首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.

Background and Aims

Morphological and biomechanical alterations occurring in woody roots of many plant species in response to mechanical stresses are well documented; however, little is known about the molecular mechanisms regulating these important alterations. The first forest tree genome to be decoded is that of Populus, thereby providing a tool with which to investigate the mechanisms controlling adaptation of woody roots to changing environments. The aim of this study was to use a proteomic approach to investigate the response of Populus nigra woody taproot to mechanical stress.

Methods

To simulate mechanical perturbations, the taproots of 30 one-year-old seedlings were bent to an angle of 90 ° using a steel net. A spatial and temporal two-dimensional proteome map of the taproot axis was obtained. We compared the events occurring in the above-bending, central bending and below-bending sectors of the taproot.

Key Results

The first poplar woody taproot proteome map is reported here; a total of 207 proteins were identified. Spatial and temporal proteomic analysis revealed that factors involved in plant defence, metabolism, reaction wood formation and lateral root development were differentially expressed in the various sectors of bent vs. control roots, seemingly in relation to the distribution of mechanical forces along the stressed woody taproots. A complex interplay among different signal transduction pathways involving reactive oxygen species appears to modulate these responses.

Conclusions

Poplar woody root uses different temporal and spatial mechanisms to respond to mechanical stress. Long-term bending treatment seem to reinforce the defence machinery, thereby enabling the taproot to better overcome winter and to be ready to resume growth earlier than controls.  相似文献   

2.

Introduction

Molecular factors are differentially observed in various bent sectors of poplar (Populus nigra) woody taproots. Responses to stress are modulated by a complex interplay among different hormones and signal transduction pathways. In recent years, metabolomics has been recognized as a powerful tool to characterize metabolic network regulation, and it has been widely applied to investigate plant responses to biotic and abiotic stresses.

Objectives

In this paper we used metabolomics to understand if long term-bending stress induces a “spatial” and a “temporal” metabolic reprogramming in woody poplar roots.

Methods

By NMR spectroscopy and statistical analysis we investigated the unstressed and three portions of stressed root (above-bent, bent, and below-bent) sectors collected at 12 (T0), 13 (T1) and 14 (T2) months after stress induction.

Results

The data indicate a clear between-class separation of control and stressed regions, based on the metabolites regulation, during both spatial and temporal changes. We found that taproots, as a consequence of the stress, try to restore homeostasis and normal metabolic fluxes thorough the synthesis and/or accumulation of specific compounds related to mechanical forces distribution along the bent taproot.

Conclusion

The data demonstrate that the impact of mechanical stress on plant biology can efficiently be studied by NMR-based metabolomics.
  相似文献   

3.
Abstract

Mechanical stress is a widespread environmental condition that can be caused by several factors (i.e. gravity, touch, wind, soil density, soil compaction and grazing, slope) and that can severely affect plant stability. In response to mechanical stress and to improve their anchorage, plants have developed complex mechanisms to detect mechanical perturbation and to induce a suite of modifications at anatomical, physiological, biochemical, biophysical and molecular level. Although it is well recognized that one of the primary functions of root systems is to anchor the plant to the soil, root response to mechanical stresses have been investigated mainly at morphological and biomechanical level, whereas investigations about the molecular mechanisms underlying these important alterations are still in an initial stage. We have used an experimental system in which the taproot poplar seedlings are bent to simulate mechanical perturbation to begin investigate the mechanisms involved in root response to mechanical stress. The results reported herein show that, in response to bending, the poplar root changes its morphology by emitting new lateral roots, and its biomechanical properties by increasing the root biomass and lignin synthesis. In addition, using a proteomic approach, we found that several proteins involved in the signal transduction pathway, detoxification and metabolism are up-regulated and/or down-regulated in the bent root. These results provide new insight into the obscure field of woody root response to mechanical stress, and can serve as a basis for future investigations aimed at unravelling the complex mechanism involved in the reaction of root biology to environmental stress.  相似文献   

4.
植物根系耐盐机制的研究进展   总被引:1,自引:0,他引:1  
植物根系能够摄取土壤环境中的养分与水分,在植物的生长发育中起重要的作用。植物根系由于直接与土壤环境相接触会受到非生物胁迫较大的影响。盐胁迫是主要的非生物胁迫之一,对植物根系会产生较大的伤害。综述根系在组织形态和细胞水平上对盐胁迫的应答,以及根系响应盐胁迫的信号传导途径、转录因子与基因,对植物根部耐盐机制的解析和植物耐盐基因工程工具基因的挖掘具有重要意义。  相似文献   

5.
BACKGROUND AND AIMS: Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. METHODS: An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. KEY RESULTS: Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. CONCLUSIONS: These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species.  相似文献   

6.
Sensing environmental changes and initiating a gene expression response are important for plants as sessile autotrophs. The ability of epigenetic status to alter rapidly and reversibly could be a key component to the flexibility of plant responses to the environment. The involvement of epigenetic mechanisms in the response to environmental cues and to different types of abiotic stresses has been documented. Different environmental stresses lead to altered methylation status of DNA as well as modifications of nucleosomal histones. Understanding how epigenetic mechanisms are involved in plant response to environmental stress is highly desirable, not just for a better understanding of molecular mechanisms of plant stress response but also for possible application in the genetic manipulation of plants. In this review, we highlight our current understanding of the epigenetic mechanisms of chromatin modifications and remodeling, with emphasis on the roles of specific modification enzymes and remodeling factors in plant abiotic stress responses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

7.
The buckling of plant roots   总被引:3,自引:0,他引:3  
The mechanical stresses required to buckle root tips were measured directly for seven plant species. For two of these, both seminal and primary lateral roots were measured. For four of the plant species investigated, the easier and more rapid method used to measure the buckling stresses of excised root tips gave results which agree closely with those obtained for the growing roots of intact plants. Values of buckling stress were also calculated from previously determined elastic properties of roots. The calculated and measured values of buckling stress are of the same magnitude only, and comparison for ten root types fails to show any consistent relationship between these two methods. From the results from three plant species it has been possible to define empirical functions to account for the observed changes in root buckling stress with air gap length and water stress. Buckling stresses are not significantly affected by the concentration of nitrate in the growth medium.  相似文献   

8.
Mechanical stresses from wind, current or wave action can strongly affect plant growth and survival. Survival and distribution of species often depend on the plant's capacity to adapt to such stresses, particularly when amplified by climatic variations. Few studies have dealt with plastic adjustments in response to mechanical stress compared to resource stress. We hypothesized that mechanical stress should favor plastic adjustments that result in increased biomass production in zones protected from the stress and that altered growth patterns should be reversible after mechanical stress removal. Here we measured plastic adjustments in morphological traits and clonal architecture for an aquatic clonal species (Berula erecta) under two contrasting mechanical stresses in the field-standing vs. running water. Reversion of the morphological changes was then assessed using transplants in standing water. In the case of mechanical stress, size reduction, biomass reallocation within clones (higher allocations to clonal growth and to belowground organs), and a more compact growth form (reduced spacer lengths) contributed to reducing the damage risk. The removal of mechanical stress induced compensatory growth, probably linked to the production of low density tissues. However, most patterns of dry mass partitioning induced by current stress were not reversed after stress removal.  相似文献   

9.
10.
Populus: arabidopsis for forestry. Do we need a model tree?   总被引:1,自引:0,他引:1  
Taylor G 《Annals of botany》2002,90(6):681-689
Trees are used to produce a variety of wood-based products including timber, pulp and paper. More recently, their use as a source of renewable energy has also been highlighted, as has their value for carbon mitigation within the Kyoto Protocol. Relative to food crops, the domestication of trees has only just begun; the long generation time and complex nature of juvenile and mature growth forms are contributory factors. To accelerate domestication, and to understand further some of the unique processes that occur in woody plants such as dormancy and secondary wood formation, a 'model' tree is needed. Here it is argued that Populus is rapidly becoming accepted as the 'model' woody plant and that such a 'model' tree is necessary to complement the genetic resource being developed in arabidopsis. The genus Populus (poplars, cottonwoods and aspens) contains approx. 30 species of woody plant, all found in the Northern hemisphere and exhibiting some of the fastest growth rates observed in temperate trees. Populus is fulfilling the 'model' role for a number of reasons. First, and most important, is the very recent commitment to sequence the Populus genome, a project initiated in February 2002. This will be the first woody plant to be sequenced. Other reasons include the relatively small genome size (450-550 Mbp) of Populus, the large number of molecular genetic maps and the ease of genetic transformation. Populus may also be propagated vegetatively, making mapping populations immortal and facilitating the production of large amounts of clonal material for experimentation. Hybridization occurs routinely and, in these respects, Populus has many similarities to arabidopsis. However, Populus also differs from arabidopsis in many respects, including being dioecious, which makes selfing and back-cross manipulations impossible. The long time-to-flower is also a limitation, whilst physiological and biochemical experiments are more readily conducted in Populus compared with the small-statured arabidopsis. Recent advances in the development of large expressed sequence tagged collections, microarray analysis and the free distribution of mapping pedigrees for quantitative trait loci analysis secure Populus as the ideal subject for further exploitation by a wide range of scientists including breeders, physiologists, biochemists and molecular biologists. In addition, and in contrast to other model plants, the genus Populus also has genuine commercial value as a tree for timber, plywood, pulp and paper.  相似文献   

11.
12.
解析植物木质部导水率对逆境的响应和适应对促进植物抗逆性机理研究和受损植被恢复具有重要意义。该文以荒漠河岸林建群种胡杨(Populus euphratica)为研究对象,系统分析了胡杨幼株根、茎、叶水分传输通道对不同浓度盐胁迫的响应和适应。结果表明:(1)胡杨幼株根系对盐胁迫的敏感性高于茎和叶,盐胁迫下根系生长和根尖数显著受到抑制,根木质部易于发生栓塞,导水率明显降低。(2)胡杨幼株茎木质部导水率对盐胁迫的响应依盐浓度而定,轻度(0.05 mol·L–1 Na Cl)和中度(0.15 mol·L–1 Na Cl)盐胁迫下,胡杨可以通过协调导管输水的有效性和安全性来调节木质部的导水率,维持植物正常生长;重度(0.30 mol·L–1 Na Cl)盐胁迫下,胡杨茎木质部导管输水有效性和安全性均明显降低,木质部导水率显著下降,并伴随叶片气孔导度的显著降低,从而严重抑制了胡杨的光合和生长。  相似文献   

13.
We assessed the vertical growth and mycorrhizal infection of woody plant roots on a closed landfill, using tree and shrub clusters that had been previously installed in patches of increasing size to establish protocols for woodland restoration. The density of the fine roots of shrubs, which had poor-to-moderate mycorrhizal infection, decreased strongly with increasing depth. Oak ( Quercus ) seedlings planted within and outside patches were assessed for ectomycorrhizal infection. Oak root systems were mycorrhizal, but root-tip proliferation was improved and ectomycorrhizal composition was influenced by woody debris in the mineral soil. Most surviving oaks were found within patches, but all seedlings showed poor growth: most taproots were deflected horizontally above the boundary between surface soil and subsoil layers (−15 cm). Abrupt decreases in pH between surface and subsurface horizons (6.9 versus 5.3), together with poor drainage and aeration of the latter soil, were probably responsible for poor root growth. Root growth of greenhouse-grown pine and maple seedlings was similarly restricted in pots packed with topsoil over subsoil material. Our results suggest that many current specifications for the cover of closed landfills will not permit restoration of native woody plant communities because of physical limitations to root growth and infectivity. The structure of the engineered soil must address basic plant growth requirements as well as traditional concerns of drainage and barrier protection.  相似文献   

14.
Salt is one of the major abiotic stresses limiting the productivity and the geographical distribution of crops. To gain a better understanding of NaCl stress responses in model plant Arabidopsis roots, the protein changes in the abundance (Coomassie Brilliant Blue R-350 stain) and phosphorylation (Pro-Q Diamond stain) were examined using two-dimensional electrophoresis coupled with mass spectrometry (MS). Seventeen unique proteins differentially changed in abundance, phosphorylation, or both in response to NaCl. Nonsynchronous differences were found between total proteins and phosphorylated proteins. Protein synthesis, proteolysis, post-translational modifications, and isoforms might cause the differential protein redundancies. The identified proteins are involved in binding, catalysis, signal transduction, transport, metabolisms of cell wall and energy, and reactive oxygen species (ROS) scavenging and defense. These protein changes provide new avenues of investigation into the underlying salt stress response in Arabidopsis roots and demonstrate the advantages of proteomic approach in plant biology studies.  相似文献   

15.
Abstract

We applied environmental stresses, namely dehydration, pruning and bending, to woody taproots of Fraxinus ornus L. in order to: (i) identify a method that could be applied in routine studies of lateral root development from a secondary structure; and (ii) carry out anatomical investigations to identify the tissue involved in the recruitment of lateral root mother cells (LRMC). We found that all three methods induce the formation of new lateral roots from a woody parental root. However, bending stress considerably reduced the zone of the woody parental root (the curvature) for analysis when studying the process of emission of a new lateral root. The trace left by a new lateral root in the taproot secondary xylem forms a V-shaped insertion zone that starts in contact with a growth ring and enlarges toward the periphery. This type of insertion zone suggests that the vascular cambium is the tissue-source of initials that produce the root primordium of a new lateral root. In the case of root bending, the emission of a new lateral root occurs also in the convex side of the curvature and is preceded by the formation, at the same site, of a small amount of reaction wood. Thus, reaction wood and lateral root emission are two aspects of the same response mechanism to bending. Consequently, anatomical and cytological studies of lateral root formation should focus on this part of the woody taproot. By peeling off the bark at this site, one has direct access to the underlying living tissues and can thus investigate lateral root formation also at a biochemical and molecular level.  相似文献   

16.
Environmental stresses have adverse effects on plant growth and productivity, and are predicted to become more severe and widespread in decades to come. Especially, prolonged and repeated severe stresses affecting growth and development would bring down long-lasting effects in woody plants as a result of its long-term growth period. To counteract these effects, trees have evolved specific mechanisms for acclimation and tolerance to environmental stresses. Plant growth and development are regulated by the integration of many environmental and endogenous signals including plant hormones. Acclimation of land plants to environmental stresses is controlled by molecular cascades, also involving cross-talk with other stresses and plant hormone signaling mechanisms. This review focuses on recent studies on molecular mechanisms of abiotic stress responses in woody plants, functions of plant hormones in wood formation, and the interconnection of cell wall biosynthesis and the mechanisms shown above. Understanding of these mechanisms in depth should shed light on the factors for improvement of woody plants to overcome severe environmental stress conditions.  相似文献   

17.
Cold, salinity and drought stresses: an overview   总被引:57,自引:0,他引:57  
  相似文献   

18.
ZFP转录因子是植物中的一类具有指环结构域的转录因子。从毛果杨中鉴定出5条ZFP基因(命名为PtrZFP1-5),对其特性和表达模式进行了分析,以期初步了解这些基因是否能对胁迫做出应答。对PtrZFP1-5基因进行生物学分析,进一步利用qRT-PCR技术分析NaCl、PEG6000和ABA胁迫处理后毛果杨根、茎和叶中5条基因的表达情况。PtrZFP1-5基因编码蛋白氨基酸残基数为258~338 aa,编码蛋白的分子量为27.7~37.3 kDa,理论等电点为4.87~8.61,5个基因不均等的分布在毛果杨基因组的3条染色体上。qRT-PCR结果显示,0.2 mol·L-1 NaCl、15%(w/v)PEG6000和100 μmol·L-1 ABA胁迫处理后,5个PtrZFP基因在毛果杨根、茎和叶中的表达模式明显不同。PtrZFP1基因在3种胁迫后毛果杨中均被明显的上调表达;PtrZFP2基因在盐、渗透和ABA胁迫处理后,叶中的表达都明显被抑制;PtrZFP3基因受到干旱胁迫时在根中的响应最为明显;而叶和茎中,表达量在大部分胁迫的大部分时间点无明显改变。PtrZFP4基因也能在根和茎中对干旱胁迫做出明显应答。PtrZFP5基因在经受盐和ABA胁迫后,在叶中的表达受到明显抑制。PtrZFP1-5这5个基因至少能在一种器官中对一种胁迫处理做出应答,但参与的胁迫应答类型和机制可能不同。  相似文献   

19.
20.
Dech JP  Maun MA 《Annals of botany》2006,98(5):1095-1105
BACKGROUND AND AIMS: Burial is a recurrent stress imposed upon plants of coastal dunes. Woody plants are buried on open coastal dunes and in forested areas behind active blowouts; however, little is known about the burial responses and adaptive traits of these species. The objectives of this study were: (a) to determine the growth and morphological responses to burial in sand of seven woody plant species native to central Canadian coastal dunes; and (b) to identify traits that determine burial tolerance in these species. METHODS: Field experiments were conducted to determine the responses of each species to burial. Saplings were exposed to burial treatments of 0, 10, 25, 50 and 75 % of their height. Burial responses were evaluated based on regressions of total biomass, height, adventitious root production and percentage allocation to shoot, root and adventitious root biomass on percentage burial. KEY RESULTS: Pinus strobus and Picea glauca lacked burial tolerance. In response to the burial gradient, these species showed a strong linear decline in total biomass, minimal adventitious root production that peaked at moderate levels (25-50 % burial) and no change in allocation to shoots vs. roots. The tolerant species Juniperus virginiana, Thuja occidentalis and Picea mariana showed a quadratic response to burial, with little change in biomass up to 50 % burial, but a large decline at 75 %. These species produced abundant adventitious roots up to 50 % burial, but did not alter allocation patterns over the range of burial levels. Populus balsamifera and Salix cordata were stimulated by burial. These species showed linear increases in biomass with increasing burial, produced copious adventitious roots across the gradient and showed a clear shift in allocation to vertical shoot growth and adventitious root production at the expense of the original roots under high burial conditions. CONCLUSIONS: Adventitious root production and plastic resource allocation to biomass are adaptive traits of coastal dune woody plants in central Canada, and provide a basis for assessing burial tolerance in woody plants on coastal dunes throughout the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号