首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. M. Smith 《Planta》1985,166(2):264-270
The aim of this work was to compare the capacities for fermentation and synthesis of malate from phosphoenolpyruvate in roots and Rhizobium nodules of Pisum sativum. The nodules and the cortices and apices of roots had similar activities of glycolytic enzymes and enzymes of ethanolic and lactic fermentation when expressed on a protein basis. The activity of phosphoenolpyruvate carboxylase was similar in nodules and apices, and three to four fold lower in cortices. All three tissues had very high activities of malate dehydrogenase, significant activity of NADP-malic enzyme, and no detectable activity of phosphoenolpyruvate carboxykinase. These results do not support the belief that nodules have a substantially greater capacity to convert phosphoenolpyruvate to malate than roots, or that there are major qualitative differences in the pathways of fermentation of nodules and roots.Abbreviation PEP phosphoenolpyruvate  相似文献   

2.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

3.
Mesembryanthemum crystallinum responds to high salinity in the soil by shifting the mode of carbon assimilation from the C3 mode to Crassulacean acid metabolism (CAM). Several enzymes of carbon metabolism have increased apparent activities in the CAM mode, including phosphoenolpyruvate carboxylase (PEPcase) and pyruvate orthophosphate dikinase (PPDK). We have identified cDNA clones for PEPcase and PPDK by immunological screening of a cDNA library constructed in the protein expression vector lambda gt11. The clones were characterized by immunoblotting and RNA blotting techniques. RNA blotting showed that during CAM induction the steady-state level of mRNAs for both PEP case and PPDK increased.Abbreviations IPTG isopropyl thiogalactoside - PEP phosphoenolpyruvate - PEPcase phosphoenolpyruvate carboxylase - PPDK pyruvate orthophosphate dikinase - Xgal-5 bromo-4-chloro-3-indolyl-beta-D-galactopyranoside  相似文献   

4.
H. Schnabl  C. Kottmeier 《Planta》1984,162(3):220-225
Properties of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) obtained from isolated guard-cell protoplasts of Vicia faba L. were determined following rapidly desalting of the extract on a Sephadex G 25 column. The activity of PEP carboxylase was measured as a function of PEP and malate concentration, pH and K+ concentration within 2–3 min after homogenization of the guard-cell protoplasts. The activity of this enzyme was stimulated by PEP concentrations of 0.1 to 0.75 mM and by K+ ions (12 mM), but inhibited by PEP concentrations above 1 mM and by malate. Changes in the Km(PEP) and Vmax values with increasing malate concentrations (2.5 and 5 mM) indicate that the malate level, varying in relation to the physiological state of guard cells, plays an important role in regulating the properties of phosphoenolpyruvate carboxylase.Abbreviations CAM Crassulacean acid metabolism - GCP guard-cell protoplast - PEP phosphoenolpyruvate Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

5.
Klaus Winter 《Planta》1982,154(4):298-308
Properties of phosphoenolpyruvate (PEP) carboxylase, obtained from leaves of Mesembryanthemum crystallinum L. performing Crassulacean acid metabolism (CAM), were determined at frequent time points during a 12-h light/12-h dark cycle. Leaf extracts were rapidly desalted and PEP carboxylase activity as a function of PEP concentration, malate concentration, and pH was measured within 2 min after homogenization of the tissue. Maximum velocity of PEP carboxylase was similar in the light and dark at pH 7.5 and pH 8.0. However, PEP carboxylase had as much as a 12-fold lower K m for PEP and as much as a 20-fold higher K i for malate during the dark than during the light periods, the magnitude of these differences being dependent on the assay pH. Assuming that enzyme properties immediately after isolation reflect the approximate state of the enzyme in vivo, these differences in enzyme properties reduce the potential for CO2 fixation via PEP carboxylase in the light. A small decrease in cytoplasmic pH in the light would greatly magnify the above differences in day/night properties of PEP carboxylase, because the sensitivity of PEP carboxylase to inhibition by malate increased with decreasing pH. Properties of PEP carboxylase were also studied in plants exposed to short-term perturbations of the normal 12-h light/12-h dark cycle (e.g., prolonged light period, prolonged dark period). Under all light/dark regimes, there was a close correlation between change in properties of PEP carboxylase and changes of the tissue from acidification to deacidification, and vice versa. Changes in properties of PEP carboxylase were not merely light/dark phenomena because they were also observed in plants exposed to continuous light or dark. the data indicate that, during CAM, PEP carboxylase exists in two stages which differ in their capacity for net malate synthesis. The physiologically-active state is distinguished by a low K m for PEP and a high K i for malate and favors malate synthesis. The physiologically-inactive state has a high K m for PEP and a low K i for malate and exists during periods of deacidification and other periods lacking synthesis of malic acid.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPC PEP carboxylase - RuBP ribulose 1,5-bisphosphate - RH relative humidity  相似文献   

6.
Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and ribulose-1,5-bisphospate (RuBP) carboxylase (EC 4.1.1.39) activities in leaves of different maize hybrids grown under field conditions (high light intensity) and in a growth chamber (low light intensity) were determined. Light intensity and leaf age affected PEP carboxylase activity, whereas RuBP carboxylase was affected by leaf age only at low light intensity. PEP carboxylase/RuBP carboxylase activity ratio decreased according to light intensity and leaf age. Results demonstrate that Zea mays grown under field conditions is a typical C4 species in all leaves independently from their position on the stem, whereas it may be a C3 plant when it is grown in a growth chamber at low light intensityAbbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

7.
Phosphoenolpyruvate (PEP) carboxylase activity in epidermal extracts of Commelina communis has been compared in the presence of malate and glucose-6-phosphate. The activity of PEP carboxylase was inhibited by increasing malate concentrations at several substrate (PEP) concentrations and changes in both the apparent K m (PEP) and V max values in the presence of malate suggested the occurence of mixed-type inhibiton. In the presence of glucose-6-phosphate no increase in enzyme activity was observed, although there was a slight decrease in the K m (PEP). However, glucose-6-phosphate appeared to alleviate the inhibition caused by malate. The possible implications of these properties in the control of malate production in guard cells is discussed.Abbreviations PEP phosphoenolpyruvate - Glc6P glucose-6-phosphate  相似文献   

8.
Activity of ribulose 1,5-bisphosphate (RuBP) carboxylase in leaf extracts of the constitutive Crassulacean acid metabolism (CAM) plant Kalanchoe pinnata (Lam.) Pers. decreased with increasing leaf age, whereas the activity of phosphoenolpyruvate (PEP) carboxylase increased. Changes in enzyme activities were associated with changes in the amount of enzyme proteins as determined by immunochemical analysis, sucrose density gradient centrifugation, and SDS gel electrophoresis of leaf extracts. Young developing leaves of plants which received high amounts of NO 3 - during growth contained about 30% of the total soluble protein in the form of RuBP carboxylase; this value declined to about 17% in mature leaves. The level of PEP carboxylase in young leaves of plants at high NO 3 - was an estimated 1% of the total soluble protein and increased to approximately 10% in mature leaves, which showed maximum capacity for dark CO2 fixation. The growth of plants at low levels of NO 3 - decreased the content of soluble protein per unit leaf area as well as the extractable activity and the percentage contribution of both RUBP carboxylase and PEP carboxylase to total soluble leaf protein. There was no definite change in the ratio of RuBP carboxylase to PEP carboxylase activity with a varying supply of NO 3 - during growth. It has been suggested (e.g., Planta 144, 143–151, 1978) that a rhythmic pattern of synthesis and degradation of PEP carboxylase protein is involved in the regulation of -carboxylation during a day/night cycle in CAM. No such changes in the quantity of PEP carboxylase protein were observed in the leaves of Kalanchoe pinnata (Lam.) Pers. or in the leaves of the inducible CAM plant Mesembryanthemum crystallinum L.Abbreviations CAM Crassulacean acid metabolism - RuBP ribulose 1,5-bisphosphate - PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate  相似文献   

9.
The in-situ inter- and intracellular localization patterns of phosphoenolpyruvate (PEP) and ribulose 1,5-bisphosphate (RuBP) carboxylases in green leaves of severalPanicum species were investigated using an indirect immunofluorescence technique. Four species were examined and compared:P. miliaceum (C4),P. bisulcatum (C3), andP. decipiens andP. milioides (C3–C4 intermediates which have Kranz-like leaf anatomy and reduced photorespiration). In the C4 Panicum, PEP carboxylase was located in the cytosol of the mesophyll cells and RuBP carboxylase was restricted to the bundle-sheath chloroplasts. In contrast, in the C3 Panicum species, PEP carboxylase was found throughout the leaf chlorenchyma, in both the cytosol and chloroplasts, and RuBP carboxylase was located in the chloroplasts. For the C3–C4 intermediate plants, the patterns depended on the species examined. ForP. decipiens, the in-situ localization of both carboxylases was similar to that described forP. bisulcatum and other C3 plants. However, inP. milioides, PEP carboxylase was found exclusively in the cytosol of the mesophyll cells, as inP. miliaceum and other C4 species, whereas RuBP carboxylase was distributed in both the mesophyll and bundle-sheath chloroplasts.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate  相似文献   

10.
Various stages of the life cycle of the marine brown alga Laminaria saccharina (L.) Lamour. (Laminariales, Phaeophyta) including male and female gametophytes, female gametes, zygotes and young sporophytes of different age were investigated for their potentials of carbon dioxide (14CO2) fixation. Rates of photosynthesis attain the same order of magnitude in all stages. Photosynthetic 14CO2-fixation is accompanied by a substantial light independent carbon assimilation. This is confirmed by rate determinations of the equivalent carboxylating enzymes present in the plants, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoenolpyruvate carboxokinase (EC 4.1.1.32) as well as by chromatographic analyses of the appropriate [14C]-assimilate patterns.Abbreviations RuBP-C ribulose-1,5-bisphosphate carboxylase - PEP-CK phosphoenolpyruvate carboxykinase - PEP phosphoenolpyruvate - PS photosynthesis - DF dark fixation  相似文献   

11.
Immunotitration of phosphoenolpyruvate carboxylase (EC 4.1.1.31) extracted from leaves of Kalanchoe blossfeldiana v. Poelln. cv. Tom Thumb. It was established that at different times of the day-night cycle the daily rhythm of enzyme capacity does not result from a rhythm in protein synthesis, but rather from changes in the specific activity of the enzyme.Abbreviations CAM Crassulacean acid metabolism - IgG immunoglobulin G - PEP phosphoenolpyruvate To whom correspondence should be addressed  相似文献   

12.
The physiology of Thermus aquaticus strain Z05 was investigated. Substantial evidence for gene and enzyme regulation in the central metabolism of this extreme thermophile was found.Two anaplerotic pathways were detected: (1) phosphoenolpyruvate carboxylase; (2) a glyoxylate shunt which proved to be essential for growth on pyruvate as well as acetate. The synthesis of isocitrate lyase and malate synthase were found to depend on a common control mechanism. Pronounced regulatory effects were observed on the activity of malic enzyme, pyruvate kinase and phosphoenolpyruvate carboxylase. The data could be fitted together into a picture of the metabolism during glycolysis and gluconeogenesis which shows how variations of enzyme levels and activities correlate with the apparent needs of the cell.Our results call attention to a peculiar metabolic analogy between T. aquaticus and Acinetobacter Abbreviations ace acetate nonutilizing - Acetyl-CoA acetyl-coenzyme A - I.U. international unit - PEP phosphoenolpyruvate - T Thermus  相似文献   

13.
Special culture conditions for Euglena gracilis Z and ZR are described. They induce interactions between the chloroplast and mitochondrial metabolisms leading to paramylon synthesis. When grown in continuous light under pure nitrogen and in the presence of lactate as the sole carbon source, sugar synthesis occurs during the first 24 h of culture with the participation of both mitochondria (using lactate) and of chloroplasts (fixing CO2 from lactate decarboxylation). The activities of ribulose bisphosphate carboxylase, phosphoenolpyruvate carboxylase, and phosphoenolpyruvate carboxykinase are very high and mitochondria and chloroplasts develop then a common network of vesicles in which paramylon grains can be seen. Electron micrographs demonstrate membrane continuity between the two types of organelles. Occasionally the mitochondrial matrix and the chloroplast stroma are separated by only a unit membrane.Abbreviations Chl chlorophyll - OAA oxaloacetic acid - PEP phosphoenolpyruvate - RuBP ribulose bisphosphate - DTT 1,4-dithiothreitol - PVP polyvinylpyrrolidone  相似文献   

14.
K. J. Bonugli  D. D. Davies 《Planta》1977,133(3):281-287
Phosphoenolpyruvate (PEP) carboxylase (E.C. 4.1.1.31.) was extracted from potato tubers (Solanum tuberosum L.) and investigated for regulatory response to metabolites. The enzyme was found to be activated by sugar phosphates and glycollate and non-competitively inhibited by succinate and fumarate. In both cases the effects were highly dependent on pH, being maximal between pH 7 and 7.6. Rapid extraction techniques demonstrated that the enzyme suffers a sharp decline in activity and sensitivity to metabolites during the first 2 h from extraction. The observed properties of PEP carboxylase were related to the possible role of the enzyme in a metabolic pH-stat.Abbreviation PEP phosphoenolpyruvate  相似文献   

15.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified 43-fold from Amaranthus viridis leaves by using a combination of ammonium-sulphate fractionation, chromatography on O-(diethylaminoethyl)-cellulose and hydroxylapatite, and filtration through Sepharose 6B. The purified enzyme had a specific activity of 17.1 mol·(mg protein)-1·min-1 and migrated as a single band of relative molecular weight 100000 on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. A homotetrameric structure was determined for the native enzyme. Phosphoenolpyruvate carboxylase from Zea mays L. and A. viridis showed partial identity in Ouchterlony two-dimensional diffusion. Isoelectric focusing showed a band at pI 6.2. Km values for phosphoenolpyruvate and bicarbonate were 0.29 and 0.17 mM, respectively, at pH 8.0. The activation constant (Ka) for Mg2+ was 0.87 mM at the same pH. The carboxylase was activated by glucose-6-phosphate and inhibited by several organic acids of three to five carbon atoms. The kinetic and structural properties of phosphoenolpyruvate carboxylase from A. viridis leaves are similar to those of the enzyme from Zea mays leaves.Abbreviations MW molecular weight - PEP (Case) phosphoenolpyruvate (carboxylase) - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

16.
The phytotoxin fusicoccin (FC) causes rapid synthesis of malate in coleoptile tissues, presumably via phosphoenolpyruvate (PEP) carboxylase coupled with malate dehydrogenase. The possibility that FC directly affects PEP carboxylase in Avena sativa L. and Zea mays L. coleoptiles was studied and rejected. The activity of this enzyme is unaffected by FC whether FC is added in vitro or a pretreatment to the live material. FC does not change the sensitivity of the enzyme to bicarbonate or malate. The activity of FC, instead, appears to be indirect. The pH sensitivity of PEP carboxylase is such that its activity, and thus the rate of malate synthesis, may be enhanced by an increase in cytoplasmic pH accompanying FC-induced H+ excretion. Since the enzyme is also particularily sensitive to bicarbonate levels, malate synthesis may also be enhanced by FC-induced uptake or generation of CO2.  相似文献   

17.
Light activation of phosphoenolpyruvate carboxylase from the leaves of the C4 plant Setaria verticillata (L.) is more pronounced at low CO2 levels. The 2-fold activation observed at physiological ambient CO2 becomes 3.64-fold at 5 L/L and completely abolished above 700 L/L. When the stomata close under the influence of abscisic acid at 330 L/L CO2, the extent of light activation is high (3.59-fold), probably because the increased diffusive resistance keeps the internal CO2 at much lower levels. Under darkness. CO2 and absicisic acid do not affect the extractable phosphoenolpyruvate carboxylase activity. Internal CO2 levels may determine phosphoenolpyruvate concentratio in the cytoplasm through the control of its utilization by phosphoenolpyruvate carboxylase. We have recently proposed (Samaras et al. 1988) that photosynthetically produced phosphoenolpyruvate could be an activator of the enzyme. It is therefore suggested that CO2 indirectly affects the activation state of phosphoenolpyruvate carboxylase by controlling the levels of phosphoenolpyruvate which may act as an activator.Abbreviations PEPCase phosphoenolpyruvate carboxylase - PEP phosphoenolpyruvate - PAR photosynthetically active radiation - G6P glucose-6-phosphate - ABA abscisic acid - MDH malate dehydrogenase - PPDK pyruvate, Pi, dikinase - CAM Crassulacean Acid Metabolism  相似文献   

18.
Summary The ppc gene of Corynebacterium glutamicum encoding phosphoenolpyruvate (PEP) carboxylase was isolated by complementation of a ppc mutant of Escherichia coli using a cosmid gene bank of chromosomal c. glutamicum DNA. By subsequent subcloning into the plasmid pUC8 and deletion analysis, the ppc gene could be located on a 3.3 kb SalI fragment. This fragment was able to complement the E. coli ppc mutant and conferred PEP carboxylase activity to the mutant. The complete nucleotide sequence of the ppc gene including 5 and 3 flanking regions has been determined and the primary structure of PEP carboxylase was deduced. The sequence predicts a 919 residue protein product (molecular weight of 103154) which shows 34% similarity with the respective E. coli enzyme. Present address: Institut für Biotechnologie 1 der Kernforschungsanlage, Postfach 1913, D-5170 Jülich, Federal Republic of Germany  相似文献   

19.
Summary Azotobacter chroococcum Fos 189 is a Tn1-induced mutant which, unlike the parent strain MCD1, does not fix nitrogen in air when provided with glucose or pyruvate as sole carbon sources. Fos 189 showed 5% of parental activity for phosphoenolpyruvate carboxylase though PEP synthetase activity was normal. The A. chroococcum phosphoenolpyruvate carboxylase (ppc) gene was isolated after complementation of an appropriate Escherichia coli mutant using a broad host range gene bank prepared from A. chroococcum genomic DNA. The gene was localised by transposon mutagenesis and subcloning on a minimum DNA fragment of 6.6 kb. Broad host range plasmids containing the A. chroococcum ppc gene complemented the mutation in Fos 189 thereby restoring aerotolerant nitrogen fixation.  相似文献   

20.
The activity of phosphoenolpyruvate carboxylase (E.C. 4.1.1.31) strongly increased during the maturation of soybean (Glycine max L. Weber) root-nodules. By using a specific immune serum it was shown that this increase was the consequence of an elevated population of enzyme molecules whose appearance preceded the emergence of nitrogen fixing capacity. Whether or not the phenomenon could be ascribed to the formation of a specific isoenzyme is not known. The location of the enzyme was also investigated. Immunocyto-fluorescence experiments established that phosphoenolpyruvate carboxylase was present in the cytoplasmic compartment of both infected and uninfected cells of nodules.Abbreviation PEPCase phosphoenolpyruvate carboxylase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号