterns comprised from zero and up to four very small to larger, generally telomeric bands per chromosome giving low levels of constitutive heterochromatin. Similarities in chromosome morphology and C-banding patterns identified the homologous relationships of all chromosomes in one population, but of three pairs only in the other. Reliable identification of homologous chromosomes between plants was only possible for the SAT-chromosomes. A comparison between the C-banded karyotypes ofF. serpentini andPeridictyon sanctum supports their position in two genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号