首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling   总被引:3,自引:0,他引:3  
Mixed-lineage kinase 3 (MLK3) is a mitogen-activated protein kinase (MAPK) kinase kinase that activates MAPK pathways, including the c-Jun NH(2)-terminal kinase (JNK) and p38 pathways. MLK3 and its family members have been implicated in JNK-mediated apoptosis. A survey of human cell lines revealed high levels of MLK3 in breast cancer cells. To learn more about MLK3 regulation and its signaling pathways in breast cancer cells, we engineered the estrogen-responsive human breast cancer cell line, MCF-7, to stably, inducibly express FLAG epitope-tagged MLK3. FLAG.MLK3 complexes were isolated by affinity purification, and associated proteins were identified by in-gel trypsin digestion followed by liquid chromatography/tandem mass spectrometry. Among the proteins identified were heat shock protein 90alpha,beta (Hsp90) and its kinase-specific co-chaperone p50(cdc37). We show that endogenous MLK3 complexes with Hsp90 and p50(cdc37). Further experiments demonstrate that MLK3 associates with Hsp90/p50(cdc37) through its catalytic domain in an activity-independent manner. Upon treatment of MCF-7 cells with geldanamycin, an ansamycin antibiotic that inhibits Hsp90 function, MLK3 levels decrease dramatically. Furthermore, tumor necrosis factor alpha-induced activation of MLK3 and JNK in MCF-7 cells is blocked by geldanamycin treatment. Our finding that geldanamycin treatment does not affect the cellular levels of the downstream signaling components, MAPK kinase 4, MAPK kinase 7, and JNK, suggests that Hsp90/p50(cdc37) regulates JNK signaling at the MAPK kinase kinase level. Previously identified Hsp90/p50(cdc37) clients include oncoprotein kinases and protein kinases that promote cellular proliferation and survival. Our findings reveal that Hsp90/p50(cdc37) also regulates protein kinases involved in apoptotic signaling.  相似文献   

4.
5.
The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [35S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL.  相似文献   

6.
7.
Triggering tumor necrosis factor receptor-1 (TNFR1) induces apoptosis in various cell lines. In contrast, stimulation of TNFR1 in L929sA leads to necrosis. Inhibition of HSP90, a chaperone for many kinases, by geldanamycin or radicicol shifted the response of L929sA cells to TNF from necrosis to apoptosis. This shift was blocked by CrmA but not by BCL-2 overexpression, suggesting that it occurred through activation of procaspase-8. Geldanamycin pretreatment led to a proteasome-dependent decrease in the levels of several TNFR1-interacting proteins including the kinases receptor-interacting protein, inhibitor of kappa B kinase-alpha, inhibitor of kappa B kinase-beta, and to a lesser extent the adaptors NF-kappaB essential modulator and tumor necrosis factor receptor-associated factor 2. As a consequence, NF-kappa B, p38MAPK, and JNK activation were abolished. No significant decrease in the levels of mitogen-activated protein kinases, adaptor proteins TNFR-associated death domain and Fas-associated death domain, or caspase-3, -8, and -9 could be detected. These results suggest that HSP90 client proteins play a crucial role in necrotic signaling. We conclude that inhibition of HSP90 may alter the composition of the TNFR1 complex, favoring the caspase-8-dependent apoptotic pathway. In the absence of geldanamycin, certain HSP90 client proteins may be preferentially recruited to the TNFR1 complex, promoting necrosis. Thus, the availability of proteins such as receptor-interacting protein, Fas-associated death domain, and caspase-8 can determine whether TNFR1 activation will lead to apoptosis or to necrosis.  相似文献   

8.

Background  

Heat shock proteins (HSPs), including mainly HSP110, HSP90, HSP70, HSP60 and small HSP families, are evolutionary conserved proteins involved in various cellular processes. Abnormal expression of HSPs has been detected in several tumor types, which indicates that specific HSPs have different prognostic significance for different tumors. In the current studies, the expression profiling of HSPs in human low-grade glioma tissues (HGTs) were investigated using a sensitive, accurate SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative proteomic strategy.  相似文献   

9.
Heat shock protein (HSP) 90 is of interest as an anticancer drug target because of its importance in maintaining the conformation, stability and function of the client proteins involved in signal transduction pathways leading to proliferation, cell cycle progression, and apoptosis. Geldanamycin, a specific antagonist of HSP90, binds directly to HSP90 and promotes proteolytic degradation of client proteins of HSP90. The aim of the present study was to identify novel client proteins of HSP90 and to elucidate HSP90 function through inhibition of HSP90 binding to its client proteins, by using of geldanamycin. We investigated changes in protein profile when apoptosis was induced by exposure to geldanamycin. Differentially expressed proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), in human neuroblastoma SK-N-SH cells. The vimentin level was found to decrease dramatically by the treatment of geldanamycin. We observed subcellular co-localization of vimentin and HSP90. Physical association of vimentin with HSP90 was detected by an immunoprecipitation assay. The caspase inhibitors, Z-VAD-FMK and Ac-DEVD-CHO, completely abolished geldanamycin-induced cleavage of vimentin. Changes of HSP90 level by antisense treatment or transfection of HSP90-overexpressing vector affected geldanamycin-induced cleavage of vimentin. These results suggest that HSP90 protects vimentin by physical interaction in the geldanamycin-induced apoptotic pathway.  相似文献   

10.
Thymic stromal lymphopoietin (TSLP) is a cytokine that plays diverse roles in the regulation of immune responses. TSLP requires a heterodimeric receptor complex consisting of IL-7 receptor α subunit and its unique TSLP receptor (gene symbol CRLF2) to transmit signals in cells. Abnormal TSLP signaling (e.g. overexpression of TSLP or its unique receptor TSLPR) contributes to the development of a number of diseases including asthma and leukemia. However, a detailed understanding of the signaling pathways activated by TSLP remains elusive. In this study, we performed a global quantitative phosphoproteomic analysis of the TSLP signaling network using stable isotope labeling by amino acids in cell culture. By employing titanium dioxide in addition to antiphosphotyrosine antibodies as enrichment methods, we identified 4164 phosphopeptides on 1670 phosphoproteins. Using stable isotope labeling by amino acids in cell culture-based quantitation, we determined that the phosphorylation status of 226 proteins was modulated by TSLP stimulation. Our analysis identified activation of several members of the Src and Tec families of kinases including Btk, Lyn, and Tec by TSLP for the first time. In addition, we report TSLP-induced phosphorylation of protein phosphatases such as Ptpn6 (SHP-1) and Ptpn11 (Shp2), which has also not been reported previously. Co-immunoprecipitation assays showed that Shp2 binds to the adapter protein Gab2 in a TSLP-dependent manner. This is the first demonstration of an inducible protein complex in TSLP signaling. A kinase inhibitor screen revealed that pharmacological inhibition of PI-3 kinase, Jak family kinases, Src family kinases or Btk suppressed TSLP-dependent cellular proliferation making them candidate therapeutic targets in diseases resulting from aberrant TSLP signaling. Our study is the first phosphoproteomic analysis of the TSLP signaling pathway that greatly expands our understanding of TSLP signaling and provides novel therapeutic targets for TSLP/TSLPR-associated diseases in humans.  相似文献   

11.
12.
HSP90 inhibitors are currently undergoing clinical evaluation in combination with antimitotic drugs in non-small cell lung cancer (NSCLC), but little is known about the cellular effects of this novel drug combination. Therefore, we investigated the molecular mechanism of action of IPI-504 (retaspimycin HCl), a potent and selective inhibitor of HSP90, in combination with the microtubule targeting agent (MTA) docetaxel, in preclinical models of NSCLC. We identified a subset of NSCLC cell lines in which these drugs act in synergy to enhance cell death. Xenograft models of NSCLC demonstrated tumor growth inhibition, and in some cases, regression in response to combination treatment. Treatment with IPI-504 enhanced the antimitotic effects of docetaxel leading to the hypothesis that the mitotic checkpoint is required for the response to drug combination. Supporting this hypothesis, overriding the checkpoint with an Aurora kinase inhibitor diminished the cell death synergy of IPI-504 and docetaxel. To investigate the molecular basis of synergy, an unbiased stable isotope labeling by amino acids in cell culture (SILAC) proteomic approach was employed. Several mitotic regulators, including components of the ubiquitin ligase, anaphase promoting complex (APC/C), were specifically down-regulated in response to combination treatment. Loss of APC/C by RNAi sensitized cells to docetaxel and enhanced its antimitotic effects. Treatment with a PLK1 inhibitor (BI2536) also sensitized cells to IPI-504, indicating that combination effects may be broadly applicable to other classes of mitotic inhibitors. Our data provide a preclinical rationale for testing the combination of IPI-504 and docetaxel in NSCLC.  相似文献   

13.
14.
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone, assisting intracellularly in the folding and conformational regulation of a multitude of client proteins that play a crucial role in growth, cell survival and developmental processes(1). Moreover HSP90 interacts with a great number of molecules that are involved in the development and/or survival of cancer cells, allowing mutant proteins to retain or gain function while permitting cancer cells to tolerate the imbalanced signaling that such oncoproteins create (2,3). Prime examples include the HER-2 receptor, c-Raf-1, Akt/PKB, CDK4, and mutant p53 (4,5). Highly specific inhibitors of HSP90 have been identified and are currently under clinical evaluation. These include geldanamycin and its derivatives 17-allylamino-17-demethoxygeldanamycin and 17-dimethylaminoethylamino-17-demethoxygeldanamycin, which inhibit cancer cell proliferation in vitro and tumor growth in vivo (6-9).  相似文献   

15.
Endoplasmic reticulum-mitochondrial contacts, known as mitochondria-associated membranes, regulate important cellular functions including calcium signaling, bioenergetics, and apoptosis. Human cytomegalovirus is a medically important herpesvirus whose growth increases energy demand and depends upon continued cell survival. To gain insight into how human cytomegalovirus infection affects endoplasmic reticulum-mitochondrial contacts, we undertook quantitative proteomics of mitochondria-associated membranes using differential stable isotope labeling by amino acids in cell culture strategy and liquid chromatography-tandem MS analysis. This is the first reported quantitative proteomic analyses of a suborganelle during permissive human cytomegalovirus infection. Human fibroblasts were uninfected or human cytomegalovirus-infected for 72 h. Heavy mitochondria-associated membranes were isolated from paired unlabeled, uninfected cells and stable isotope labeling by amino acids in cell culture-labeled, infected cells and analyzed by liquid chromatography-tandem MS analysis. The results were verified by a reverse labeling experiment. Human cytomegalovirus infection dramatically altered endoplasmic reticulum-mitochondrial contacts by late times. Notable is the increased abundance of several fundamental networks in the mitochondria-associated membrane fraction of human cytomegalovirus-infected fibroblasts. Chaperones, including HSP60 and BiP, which is required for human cytomegalovirus assembly, were prominently increased at endoplasmic reticulum-mitochondrial contacts after infection. Minimal translational and translocation machineries were also associated with endoplasmic reticulum-mitochondrial contacts and increased after human cytomegalovirus infection as were glucose regulated protein 75 and the voltage dependent anion channel, which can form an endoplasmic reticulum-mitochondrial calcium signaling complex. Surprisingly, mitochondrial metabolic enzymes and cytosolic glycolytic enzymes were confidently detected in the mitochondria-associated membrane fraction and increased therein after infection. Finally, proapoptotic regulatory proteins, including Bax, cytochrome c, and Opa1, were augmented in endoplasmic reticulum-mitochondrial contacts after infection, suggesting attenuation of proapoptotic signaling by their increased presence therein. Together, these results suggest that human cytomegalovirus infection restructures the proteome of endoplasmic reticulum-mitochondrial contacts to bolster protein translation at these junctions, calcium signaling to mitochondria, cell survival, and bioenergetics and, thereby, allow for enhanced progeny production.  相似文献   

16.
The pseudopodial protrusions of Moloney sarcoma virus (MSV)-Madin-Darby canine kidney (MDCK)-invasive (INV) variant cells were purified on 1-microm pore polycarbonate filters that selectively allow passage of the pseudopodial domains but not the cell body. The purified pseudopodial fraction contains phosphotyrosinated proteins, including Met and FAK, and various signaling proteins, including Raf1, MEK1, ERK2, PKBalpha (Akt1), GSK3alpha, GSK3beta, Rb, and Stat3. Pseudopodial proteins identified by liquid chromatography tandem mass spectrometry included actin and actin-regulatory proteins (ERM, calpain, filamin, myosin, Sra-1, and IQGAP1), tubulin, vimentin, adhesion proteins (vinculin, talin, and beta1 integrin), glycolytic enzymes, proteins associated with protein translation, RNA translocation, and ubiquitin-mediated protein degradation, as well as protein chaperones (HSP90 and HSC70) and signaling proteins (RhoGDI and ROCK). Inhibitors of MEK1 (U0126) and HSP90 (geldanamycin) significantly reduced MSV-MDCK-INV cell motility and pseudopod expression, and geldanamycin treatment inhibited Met phosphorylation and induced the expression of actin stress fibers. ROCK inhibition did not inhibit cell motility but transformed the pseudopodial protrusions of MSV-MDCK-INV cells into extended lamellipodia. Dominant negative Rho disrupted pseudopod expression and, in serum-starved cells, L-alpha-lysophosphatidic acid (oleoyl) activation of Rho induced pseudopodial protrusions or, in the presence of the ROCK inhibitor, extended lamellipodia. RNA was localized to the actin-rich pseudopodial domains of MSV-MDCK-INV cells, but the extent of colocalization with dense actin ruffles was reduced in the extended lamellipodia formed upon ROCK inhibition. Rho/ROCK activation in epithelial tumor cells therefore regulates RNA translocation to a pseudopodial domain that contains proteins involved in signaling, cytoskeleton remodeling, cell adhesion, glycolysis, and protein translation and degradation.  相似文献   

17.
Ali NA  Molloy MP 《Proteomics》2011,11(16):3390-3401
The transforming growth factor‐β (TGF‐β) signaling pathway progresses through a series of protein phosphorylation regulated steps. Smad4 is a key mediator of the classical TGF‐β signaling pathway; however, reports suggest that TGF‐β can activate other cellular pathways independent of Smad4. By investigating the TGF‐β‐regulated phosphoproteome, we aimed to uncover new functions controlled by TGF‐β. We applied titanium dioxide to enrich phosphopeptides from stable isotope labeling with amino acids in cell culture (SILAC)‐labeled SW480 cells stably expressing Smad4 and profiled them by mass spectrometry. TGF‐β stimulation for 30 min resulted in the induction of 17 phosphopeptides and the repression of 8 from a total of 149 unique phosphopeptides. Proteins previously not known to be phosphorylated by TGF‐β including programmed cell death protein 4, nuclear ubiquitous casein and cyclin‐dependent kinases substrate, hepatoma‐derived growth factor and cell division kinases amongst others were induced following TGF‐β stimulation, while the phosphorylation of TRAF2 and NCK‐interacting protein kinase are examples of proteins whose phosphorylation status was repressed. This phosphoproteomic screen has identified new TGF‐β‐modulated phosphorylation responses in colon carcinoma cells.  相似文献   

18.
19.
Heat-shock protein90 (HSP90) plays an essential role in maintaining stability and activity of its clients. HSP90 is involved in cell differentiation and survival in a variety of cell types. To elucidate the possible role of HSP90 in myogenic differentiation and cell survival, we examined the time course of changes in the expression of myogenic regulatory factors, intracellular signaling molecules, and anti-/pro-apoptotic factors when C2C12 cells were cultured in differentiation condition in the presence of a HSP90-specific inhibitor, geldanamycin. Furthermore, we examined the effects of geldanamycin on muscle regeneration in vivo. Our results showed that geldanamycin inhibited myogenic differentiation with decreased expression of MyoD, myogenin and reduced phosphorylation levels of Akt1. Geldanamycin had little effect on the phosphorylation levels of p38MAPK and ERK1/2 but reduced the phosphorylation levels of JNK. Along with myogenic differentiation, geldanamycin increased apoptotic nuclei with decreased expression of Bcl-2. The skeletal muscles forced to regenerate in the presence of geldanamycin were of poor repair with small regenerating myofibers and increased connective tissues. Together, our findings suggest that HSP90 may modulate myogenic differentiation and may be involved in cell survival.  相似文献   

20.
The molecular chaperone heat-shock protein 90 (HSP90) plays a key role in the cell by stabilizing a number of client proteins, many of which are oncogenic. The intrinsic ATPase activity of HSP90 is essential to this activity. HSP90 is a new cancer drug target as inhibition results in simultaneous disruption of several key signaling pathways, leading to a combinatorial approach to the treatment of malignancy. Inhibitors of HSP90 ATPase activity including the benzoquinone ansamycins, geldanamycin and 17-allylamino-17-demethoxygeldanamycin, and radicicol have been described. A high-throughput screen has been developed to identify small-molecule inhibitors that could be developed as therapeutic agents with improved pharmacological properties. A colorimetric assay for inorganic phosphate, based on the formation of a phosphomolybdate complex and subsequent reaction with malachite green, was used to measure the ATPase activity of yeast HSP90. The Km for ATP determined in the assay was 510+/-70 microM. The known HSP90 inhibitors geldanamycin and radicicol gave IC(50) values of 4.8 and 0.9 microM respectively, which compare with values found using the conventional coupled-enzyme assay. The assay was robust and reproducible (2-8% CV) and used to screen a compound collection of approximately 56,000 compounds in 384-well format with Z' factors between 0.6 and 0.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号