共查询到20条相似文献,搜索用时 0 毫秒
1.
Differences in single-copy nuclear-DNA sequences among 13 species of
passerine birds were measured using DNA-DNA hybridization. A matrix of
pairwise dissimilarity values (delta mode distances) was constructed from
analysis of fitted thermal dissociation curves. A least-squares method of
phylogenetic estimation was used to construct two topologies from the
distance matrix, one constraining branch lengths of sister taxa to be equal
and the other permitting such lengths to vary. These topologies were
identical in the pattern of branching of taxa, and the difference in their
sums of squares was not statistically significant, suggesting that rates of
DNA evolution in sister groups of nine- primaried oscines are equal. A
nonparametric test for nonrandom variation in distances of sister groups to
outgroup taxa revealed no statistically significant deviation from random
variation that would be expected as a result of measurement error. However,
the level of measurement error was such that rates of DNA evolution in
sister taxa could vary by as much as 10% without being detected with the
statistical methods used here.
相似文献
2.
This paper summarizes and discusses the many new insights into passerine evolution gained from an increased general interest in avian evolution among biologists, and particularly from the extensive use of DNA sequence data in phylogenetic reconstruction. The sister group relationship between the New Zealand rifleman and all other passerines, indicates the importance of the former southern supercontinent Gondwana in the earliest evolution of this group. Following the break-up of Gondwana, the ancestors of other major passerine groups became isolated in Australia (oscines), South America (New World suboscines), and possibly, the then connected Kerguelen Plateau/India/Madagascar tectonic plates (Old World suboscines). The oscines underwent a significant radiation in the Australo-Papuan region and only a few oscine lineages have spread further than to the nearby Southeast Asia. A remarkable exception is the ancestor to the vast Passerida radiation, which now comprises 35% of all bird species. This group obviously benefitted greatly from the increased diversity in plant seed size and morphology during the Tertiary. The lyrebirds (and possibly scrub-birds) constitute the sister group to all other oscines, which renders "Corvida" ( sensu Sibley and Ahlquist 1990) paraphyletic. Sequence data suggests that Passerida, the other clade of oscines postulated based on the results of DNA–DNA hybridizations, is monophyletic, and that the rockfowl and rock-jumpers are the most basal members of this clade. The suboscines in the Old World (Eurylamides) and the New World (Tyrannides), respectively, are sister groups. A provisional, working classification of the passerines is presented based on the increased understanding of the major patterns of passerine evolution. 相似文献
3.
Species that have been introduced to islands experience novel and strong selection pressures after establishment. There is evidence that exotic species diverge from their native source populations; further, a few studies have demonstrated adaptive divergence across multiple exotic populations of a single species. Exotic birds provide a good study system, as they have been introduced to many locations worldwide, and we often know details concerning the propagule origin, time of introduction, and dynamics of establishment and dispersal within the introduced range. These data make them especially conducive to the examination of contemporary evolution. Island faunas have received intense scrutiny, therefore we have expectations concerning the patterns of diversification for exotic species. We examine six passerine bird species that were introduced to the Hawaiian archipelago less than 150 years ago. We find that five of these show morphological divergence among islands from the time since they were established. We demonstrate that some of this divergence cannot be accounted for by genetic drift, and therefore we must consider adaptive evolution to explain it. We also evaluate evolutionary divergence rates and find that these species are diverging at similar rates to those found in published studies of contemporary evolution in native species. 相似文献
4.
Central to many explanations of latitudinal diversity gradients is the idea that rates of species diversification increase towards the equator. However, there have been few explicit tests of whether or not this pattern exists. Using sister-group analyses to compare 48 clades of passerine birds and swallowtail butterflies from different latitudes, I found evidence that relative rates of diversification per unit time are indeed higher towards the equator. This pattern is explicable in terms of abiotic factors which vary continuously with latitude, and may be further enhanced by diversity-dependent speciation and extinction processes. 相似文献
5.
Global warming may affect the physiology, distributions, phenology and adaptations of plants and animals. In Israel, minimum summer temperatures increased by an average of 0.26 degrees C per decade during the second half of the 20th century. Bergmann's rule predicts that, in warm-blooded animals, races from warm regions are smaller than races from cold regions. Numerous studies have reported general correlations between body mass in fossil animals and independently established palaeoclimatic changes from various parts of the world in accordance with this rule. Using museum specimens, I tested the prediction that the body mass and tarsus length of five resident passerine species in Israel declined between 1950 and 1999. The body mass of four species (the graceful warbler Prinia gracilis, the house sparrow Passer domesticus, the yellow-vented bulbul Pycnonotus xanthopygos and the Sardinian warbler Sylvia melanocephala, but not of the crested lark Galerida cristata) declined significantly during this period. Tarsus length also declined significantly during this period for two species (the graceful warbler and the house sparrow). Body condition (body mass-to-tarsus length ratio) decreased in the Sardinian warbler, the yellow-vented bulbul and the crested lark. It is suggested that the above declines in body mass and tarsus length are due to global warming and also in accordance with Bergmann's rule. The above explanation does not exclude the possibility that other factors, such as a decrease in food availability, contributed to the decline in body mass. These declines may have serious implications for community structure and competition among bird species and may affect the survival of small passerines. 相似文献
6.
Summary Resting metabolic rates of Gambel's white-crowned sparrows ( Zonotrichia leucophrys gambelii) and pine siskins ( Carduelis pinus) were evaluated at thermoneutral temperatures before and after administration of corticosterone (B) at physiological doses. There was no effect of B on basal metabolic rate of either species, but nocturnal metabolic rate varied significantly less over the 3-h period of measurement in B-treated sparrows and siskins than in control birds. These results, coupled with observations of caged birds, suggest that corticosterone has no direct effect on avian resting metabolism but does reduce the responsiveness of birds to external stimuli and thus promotes nocturnal restfulness.Abbreviations
B
corticosterone
-
VO
2
rate of oxygen consumption
-
T
3
tri-iodothyromine
-
T
4
tetra-iodothyronine, thyroxine 相似文献
7.
In some birds, males defend two spatially separated territories and attract females to each one in turn. it has been proposed that this behaviour, referred to as polyterritoriality, allows males to conceal their marital status, thereby deceiving females into accepting polygyny against their best interests. The deception hypothesis has gained general acceptance as an explanation for polyterritoriality in birds, but until recently the empirical basis for the hypothesis rested almost entirely on studies of Swedish populations of the pied flycatcher (Ficedula hypoleuca). New findings, emerging from further studies of the pied flycatcher and of other species, suggest several alternative selection pressures that may have favoured polyterritoriality. 相似文献
9.
Projected body frontal area is used when estimating the parasite drag of bird flight. We investigated the relationship between projected frontal area and body mass among passerine birds, and compared it with an equation based on waterfowl and raptors, which is used as default procedure in a widespread software package for flight performance calculations. The allometric equation based on waterfowl/raptors underestimates the frontal area compared to the passerine equation presented here. Consequently, revising the actual frontal areas of small birds will concomitantly change the values of the parasite drag coefficient. We suggest that the new equation (m 2) where m B is body mass (kg) should be used when a value of frontal area is needed for passerines. 相似文献
10.
This study investigated the postexercise metabolism of six species of free-living, night-migrating passerine birds (European robin, pied flycatcher, wheatear, redstart, blackcap, and garden warbler). The birds were caught during autumn migration out of their nocturnal flight, and their metabolism changed from a fasting, highly active state to a fasting, resting state. Concentrations of six plasma metabolites of the fat, carbohydrate, and protein metabolism were measured during up to 10 h of recovery time. The metabolic changes indicated a biphasic pattern: (a) a quick first response to the reduced energy demands during the first 20 min of recovery, suggested by an increase and subsequent decrease of free fatty acid levels, and (b) subsequently, a postexercise ketosis and a reduction of lipolysis and proteolysis, suggested by high beta-hydroxy-butyrate and low free fatty acid, glycerol, triglyceride, and uric acid levels. This metabolic pattern differs from that of humans and rats, in which ketosis starts immediately postexercise or is absent in trained subjects. Since migrating birds are naturally adapted to endurance exercise, it is hypothesized that the high and long-lasting postexercise ketosis does not evoke physiological problems (such as hypoglycemia) but, by contrast, increases the ability of birds to rely on lipids, to a very high extent, during and after flight and decreases the dependence on glucose and glucogenic amino acids. Differences between species in fat stores and metabolic pattern support this hypothesis. 相似文献
11.
Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings. 相似文献
13.
Developing species specific microsatellite primers can be avoidedby using existing markers which amplify across species. However,for passerines, such cross-species markers are mostly lackingand few guidelines exist for selecting them from the wide rangeof existing markers. Here cross-species amplification tests of 40microsatellite primers in 13 passerine species show an increasein probability of amplification and polymorphism with decreasingphylogenetic distance. Primers which successfully amplified inmany species had a higher chance to be polymorphic. However,since the amplification success, across a broad range of species,of particular primersets remains difficult to predict it iscrucial to identify such markers empirically. Here we describesuch widely applicable bird (passerines) microsatellite markers. 相似文献
14.
It is well established that the nutrient and energy requirements of birds increase substantially during moult, but it is not known if these increased demands affect their aerobic capacity. We quantified the absolute aerobic scope of house and Spanish sparrows, Passer domesticus and P. hispaniolensis, respectively, before and during sequential stages of their moult period. The absolute aerobic scope (AAS) is the difference between maximum metabolic rate (MMR) during peak locomotor activities and minimum resting metabolic rate (RMRmin), thus representing the amount of aerobic power above that committed to maintenance needs available for other activities. As expected, RMRmin increased over the moult period by up to 40 and 63% in house and Spanish sparrows, respectively. Surprisingly, the maximum metabolic rates also decreased during moult in both species, declining as much as 25 and 38% compared with pre-moult values of house and Spanish sparrows, respectively. The concurrent changes in RMRmin and MMR during moult resulted in significant decreases in AAS, being up to 32 and 47% lower than pre-moult levels of house and Spanish sparrows, respectively, during moult stages having substantial feather replacement. We argue that the combination of reduced flight efficiency due to loss of wing feathers and reduced aerobic capacity places moulting birds at greater risk of predation. Such performance constraints likely contribute to most birds temporally separating moult from annual events requiring peak physiological capacity such as breeding and migration. 相似文献
15.
The macroscopical structure of the organ of voice in songbirds has long been known, but detailed information on the microscopical anatomy of the syrinx has generally been lacking. Observations based largely on macroscopical evidence have led to a number of erroneous interpretations of function of various syringeal components, and lacking microscopical information, the vocal mechanism of birds cannot be adequately understood. A wide variety of passeriform bird syrinxes have been studied by means of serial sections. Although there is much less variation in syringeal anatomy amongst songbirds than there is in the other orders of birds, and although all songbird syrinxes conform to the same basic pattern, there is nevertheless marked variation in various syringeal components between different passerine groups. Variations in syringeal structure within families Corvidae ( Corvus corone, C. frugilegus ), Sturnidae ( Sturnus vulgaris, Gracula religiosa ), Turdidae ( Turdus merula, Erithacus rubecula ), Hirundinidae ( Delichon urbica ), Ploceidae ( Passer domesticus ) and Paridae ( Parus major, Aegithalos caudatus ) are described and discussed. The significance of these findings in relation to bird sound production is discussed. 相似文献
16.
Despite their status as the most speciose group of terrestrial vertebrates, birds exhibit the smallest and least variable genome sizes among tetrapods. It has been suggested that this is because powered flight imposes metabolic constraints on cell size, and thus on genome size. This notion has been supported by analyses of genome size and cell size versus resting metabolic rate and other parameters across birds, but most previous studies suffer from one or more limitations that have left the question open. The present study provides new insights into this issue through an examination of newly measured genome sizes, nucleus and cell sizes, body masses and wing parameters for 74 species of birds in the order Passeriformes. A positive relationship was found between genome size and nucleus/cell size, as well as between genome size and wing loading index, which is interpreted as an indicator of adaptations for efficient flight. This represents the single largest dataset presented for birds to date, and is the first to analyse a distinctly flight-related parameter along with genome size using phylogenetic comparative analyses. The results lend additional support to the hypothesis that the small genomes of birds are indeed related in some manner to flight, though the mechanistic and historical bases for this association remain an interesting area of investigation. 相似文献
17.
Spermatozoa exhibit considerable interspecific variability in size and shape. Our understanding of the adaptive significance of this diversity, however, remains limited. Determining how variation in sperm structure translates into variation in sperm performance will contribute to our understanding of the evolutionary diversification of sperm form. Here, using data from passerine birds, we test the hypothesis that longer sperm swim faster because they have more available energy. We found that sperm with longer midpieces have higher levels of intracellular adenosine triphosphate (ATP), but that greater energy reserves do not translate into faster-swimming sperm. Additionally, we found that interspecific variation in sperm ATP concentration is not associated with the level of sperm competition faced by males. Finally, using Bayesian methods, we compared the evolutionary trajectories of sperm morphology and ATP content, and show that both traits have undergone directional evolutionary change. However, in contrast to recent suggestions in other taxa, we show that changes in ATP are unlikely to have preceded changes in morphology in passerine sperm. These results suggest that variable selective pressures are likely to have driven the evolution of sperm traits in different taxa, and highlight fundamental biological differences between taxa with internal and external fertilization, as well as those with and without sperm storage. 相似文献
18.
Sperm velocity is one of the main determinants of the outcome of sperm competition. Since sperm vary considerably in their morphology between and within species, it seems likely that sperm morphology is associated with sperm velocity. Theory predicts that sperm velocity may be increased by enlarged midpiece (energetic component) or flagellum length (kinetic component), or by particular ratios between sperm components, such as between flagellum length and head size. However, such associations have rarely been found in empirical studies. In a comparative framework in passerine birds, we tested these theoretical predictions both across a wide range of species and within a single family, the New World blackbirds (Icteridae). In both study groups, sperm velocity was influenced by sperm morphology in the predicted direction. Consistent with theoretical models, these results show that selection on sperm morphology and velocity are likely to be concomitant evolutionary forces. 相似文献
19.
Seven of 28 passerine birds that died in captivity were positive for malarial parasites by polymerase chain reaction targeting the mitochondrial cytochrome b (cytB) and apicoplast ribosomal RNA (rRNA) genes. Each bird was infected with a single parasite lineage having a unique genotype. Apicoplast rRNA sequences were present both in Haemoproteus spp. and Plasmodium spp. and had typically high adenosine + thymidine content. Phylogenies for cytB and apicoplast rRNA sequences were largely congruent and supported previous studies that suggest that Plasmodium-Haemoproteus spp. underwent synchronous speciation with their avian hosts, interrupted by sporadic episodes of host switching. Apicoplast phylogeny further indicated that Haemoproteus spp. are ancestral to Plasmodium spp. All the 7 infected passerine birds had histologic lesions of malaria, and malarial parasites may have contributed to the death of at least 4 animals. These findings provide new genetic data on passerine hematozoa, including initial sequences of apicoplast DNA, and emphasize the relevance of parasite prevalence, evolutionary relationships, and host switching to modern management and husbandry practices of captive birds. 相似文献
20.
Variation in clutch-size among New World passerine birds was analysed with respect to four variables: body-mass, geographic latitude, the frequency of nest predation, and the structure of the nest. Data were analysed separately by averaging traits at three taxonomic levels: species, genus, and subfamily. Allometric scaling with body-mass did not account for significant variation in clutch-size regardless of the taxonomic level of analysis. Latitudinal effects on clutch-size were highly significant at all taxonomic levels. For species building small-pensile nests and open-cup nests, nest predation had a significant partial effect on clutch-size, with latitude held constant. When nest predation and latitude were held constant, clutch-size was significantly different among species building small-pensile nests, open-cup nests, and domed nests. These results suggest that New World passerine clutch-size is related to at least three variables: latitudinal effects, nest predation, and nest structure. 相似文献
|