首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Characterization of IL-2-induced murine cells which exhibit ADCC activity   总被引:1,自引:0,他引:1  
The incubation of murine splenocytes in recombinant interleukin 2 (IL-2) gives rise to both lymphokine-activated killer (LAK) cells capable of lysing fresh tumor cells and cells capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in the presence of anti-H2 allosera. A similarity between these two IL-2-induced cell populations was found. The precursors of the cells mediating these activities were shown to be ASGM1 positive, Thy 1 negative, and radiosensitive. Cells taken from the spleen, thymus, and bone marrow were able to mediate ADCC after culture in IL-2. The effector cell was either Thy 1 positive or negative and was less affected by anti-Thy 1 plus C' treatment than cells which mediated LAK activity. In addition ADCC was exhibited in IL-2-cultured splenocytes from various murine strains and correlated with their LAK activity with one exception. While IL-2-cultured C57BL/6 splenocytes exhibited LAK activity similar to that of C3H LAK cells, no ADCC activity could be demonstrated in C57BL/6 cells. Study of the difference in the ability of these two strains to mediate ADCC revealed that IL-2-induced FcR+ cells in C3H thymocytes, but not in C57BL/6 thymocytes. Based on FACS analysis and on the radiosensitivity of the induction of both FcR+ cells and ADCC, it was suggested that IL-2 was expanding a small FcR+ cell population rather than inducing an increase in FcR density on the cell surface. The relationship between the IL-2-induced ADCC mediator and other IL-2-induced cells, as well as ADCC effector cells, and the possible implications of the results for the in vivo therapy of cancer based on ADCC are discussed.  相似文献   

2.
A thymic lymphoblastoid cell line derived from a New Zealand Black mouse produces murine leukemia virus (MuLV) and was used as a target in model systems for the in vitro study of antibody-dependent cellular cytotoxicity (ADCC). Several human lymphoblastoid cell lines were investigated as potential effector cells. The most promising (Raji cells) bound to antibody-coated target cells but caused only modest levels of ADCC at 25:1 effector-to-target cell ratio with substantial lysis in the absence of antiserum. Human peripheral lymphocytes were active as effector cells in ADCC at a 5:1 ratio and produced no lysis in the absence of antibody. These cells were used to demonstrate that high dilutions of rabbit antisera to MuLV antigens p30, p15, p12, and p10 were capable of mediating lysis of MuLV-producing target cells but not of a virus-negative murine cell line. A murine antiserum to Thy 1.2 and three caprine antisera to MuLV antigens that were active in complement-mediated cytotoxicity functioned poorly in inducing ADCC; however, rabbit antisera to similar antigens were 16- to 512-fold more efficient in cell-mediated than in complement lysis. The inefficiency of goat antisera was not due to shedding of cell surface antigens or generation of blocking factors but rather to lack of lytic interaction of antibody-coated targets with the effector cells.  相似文献   

3.
Treatment of a murine B cell lymphoma with monoclonal antibodies and IL 2   总被引:1,自引:0,他引:1  
A transplantable murine B cell lymphoma was used to study combination therapy with anti-idiotype antibody and interleukin 2 (IL 2). Class-switched IgG2a and IgG2b antibodies were compared. A marked additive and sometimes synergistic effect was seen when IL 2 was combined with either IgG2a or IgG2b anti-idiotype antibodies. A synergistic effect was also seen when similar experiments were performed in nude mice. In vitro antibody-dependent cellular cytotoxicity (ADCC) assays showed that IL 2 enhanced antibody-mediated lysis by peritoneal cells exposed to IL 2 in vitro in a dose-related manner. Peritoneal cells harvested from mice treated in vivo with IL 2 contained an increased number of T cells and asialo GM+ natural killer cells, and also mediated enhanced ADCC. Depletion of natural killer cells with anti-asialo GM and complement resulted in a marked decrease in the antibody-dependent cytotoxicity mediated by these peritoneal cells. The mechanism of synergy between monoclonal antibody and IL 2 may be due to the direct or indirect activation of natural killer cells mediating ADCC.  相似文献   

4.
Our previous studies demonstrated that the incubation of human peripheral blood lymphocytes or murine splenocytes in recombinant interleukin 2 (RIL 2) resulted in the generation of lymphokine-activated killer (LAK) cells capable of lysing a broad spectrum of fresh tumors in short-term chromium-release assays. Moreover, injections of LAK cells plus RIL 2 were highly effective in eliminating established 3 day metastases in the lung and liver (1-3). We have examined several parameters to define whether or not the cytolytic activity of LAK cells as measured in vitro correlated directly with the in vivo anti-tumor efficacy of adoptively transferred LAK cells. LAK cells plus RIL 2 could mediate marked reductions of established pulmonary metastases in mice rendered T cell deficient by adult thymectomy and lethal, total body irradiation followed by reconstitution with T cell-depleted bone marrow and spleen cells. Thus there was no requirement for additional T lymphocytes of host origin for successful therapy with adoptively transferred LAK cells plus RIL 2. Fresh splenocytes depleted of T cells by anti-Thy-1.2 monoclonal antibody plus complement generated LAK cells that were as highly lytic to fresh tumor in vitro and were as effective in reducing established pulmonary metastases as those generated from untreated or complement-treated splenocytes. Thus the precursor to LAK cells with anti-tumor activity in vitro and in vivo did not express the Thy-1 antigenic marker. In contrast, treatment of LAK effector cells (those generated from a 3-day incubation of fresh, normal splenocytes in RIL 2) with anti-Thy-1.2 antibody plus complement reduced or abolished their in vitro cytolytic activity. However, when combined with the systemic administration of RIL 2, these T cell-depleted, non-lytic LAK cells remained as effective in reducing the number of established pulmonary metastases upon adoptive transfer as untreated or complement-treated lytic LAK cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Murine and human lymphocytes incubated in recombinant interleukin 2 (RIL 2) generate a population of cytotoxic cells (lymphokine-activated killer cells [LAK]), which are able to lyse a wide array of fresh tumor cells but do not lyse fresh normal cells. Intravenous administration of these cells with the concomitant administration of RIL 2 can eliminate established pulmonary and hepatic metastases in mice. To characterize the cell that has in vitro LAK activity, we subdivided murine lymphocytes by lysing select subpopulations with the use of complement and antibodies against lymphocyte surface markers or by fluorescence-activated cell sorting. Thy-1.2-negative splenocytes were found to generate near normal amounts of LAK activity after RIL 2 incubation. Small and inconsistent LAK cell activity was generated from Thy-1.2-positive splenocytes. Ia-positive and surface immunoglobulin-positive splenocytes had little or no LAK precursor capability and did not appear to be necessary for LAK activation. Treatment of splenocytes with anti-asialo GM1 (anti-ASGM1) heterosera and complement markedly decreased their ability to generate LAK activity. At the effector stage, cytotoxic cells were of the Thy-1.2-positive, Ia-negative phenotype. Ia-depleted cells were separated into subpopulations bearing or not bearing the gamma Fc receptor (gamma FcR). The majority of cytotoxicity resided in gamma FcR-positive cells. Thus the precursors of murine LAK cells are "null" lymphocytes bearing neither T nor B cell surface markers but develop the Thy-1.2 cell surface marker in vitro, in association with the development of lytic activity for fresh tumor cells after stimulation by RIL 2.  相似文献   

6.
Prostaglandins can inhibit the generation of lymphokine-activated killer (LAK) cells by interleukin-2 (IL-2) whereas indomethacin augmented the induction of LAK cells by inhibiting prostaglandin synthesis. In the present study we demonstrate that prostaglandin E2 substantially inhibited the generation of both LAK and antibody-dependent cellular cytotoxicity (ADCC) activity by IL-2. In addition, indomethacin enhanced the induction of LAK activity and ADCC in splenocytes exposed to IL-2 in vitro. The effect of indomethacin was dose-dependent, reaching an optimal effect at 1 microM when 100-1000 units/ml IL-2 were employed. The effect of indomethacin on the generation of ADCC was seen in cells taken from both tumor-bearing mice and normal mice. ADCC induced by IL-2 was augmented by culturing cells from the spleen, liver and lungs, in the presence of indomethacin. ADCC induced in the presence of IL-2 and indomethacin was mediated by cells that were mainly plastic non-adherent cells and expressed the asialo-GM1 glycolipid. The potential of indomethacin in combined therapy with cytokines and specific anti-tumor monoclonal antibodies is discussed.  相似文献   

7.
We examined purified human large granular lymphocytes, peripheral monocytes, and T cells for their ability to mediate antibody-dependent cellular cytotoxicity (ADCC) with murine monoclonal antibodies. We also evaluated the effects of pretreatment of cells with interleukin 2 and interferon to augment ADCC activity. MB3.6, a murine monoclonal antibody directed against the GD3 ganglioside, induced high levels of ADCC. This ADCC was mediated predominantly, if not completely, by human killer cells (large granular lymphocytes) whereas other effector cell populations demonstrated no significant cytotoxic activity in 6- or 18-hr assays. The IgG2a an anti-melanoma antibody 9.2.27 generated low or no ADCC with most normal donors or melanoma patients. IL 2 was a very potent booster of ADCC activity. Interferon alpha also was effective, whereas interferon gamma did not augment but rather inhibited reactivity. We tested a large panel of antibodies of various isotype against colon carcinoma cells and found that gamma-3 isotype antibodies more frequently generated ADCC and produced higher levels of cytotoxic activity than did IgG1 or IgG2 antibodies. It appears that a variety of parameters can affect ADCC reactions, including the type of effector cell and its level of activation, the isotype of the antibody, and properties of the target cell line such as its susceptibility to lysis.  相似文献   

8.
We showed previously that adoptive immunotherapy with the combination of LAK cells and recombinant IL 2 (RIL 2) can markedly reduce pulmonary micrometastases from multiple sarcomas established 3 days after the i.v. injection of syngeneic tumor cells in C57BL/6 mice. In this report, we analyzed the factors required for successful therapy. Titration analysis in vivo revealed an inverse relationship between the number of pulmonary metastases remaining after treatment and both the number of LAK cells and the amount of RIL 2 administered. Fresh or unstimulated splenocytes had no anti-tumor effect; a 2- to 3-day incubation of splenocytes in RIL 2 was required. LAK cells generated from allogeneic DBA (H-2d) splenocytes were as effective in vivo as syngeneic, C57BL/6 (H-2b) LAK cells. The anti-metastatic capacity of LAK cells was significantly reduced or eliminated when irradiated with 3000 rad before adoptive transfer. The combined therapy of LAK cells plus RIL 2 was shown to be highly effective in mice immunosuppressed by 500 rad total body irradiation and in treating macrometastases established in the lung 10 days after the i.v. injection of sarcoma cells. Further, reduction of both micrometastases and macrometastases could also be achieved by RIL 2 alone when administered at higher levels than were required with LAK cells. The value of LAK cell transfer and of IL 2 administration for the treatment of tumors established at other sites is currently under investigation.  相似文献   

9.
Eighty-seven murine monoclonal antibodies (MAb) produced against human tumors of various origins and representing six different immunoglobulin classes were tested for antitumor reactivity in antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays. Mouse splenocytes, thioglycolate-elicited mouse peritoneal macrophages, freshly obtained nonadherent human peripheral blood lymphocytes, and human monocytes were used as effector cells, and human or rabbit serum as the source of complement. Of all four effector cell types tested, mouse macrophages showed the highest cytotoxic activity, based on net cytotoxicity, minimum requirement for Mab concentration, and effector cell number. Different immunoglobulin classes were associated with characteristic patterns of reactivity with the various effector cells or complement, independent of the target cell type used. MAb able to mediate ADCC were found among all IgG subclasses, with IgG2a and IgG3 MAb inducing lysis with all effector cell types. IgM and IgA MAb were nonreactive in the various ADCC assays, but IgM MAb were highly cytotoxic with complement.  相似文献   

10.
The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.  相似文献   

11.
The ability of fetal trophoblast cells in the placenta to resist cell-mediated lysis may be important for successful pregnancy. Previous studies in this laboratory demonstrated that cultured midterm mouse trophoblast cells are not susceptible to allospecific CTL generated by standard in vitro protocols, to antibody-dependent cell-mediated cytotoxicity, or to naive or IFN-activated NK cells, despite expressing the requisite target structures. However, we now report that murine trophoblast can be killed, in a non-MHC-specific manner, by LAK cells. Normal mouse spleen cells cultured for 4 days in IL-2-containing lymphokine preparations characteristically killed both NK-sensitive (YAC-1) and NK-resistant (EL4, P815) target cells, and mediated significant lysis of both cultured and freshly isolated trophoblast cells (35 to 55%, E/T 100/1). Pretreatment of the LAK cells with anti-ASGM1 antibody and C markedly reduced the lysis of trophoblast and YAC-1 targets, suggesting that the responsible cells belonged to the NK lineage. The ability of IL-2-activated NK cells to kill midterm murine trophoblast cells was confirmed using a population of highly lytic NK cells generated by culturing spleen cells from severe combined immunodeficiency mice in 500 U/ml rIL-2 for 5 days. These effector cells killed YAC-1, EL4 and P815 target cells at much lower E/T ratios than was achieved with the normal splenic LAK cells, and mediated significant lysis of both freshly isolated (45 to 50%, E/T 20/1) and cultured trophoblast cells (68 to 76%, E/T 20/1). The susceptibility of trophoblast to LAK cells and IL-2-activated NK cells supports the need for suppressor mechanisms regulating IL-2 activity at the maternal-fetal interface.  相似文献   

12.
M Ito  T Ihara  C Grose    S Starr 《Journal of virology》1985,54(1):98-103
Seven murine monoclonal antibodies reacting with major glycoproteins of varicella-zoster virus were tested for functional activity in assays for antibody-dependent cellular cytotoxicity (ADCC) and antibody-plus-complement-mediated lysis. Human peripheral blood mononuclear cells killed varicella-zoster virus-infected fibroblasts in the presence of three of four monoclonal antibodies directed against gp98/62 and a single monoclonal antibody directed against gp118. Neither of two monoclonal antibodies directed against gp66 was able to mediate ADCC. In 18-h assays, adherent effector cells were more active than nonadherent effector cells in mediating ADCC. Adherent cells treated with anti-Leu-11b and complement retained their cytotoxic activity, suggesting that monocytes are responsible for most of the adherent-cell-mediated cytotoxicity. Both immunoglobulin G1 and G2a murine monoclonal antibodies were able to participate in ADCC. Of the two immunoglobulin G2a monoclonal antibodies tested, both of which reacted with gp98/62, only one mediated lysis in the presence of complement. These results indicate that some murine monoclonal antibodies against major glycoproteins of varicella-zoster virus have functional activity in cytotoxicity assays.  相似文献   

13.
Summary Lymphokine-activated killer cells appear to arise from precursor cells bearing natural killer (NK) cell antigens. Cyclosporin (CsA) is a well-known immunosuppressive agent that can down-regulate NK cell cytotoxicity. Studies were initiated to evaluate the effects of CsA on splenocytes before and after exposure to recombinant interleukin-2 (rIL-2). Normal C57BL/6 mice receiving CsA at a dose of 100 mg/kg demonstrated a decrease in NK cell lysis against the YAC-1 lymphoma target in a 4-h chromium-release assay. When splenocytes obtained from CsA-treated mice were cultured for 3 days in complete medium containing 1000 U rIL-2/ml, they demonstrated a return of NK cell lysis to normal (mean cytotoxicity = 65 LU versus 60 LU for control and CsA-exposed splenocytes respectively;P, NS, five consecutive experiments) but revealed a decrease in the lysis of a NK-resistant target: the MCA-102 sarcoma (mean cytotoxicity = 20 LU vs 12 LU for control and CsA-exposed splenocytes respectively;P <0.02, five consecutive experiments). Fresh splenocytes cultured in media containing rIL-2 and CsA demonstrated a decrease in proliferation, cell-cycle S-phase fraction and cell yields compared to splenocytes cultured in media containing rIL-2 alone. In addition, a decrease in tumor cell lysis for NK-cell sensitive (mean percentage lysis = 98% vs 60%, rIL-2 vs rIL-2 + CsA; effector-to-target ratio 100: 1) and resistant targets (mean percentage lysis = 68% vs 28%, rIL-2 vs rIL-2 + CsA; effector-to-target ratio 100: 1) was also seen. CsA had no effects on the phenotypic antigenic expression of splenocytes cultured with high-dose rIL-2 although activated T cell antigens were down-regulated when fresh splenocytes were evaluated after in vivo exposure to CsA. These studies support the down-regulating effects of CsA on NK cell lysis and suggest that the rIL-2-activated cell population is heterogeneous as demonstrated by the differential down-regulation and recovery of NK-resistant cell lysis versus NK-sensitive cell lysis.  相似文献   

14.
Lymphokine-activated killer cells (LAK) were originally distinguished from natural killers (NK) and cytotoxic T lymphocytes. Recently, however, IL 2-activated NK cells were suggested as the major source of LAK reactivity in human peripheral blood (PBL). Because certain T cell acute lymphoblastic leukemia (T-ALL) cells are phenotypically similar to LAK precursors, we have asked whether these leukemic cells can be induced toward LAK-cytotoxicity and express NK reactivity before stimulation. Five out of seven T-ALL preparations were induced by IL 2 to kill target cells. The cytotoxicity of the leukemic-LAK cells resembled that of normal LAK effectors as they lysed efficiently the NK-resistant target Daudi, as well as fresh human sarcoma, carcinoma, and renal cancer cells but not normal PBL. The ALL-LAK precursors phenotype was T3-, T4-, T8-, and T11+, similar to most normal LAK precursors. In contrast to normal PBL that generated LAK effectors when their proliferation was inhibited, the irradiated, nonproliferating T-ALL leukemic cells did not respond to IL 2. Therefore, the T-ALL LAK cytotoxicity was attributed to the leukemic cells rather than to residual normal lymphocytes. The IL 2-responding T-ALL cells did not express autonomous NK type cytotoxicity, suggesting that they reflect LAK precursors of non-NK origin. The homogeneous leukemic preparations with inducible LAK cytotoxicity described herein provide a model system for studying normal LAK cells.  相似文献   

15.
Seven murine monoclonal antibodies to antigens expressed on T lymphoma targets were tested for directing antibody-dependent cellular cytotoxicity (ADCC). Peptone-induced peritoneal exudate macrophages, the LPS-stimulated RAW264.10 cell line, and human blood nonadherent mononuclear leukocytes were used as effector cells. All six IgG monoclonals tested, representing the four murine IgG isotypes and directed against four antigens (Thy-1.2, H-2k, Ly-2.1, Ly-9.2), were all active in ADCC. In contrast, an IgM anti-Thy-1.2 showed no activity despite very high C-cytotoxic titers. Thus, there does not seem to be any restriction among IgG classes for directing ADCC to tumor targets mediated by murine macrophages or human K cells.  相似文献   

16.
The in vitro incubation of lymphoid cells in RIL 2 results in the generation of LAK cells that are broadly lytic to autologous, syngeneic, and allogeneic fresh tumor cells, but which do not lyse fresh, normal cells. Strains of mice with congenital immunodeficiencies were tested both for the presence of NK cells and for their capacity to generate LAK cells after in vitro incubation with IL 2. Splenocytes obtained from two immunodeficient mouse strains (NIH-Beige-Nude and NIH-Beige-Nude-XID) failed to generate LAK cells, but displayed significant activity. Splenocytes from another immunodeficient mouse strain (NIH-Beige-XID) generated LAK cells but did not display NK cell activity. This dissociation of activation of LAK cells from NK cells among the immunodeficient strains indicates that the LAK and NK cell lytic systems are distinct.  相似文献   

17.
J Xiao  Z Brahmi 《Cellular immunology》1989,122(2):295-306
In a previous study, we demonstrated that human natural killer cells (NK) lost their lytic activity after interaction with a sensitive target. The loss of NK activity also led to the loss of antibody-dependent cellular cytotoxicity (ADCC), prompting us to postulate that NK and ADCC activities may result from a common lytic mechanism. In this study, we examined whether nonadherent lymphocytes cultured 7 days in the presence of IL-2 (lymphokine-activated killer (LAK) cells) could also be inactivated and, subsequently, be reactivated in the presence of IL-2. We tested three populations of effector cells (EC): cells isolated from freshly drawn blood and tested immediately, cells cultured with IL-2 for 18 hr, and LAK cells. Once they have interacted with K562, all three cell populations lost greater than 90% of their NK-like lytic activity (NK-CMC) but only 80% of ADCC. However, when we treated the three cell types with antibody-coated K562, they lost 90-99% of NK-CMC and 90-97% of ADCC. In these inactivated effector cells we also observed: (i) a reduction in membrane expression of C-reactive protein; and (ii) a decrease in the expression of Leu-11a when EC were inactivated with antibody-coated K562. The loss of lytic activity against K562 was accompanied by a concomitant loss of activity against other LAK-sensitive targets as well as against antibody-coated targets (ADCC). In competitive inhibition experiments the inactivated effector cells failed to inhibit normal NK-CMC and ADCC activities mediated by fresh NK cells. As we have shown previously, this target-directed inactivation was not due to cell death or to lack of conjugate formation. Inactivated LAK cells regained their lytic potential when cultured with IL-2 and this effect was time dependent. By 72 hr, LAK cells inactivated with K562 regained 99% NK-CMC and 82% ADCC, whereas LAK cells inactivated with antibody-coated K562 regained only 80% NK-CMC and 70% ADCC. When we treated the effector cells with emetine, a potent inhibitor of protein synthesis, we could still inactivate the effector cells with K562 and with antibody-coated K562 but could not reactivate them with IL-2.  相似文献   

18.
Natural killer (NK) cell have been implicated in immune responses to tumor and viral antigens. We describe here a monoclonal antibody, anti-KC-1, that blocks lysis of NK targets by fresh but not activated NK cells. Anti-KC-1 has no effect on cytotoxic T lymphocyte activity or on antibody-dependent cellular cytotoxicity. This antibody may be useful in the analysis of NK cell activation and the mechanism of lysis.  相似文献   

19.
Bovine polymorphonuclear neutrophils (PMN) can mediate antibody-dependent cell cytotoxicity (ADCC) of herpesvirus-infected cells. Since cytotoxicity occurs only in the presence of PMN and specific antiviral antibody, but not until viral membrane antigens are expressed on the target cell, it is concluded that antibody must recognize viral membrane antigens before cytotoxicity can occur. Cytotoxicity also requires very close contact between the target cell and the PMN cell. These interactions occur as early as 1 h after incubating antibody, infected cells, and PMN, but the actual lysis and release of intracellular components occur over an extended period. It was assumed that degranulation was not involved in the initiation of cytotoxicity, but was involved in the final stage of destruction. The mechanism of lysis is proposed to involve the interaction of PMN membranes with target cell membranes with subsequent reorganization and activation of the PMN plasma membrane at points of contact with the target cell. This results in possible production of transmembrane channels which allows for the release of target cell contents.  相似文献   

20.
The chimeric monoclonal antibody cG250 targets the G250 antigen, a transmembrane protein which is expressed on renal carcinoma cells and is identical to the MN/CAIX antigen. In vitro studies have previously demonstrated that cG250 induces antibody-dependent cellular cytotoxicity (ADCC) of G250-positive targets. In order to investigate the upregulation of ADCC mediated by cG250, ADCC was examined using effector cells cultured in the presence or absence of the cytokines interferon-gamma (IFN-gamma), interferon-alpha isoforms IFN-alpha (2a) and IFN-alpha (2b) and interleukin-2 (IL-2), and the time course of effects over a 7-day period was determined. Renal cell carcinoma lines expressing high (SK-RC-52) and low (SK-RC-09) G250 antigen levels were used as target cells, and freshly isolated peripheral blood mononuclear cells (PBMC) from a healthy donor were used as the effector cells. PBMC were incubated with the respective cytokine at a range of concentrations or with a media alone control for a period of 7 days. The ADCC activity mediated by cG250 or control isotype matched huA33 with the different PBMC treatment groups was assessed in triplicate daily. Corresponding lymphokine activated killing (LAK) activity was measured concurrently for each treatment group. Chimeric G250 specifically recognised G250 antigen on high and low expressing cell lines SK-RC-52 and SK-RC-09, and mediated specific in vitro ADCC of both lines. In the absence of cytokine stimulation, the specific ADCC of cG250 declined rapidly within three days. IL-2 strongly enhanced and maintained cG250-mediated ADCC activity and K562 cytotoxicity when applied to PBMC in culture for seven days. IFN-gamma also enhanced the ADCC of cG250 throughout the study period, but was not as effective as the IL-2 treatment, and the SK-RC-09 line displayed lower specific cytotoxicity than the SK-RC-52 cell line. In contrast, IFN-alpha 2a and 2b increased cG250-mediated ADCC and K562 cytotoxicity for only three days of the study period. The potent and sustained immune effector activity observed with cG250 and cytokines in this in vitro study suggests that the combination immunotherapy of cG250 with cytokines such as IL-2 shows promise in the treatment of renal cell carcinoma (RCC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号