首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 958 毫秒
1.
Na/H exchanger regulatory factor-1 (NHERF1) is a cytoplasmic PDZ (postsynaptic density 95/disc large/zona occludens) protein that assembles macromolecular complexes and determines the localization, trafficking, and signaling of select G protein-coupled receptors and other membrane-delimited proteins. The parathyroid hormone receptor (PTHR), which regulates mineral ion homeostasis and bone turnover, is a G protein-coupled receptor harboring a PDZ-binding motif that enables association with NHERF1 and tethering to the actin cytoskeleton. NHERF1 interactions with the PTHR modify its trafficking and signaling. Here, we characterized by live cell imaging the mechanism whereby NHERF1 coordinates the interactions of multiple proteins, as well as the fate of NHERF1 itself upon receptor activation. Upon PTHR stimulation, NHERF1 rapidly dissociates from the receptor and induces receptor aggregation in long lasting clusters that are enriched with the actin-binding protein ezrin and with clathrin. After NHERF1 dissociates from the PTHR, ezrin then directly interacts with the PTHR to stabilize the PTHR at the cell membrane. Recruitment of β-arrestins to the PTHR is delayed until NHERF1 dissociates from the receptor, which is then trafficked to clathrin for internalization. The ability of NHERF to interact dynamically with the PTHR and cognate adapter proteins regulates receptor trafficking and signaling in a spatially and temporally coordinated manner.  相似文献   

2.
COOH-terminal cytoplasmic domains of G protein-coupled receptors (GPCRs) have been shown to carry determinants that control their cell surface localization, internalization, and recycling. In attempts to seek cellular proteins that mediate these processes of PTH/PTH-related protein receptor (PTHR), one of the class B GPCRs, we have found that Tctex-1, a 14kDa light chain of cytoplasmic dynein motor complex, interacts with the COOH-terminal tail of the receptor. A 34-amino-acid stretch of the receptor responsible for binding to Tctex-1 has a bipartite structure consisting of a motif previously implicated in binding of some proteins to Tctex-1 and a putative new consensus sequence. Site-directed mutations or a 20-amino-acid deletion in the bipartite consensus binding sequence abolished the association of the PTHR COOH terminus with Tctex-1 in vitro. A GFP-fused mutant PTHR impaired in binding to Tctex-1 expressed in MDCK cells showed a decreased rate of internalization in response to PTH compared to that of the wild type.  相似文献   

3.
In rat enterocytes, signaling through the parathyroid hormone (PTH)/PTH-related peptide receptor type 1(PTHR1) includes stimulation of adenylyl cyclase, increases of intracellular calcium, activation of phospholipase C, and the MAP kinase pathway, mechanisms that suffer alterations with ageing. The purpose of this study was to evaluate whether an alteration at the level of the PTH receptor (PTHR1) is the basis for impaired PTH signaling in aged rat enterocytes. Western Blot analysis with a specific monoclonal anti-PTHR1 antibody revealed that a 85 kDa PTH binding component, the size expected for the mature PTH/PTHrP receptor, localizes in the basolateral (BLM) and brush border (BBM) membranes of the enterocyte, being the protein expression about 7-fold higher in the BLM. Two other bands of 105 kDa (corresponding to highly glycosylated, incompletely processed receptor form) and 65 kDa (proteolytic fragment) were also seen. BLM PTHR1 protein expression significantly decreases with ageing, while no substantial decrease was observed in the BBM from old rats. PTHR1 immunoreactivity was also present in the nucleus where PTHR1 protein levels were similar in enterocytes from young and aged rats. Immunohistochemical analysis of rat duodenal sections showed localization of PTHR1 in epithelial cells all along the villus with intense staining of BBM, BLM, and cytoplasm. The nuclei of these cells were reactive to the PTHR1 antiserum, but not all cells showed the same nuclear staining. The receptor was also detected in the mucosae lamina propria cells, but was absent in globets cells from epithelia. In aged rats, PTHR1 immunoreactivity was diffused in both membranes and cytoplasm and again, PTH receptor expression was lower than in young animals, while the cell nuclei showed a similar staining pattern than in young rats. Ligand binding to PTHR1 was performed in purified BLM. rPTH(1-34) displaced [I(125)]PTH(1-34) binding to PTHR1 in a concentration-dependent fashion. In both, aged (24 months) and young (3 months) rats, binding of [I(125)]PTH was characterized by a single class of high-affinity binding sites. The affinity of the receptor for PTH was not affected by age. The maximum number of specific PTHR1 binding sites was decreased by 30% in old animals. The results of this study suggest that age-related declines in PTH regulation of signal transduction pathways in rat enterocytes may be due, in part, to the loss of hormone receptors.  相似文献   

4.
5.
6.
7.
Muslin AJ  Xing H 《Cellular signalling》2000,12(11-12):703-709
14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic, and nutrient-sensing pathways. 14-3-3 proteins act by binding to partner proteins, and this binding often leads to the altered subcellular localization of the partner. 14-3-3 proteins promote the cytoplasmic localization of many binding partners, including the pro-apoptotic protein BAD and the cell cycle regulatory phosphatase Cdc25C, but they can also promote the nuclear localization of other partners, such as the catalytic subunit of telomerase (TERT). In some cases, 14-3-3 binding has no effect on the subcellular localization of a partner. 14-3-3 may affect the localization of a protein by interfering with the function of a nearby targeting sequence, such as a nuclear localization sequence (NLS) or a nuclear export sequence (NES), on the binding partner.  相似文献   

8.
9.
The Na/H exchanger regulatory factors, NHERF1 and NHERF2, are adapter proteins involved in targeting and assembly of protein complexes. The parathyroid hormone receptor (PTHR) interacts with both NHERF1 and NHERF2. The NHERF proteins toggle PTHR signaling from predominantly activation of adenylyl cyclase in the absence of NHERF to principally stimulation of phospholipase C when the NHERF proteins are expressed. We hypothesized that this signaling switch occurs at the level of the G protein. We measured G protein activation by [35S]GTPγS binding and Gα subtype-specific immunoprecipitation using three different cellular models of PTHR signaling. These studies revealed that PTHR interactions with NHERF1 enhance receptor-mediated stimulation of Gαq but have no effect on stimulation of Gαi or Gαs. In contrast, PTHR associations with NHERF2 enhance receptor-mediated stimulation of both Gαq and Gαi but decrease stimulation of Gαs. Consistent with these functional data, NHERF2 formed cellular complexes with both Gαq and Gαi, whereas NHERF1 was found to interact only with Gαq. These findings demonstrate that NHERF interactions regulate PTHR signaling at the level of G proteins and that NHERF1 and NHERF2 exhibit isotype-specific effects on G protein activation.  相似文献   

10.
The G protein-coupled, extracellular calcium-sensing receptor (CaR) regulates parathyroid hormone secretion and parathyroid cellular proliferation as well as the functions of diverse other cell types. The CaR resides in caveolae-plasma membrane microdomains containing receptors and associated signaling molecules that are thought to serve as cellular "message centers." An additional mechanism for coordinating cellular signaling is the presence of scaffold proteins that bind and organize components of signal transduction cascades. With the use of the yeast two-hybrid system, we identified filamin-A (an actin-cross-linking, putative scaffold protein that binds mitogen-activated protein kinase (MAPK) components activated by the CaR) as an intracellular binding partner of the CaR's carboxyl (COOH)-terminal tail. A direct interaction of the two proteins was confirmed by an in vitro binding assay. Moreover, confocal microscopy combined with two color immunofluorescence showed co-localization of the CaR and filamin-A within parathyroid cells as well as HEK-293 cells stably transfected with the CaR. Deletion mapping localized the sites of interaction between the two proteins to a stretch of 60 amino acid residues within the distal portion of the CaR's COOH-terminal tail and domains 14 and 15 in filamin-A, respectively. Finally, introducing the portion of filamin-A interacting with the CaR into CaR-transfected HEK-293 cells using protein transduction with a His-tagged, Tat-filamin-A fusion protein nearly abolished CaR-mediated activation of ERK1/2 MAPK but had no effect on ERK1/2 activity stimulated by ADP. Therefore, the binding of the CaR's COOH-terminal tail to filamin-A may contribute to its localization in caveolae, link it to the actin-based cytoskeleton, and participate in CaR-mediated activation of MAPK.  相似文献   

11.
Kim H  Lee JH  Lee Y 《The EMBO journal》2003,22(19):5208-5219
Poly(A) polymerase (PAP) is a key enzyme responsible for the addition of the poly(A) at the 3' end of pre-mRNA. The C-terminal region of mammalian PAP carries target sites for protein-protein interaction with the 25 kDa subunit of cleavage factor I and with splicing factors U1A and U2AF65. We used a yeast two-hybrid screen to identify 14-3-3epsilon as an additional protein binding to the C-terminal region of PAP. Interaction between PAP and 14-3-3epsilon was confirmed by both in vitro and in vivo binding assays. This interaction is dependent on PAP phosphorylation. Deletion analysis of PAP suggests that PAP contains multiple binding sites for 14-3-3epsilon. The binding of 14-3-3epsilon to PAP inhibits the polyadenylation activity of PAP in vitro, and overexpression of 14-3-3epsilon leads to a shorter poly(A) mRNA tail in vivo. In addition, the interaction between PAP and 14-3-3epsilon redistributes PAP within the cell by increasing its cytoplasmic localization. These data suggest that 14-3-3epsilon is involved in regulating both the activity and the nuclear/ cytoplasmic partitioning of PAP through the phosphorylation-dependent interaction.  相似文献   

12.
The N-terminal extracellular parts of human G-protein coupled receptor class B, for example, receptors for secretin, glucagon, or parathyroid hormone, are involved in ligand binding. To obtain structural and functional information on the N-terminal receptor fragment of human parathyroid hormone receptor 1 (PTHR1), the truncated receptor was expressed in the cytosol of Escherichia coli in the form of inclusion bodies. Oxidative refolding of inclusion body material resulted in stable, soluble, monomeric protein. Ligand binding was proved by surface plasmon resonance spectroscopy and isothermal titration calorimetry. Refolded receptor fragment was able to bind parathyroid hormone with an apparent dissociation constant of 3-5 microM. Far-UV circular dichroism spectra showed that the refolded polypeptide contained approximately 25% alpha-helical and 23% beta-sheet secondary structures. Analysis of the disulfide bond pattern of the refolded receptor fragment revealed disulfide bonds between Cys170 and Cys131, Cys148 and Cys108, and Cys117 and Cys48. These results demonstrate that the extracellular N-terminal domain of the parathyroid hormone receptor (PTHR1) possesses a well-defined, stable conformation, which shows a significant ligand binding activity.  相似文献   

13.
Integrin ligand binding induces a signaling complex formation via the direct association of the docking protein p130(Cas) (Cas) with diverse molecules. We report here that the 14-3-3zeta protein interacts with Cas in the yeast two-hybrid assay. We also found that the two proteins associate in mammalian cells and that this interaction takes place in a phosphoserine-dependent manner, because treatment of Cas with a serine phosphatase greatly reduced its ability to bind 14-3-3zeta. Furthermore, the Cas-14-3-3zeta interaction was found to be regulated by integrin-mediated cell adhesion. Thus, when cells are detached from the extracellular matrix, the binding of Cas to 14-3-3zeta is greatly diminished, whereas replating the cells onto fibronectin rapidly induces the association. Consistent with these results, we found that the subcellular localization of Cas and 14-3-3 is also regulated by integrin ligand binding and that the two proteins display a significant co-localization during cell attachment to the extracellular matrix. In conclusion, our results demonstrate that 14-3-3 proteins participate in integrin-activated signaling pathways through their interaction with Cas, which, in turn, may contribute to important biological responses regulated by cell adhesion to the extracellular matrix.  相似文献   

14.
β-Arrestins are crucial regulators of G-protein coupled receptor (GPCR) signaling, desensitization, and internalization. Despite the long-standing paradigm that agonist-promoted receptor phosphorylation is required for β-arrestin2 recruitment, emerging evidence suggests that phosphorylation-independent mechanisms play a role in β-arrestin2 recruitment by GPCRs. Several PDZ proteins are known to interact with GPCRs and serve as cytosolic adaptors to modulate receptor signaling and trafficking. Na+/H+ exchange regulatory factors (NHERFs) exert a major role in GPCR signaling. By combining imaging and biochemical and biophysical methods we investigated the interplay among NHERF1, β-arrestin2, and the parathyroid hormone receptor type 1 (PTHR). We show that NHERF1 and β-arrestin2 can independently bind to the PTHR and form a ternary complex in cultured human embryonic kidney cells and Chinese hamster ovary cells. Although NHERF1 interacts constitutively with the PTHR, β-arrestin2 binding is promoted by receptor activation. NHERF1 interacts directly with β-arrestin2 without using the PTHR as an interface. Fluorescence resonance energy transfer studies revealed that the kinetics of PTHR and β-arrestin2 interactions were modulated by NHERF1. These findings suggest a model in which NHERF1 may serve as an adaptor, bringing β-arrestin2 into close proximity to the PTHR, thereby facilitating β-arrestin2 recruitment after receptor activation.  相似文献   

15.
The eukaryotic regulatory protein 14-3-3 is involved in many important plant cellular processes including regulation of nitrate assimilation through inhibition of phosphorylated nitrate reductase (pNR) in darkened leaves. Divalent metal cations (Me2+) and some polyamines interact with the loop 8 region of the 14-3-3 proteins and allow them to bind and inhibit pNR in vitro. The role of the highly variant C-terminal regions of the 14-3-3 isoforms in regulation by polycations is not clear. In this study, we carried out structural analyses on the C-terminal tail of the Arabidopsis 14-3-3omega isoform and evaluated its contributions to the inhibition of pNR. Nested C-terminal truncations of the recombinant 14-3-3omega protein revealed that the removal of the C-terminal tail renders the protein partially Mg2+-independent in both pNR binding and inhibition of activity, suggesting that the C-terminus functions as an autoinhibitor. The C-terminus of 14-3-3omega appears to undergo a conformational change in the presence of polycations as demonstrated by its increased trypsin cleavage at Lys-247. C-terminal truncation of 14-3-3omega at Thr-255 increased its interaction with antibodies to the C-terminus of 14-3-3omega in non-denaturing conditions, but not in denaturing conditions, suggesting that the C-terminal tail contains ordered structures that might be disrupted by the truncation. Circular dichroism (CD) analysis of a C-terminal peptide, from Trp-234 to Lys-249, revealed that the C-terminal tail might contain a tenth alpha-helix, in agreement with the in silico predictions. The function of the putative tenth alpha-helix is not clear because substituting two prolyl residues within the predicted helix (E245P/I246P mutant), which prevented the corresponding peptide from adopting a helical conformation, did not affect the inhibition of pNR activity in the presence or absence of Mg2+. We propose that in the absence of polycations, access of target proteins to their binding groove in the 14-3-3 protein is restricted by the C-terminus, which acts as part of a gate that opens with the binding of polycations to loop 8.  相似文献   

16.
14-3-3 dimers probe the assembly status of multimeric membrane proteins   总被引:24,自引:0,他引:24  
BACKGROUND: Arginine-based endoplasmic reticulum (ER) localization signals are involved in the heteromultimeric assembly of membrane protein complexes like ATP-sensitive potassium channels (K(ATP)) or GABA(B) G protein-coupled receptors. They constitute a trafficking checkpoint that prevents ER exit of unassembled subunits or partially assembled complexes. For K(ATP) channels, the mechanism that leads to masking of the ER localization signals in the fully assembled octameric complex is unknown. RESULTS: By employing a tetrameric affinity construct of the C terminus of the K(ATP) channel alpha subunit, Kir6.2, we found that 14-3-3 isoforms epsilon and zeta specifically recognize the arginine-based ER localization signal present in this cytosolic tail. The interaction was reconstituted by using purified 14-3-3 proteins. Competition with a nonphosphorylated 14-3-3 high-affinity binding peptide implies that the canonical substrate binding groove of 14-3-3 is involved. Comparison of monomeric CD4, dimeric CD8, and artificially tetramerized CD4 fusions correlates the copy number of the tail containing the arginine-based signal with 14-3-3 binding, resulting in the surface expression of the membrane protein. Binding experiments revealed that the COPI vesicle coat can specifically recognize the arginine-based ER localization signal and competes with 14-3-3 for the binding site. CONCLUSIONS: The COPI vesicle coat and proteins of the 14-3-3 family recognize arginine-based ER localization signals on multimeric membrane proteins. The equilibrium between these two competing reactions depends on the valency and spatial arrangement of the signal-containing tails. We propose a mechanism in which 14-3-3 bound to the correctly assembled multimer mediates release of the complex from the ER.  相似文献   

17.
Membrane trafficking is dictated by dynamic molecular interactions involving discrete determinants in the cargo proteins and the intracellular transport machineries. We have previously reported that cell surface expression of GPR15, a G protein-coupled receptor (GPCR) that serves as a co-receptor for HIV, is correlated with the mode III binding of 14-3-3 proteins to the receptor C terminus. Here we provide a mechanistic basis for the role of 14-3-3 in promoting the cell surface expression of GPR15. The Ala mutation of penultimate phospho-Ser (S359A) that abolishes 14-3-3 binding resulted in substantially reduced O-glycosylation and the cell surface expression of GPR15. The surface membrane protein CD8 fused with the C-terminal tail of GPR15(S359A) mutant was re-localized in the endoplasmic reticulum (ER). In the context of S359A mutation, the additional mutations in the upstream stretch of basic residues (RXR motif) restored O-glycosylation and the cell surface expression. The RXR motif was responsible for the interaction with coatomer protein I (COPI), which was inversely correlated with the 14-3-3 binding and cell surface expression. These results suggest that 14-3-3 binding promotes cell surface expression of GPR15 by releasing the receptor from ER retrieval/retention pathway that is mediated by the interaction of RXR motif and COPI. Moreover, 14-3-3 binding substantially increased the stability of GPR15 protein. Thus 14-3-3 proteins play multiple roles in biogenesis and trafficking of an HIV co-receptor GPR15 to control its cell surface density in response to the phosphorylation signal.  相似文献   

18.
19.
Current antagonists for the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor (PTHR) are N-terminally truncated or N-terminally modified analogs of PTH(1-34) or PTHrP(1-34) and are thought to bind predominantly to the N-terminal extracellular (N) domain of the receptor. We hypothesized that ligands that bind only to PTHR region comprised of the extracellular loops and seven transmembrane helices (the juxtamembrane or J domain) could also antagonize the PTHR. To test this, we started with the J domain-selective agonists [Gln(10),Ala(12),Har(11),Trp(14),Arg(19) (M)]PTH(1-21), [M]PTH(1-15), and [M]PTH(1-14), and introduced substitutions at positions 1-3 that were predicted to dissociate PTHR binding and cAMP signaling activities. Strong dissociation was observed with the tri-residue sequence diethylglycine (Deg)(1)-para-benzoyl-l-phenylalanine (Bpa)(2)-Deg(3). In HKRK-B7 cells, which express the cloned human PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21), [Deg(1,3),Bpa(2),M]PTH(1-15), and [Deg(1,3),Bpa(2),M]PTH(1-14) fully inhibited (IC(50)s = 100-700 nm) the binding of (125)I-[alpha-aminoisobutyric acid(1,3),M]PTH(1-15) and were severely defective for stimulating cAMP accumulation. In ROS 17/2.8 cells, which express the native rat PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) antagonized the cAMP-agonist action of PTH(1-34), as did PTHrP(5-36) (IC(50)s = 0.7 microm, 2.6 microm, and 36 nm, respectively). In COS-7 cells expressing PTHR-delNt, which lacks the N domain of the receptor, [Deg(1,3),Bpa(2), M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) inhibited the agonist actions of [alpha-aminoisobutyric acid(1,3)]PTH(1-34) and [M]PTH(1-14) (IC(50)s approximately 1 microm), whereas PTHrP(5-36) failed to inhibit. [Deg(1,3),Bpa(2),M]PTH(1-14) inhibited the constitutive cAMP-signaling activity of PTHR-tether-PTH(1-9), in which the PTH(1-9) sequence is covalently linked to the PTHR J domain, as well as that of PTHR(cam)H223R. Thus, the J-domain-selective N-terminal PTH fragment analogs can function as antagonists as well as inverse agonists for the PTHR. The new ligands described should be useful for further studies of the ligand binding and activation mechanisms that operate in the critical PTHR J domain.  相似文献   

20.
Diverse functions of 14-3-3 proteins are directly coupled to their ability to interact with targeted peptide substrates. RSX(pS/pT)XP and RXPhiX(pS/pT)XP are two canonical consensus binding motifs for 14-3-3 proteins representing the two common binding modes, modes I and II, between 14-3-3 and internal peptides. Using a genetic selection, we have screened a random peptide library and identified a group of C-terminal motifs, termed SWTY, capable of overriding an endoplasmic reticulum localization signal and redirecting membrane proteins to cell surface. Here we report that the C-terminal SWTY motif, although different from mode I and II consensus, binds tightly to 14-3-3 proteins with a dissociation constant (K(D)) of 0.17 microM, comparable with that of internal canonical binding peptides. We show that all residues but proline in -SWTX-COOH are compatible for the interaction and surface expression. Because SWTY-like sequences have been found in native proteins, these results support a broad significance of 14-3-3 interaction with protein C termini. The C-terminal binding consensus, mode III, represents an expansion of the repertoire of 14-3-3-targeted sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号