首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bachhawat K  Kapoor M  Dam TK  Surolia A 《Biochemistry》2001,40(24):7291-7300
Allium sativum agglutinin (ASAI) is a heterodimeric mannose-specific bulb lectin possessing two polypeptide chains of molecular mass 11.5 and 12.5 kDa. The thermal unfolding of ASAI, characterized by differential scanning calorimetry and circular dichroism, shows it to be highly reversible and can be defined as a two-state process in which the folded dimer is converted directly to the unfolded monomers (A2 if 2U). Its conformational stability has been determined as a function of temperature, GdnCl concentration, and pH using a combination of thermal and isothermal GdnCl-induced unfolding monitored by DSC, far-UV CD, and fluorescence, respectively. Analyses of these data yielded the heat capacity change upon unfolding (DeltaC(p) and also the temperature dependence of the thermodynamic parameters, namely, DeltaG, DeltaH, and DeltaS. The fit of the stability curve to the modified Gibbs-Helmholtz equation provides an estimate of the thermodynamic parameters DeltaH(g), DeltaS(g), and DeltaC(p) as 174.1 kcal x mol(-1), 0.512 kcal x mol(-1) x K(-1), and 3.41 kcal x mol(-1) x K(-1), respectively, at T(g) = 339.4 K. Also, the free energy of unfolding, DeltaG(s), at its temperature of maximum stability (T(s) = 293 K) is 13.13 kcal x mol(-1). Unlike most oligomeric proteins studied so far, the lectin shows excellent agreement between the experimentally determined DeltaC(p) (3.2 +/- 0.28 kcal x mol(-1) x K(-1)) and those evaluated from a calculation of its accessible surface area. This in turn suggests that the protein attains a completely unfolded state irrespective of the method of denaturation. The absence of any folding intermediates suggests the quaternary interactions to be the major contributor to the conformational stability of the protein, which correlates well with its X-ray structure. The small DeltaC(p) for the unfolding of ASAI reflects a relatively small, buried hydrophobic core in the folded dimeric protein.  相似文献   

2.
3.
Thermal denaturation curves of ribonuclease-A were measured by monitoring changes in the far-UV circular dichroism (CD) spectra in the presence of different concentrations of six sugars (glucose, fructose, galactose, sucrose, raffinose and stachyose) and mixture of monosaccharide constituents of each oligosaccharide at various pH values in the range of 6.0-2.0. These measurements gave values of T(m) (midpoint of denaturation), DeltaH(m) (enthalpy change at T(m)), DeltaC(p) (constant-pressure heat capacity change) under a given solvent condition. Using these values of DeltaH(m), T(m) and DeltaC(p) in appropriate thermodynamic relations, thermodynamic parameters at 25 degrees C, namely, DeltaG(D)(o) (Gibbs energy change), DeltaH(D)(o) (enthalpy change), and DeltaS(D)(o) (entropy change) were determined at a given pH and concentration of each sugar (including its mixture of monosaccharide constituents). Our main conclusions are: (i) each sugar stabilizes the protein in terms of T(m) and DeltaG(D)(o), and this stabilization is under enthalpic control, (ii) the protein stabilization by the oligosaccharide is significantly less than that by the equimolar concentration of the constituent monosaccharides, and (iii) the stabilization by monosaccharides in a mixture is fully additive. Furthermore, measurements of the far- and near-UV CD spectra suggested that secondary and tertiary structures of protein in their native and denatured states are not perturbed on the addition of sugars.  相似文献   

4.
Triose phosphate isomerase (TIM) was prepared and purified from chicken breast muscle. The equilibrium unfolding of TIM by urea was investigated by following the changes of intrinsic fluorescence and circular dichroism spectroscopy, and the equilibrium thermal unfolding by differential scanning calorimetry (DSC). Results show that the unfolding of TIM in urea is highly cooperative and no folding intermediate was detected in the experimental conditions used. The thermodynamic parameters of TIM during its urea induced unfolding were calculated as DeltaG degrees =3.54 kcal.mol(-1), and m(G) = 0.67 kcal.mol(-1)M(-1), which just reflect the unfolding of dissociated folded monomer to fully unfolded monomer transition, while the dissociation energy of folded dimer to folded monomer is probe silence. DSC results indicate that TIM unfolding follows an irreversible two-state step with a slow aggregation process. The cooperative unfolding ratio, DeltaH(cal)/DeltaH(vH), was measured close to 2, indicating that the two subunits of chicken muscle TIM unfold independently. The van't Hoff enthalpy, DeltaH(vH), was estimated as about 200 kcal.mol(-1). These results support the unfolding mechanism with a folded monomer formation before its tertiary structure and secondary structure unfolding.  相似文献   

5.
Thermodynamic parameters describing the phage 434 Cro protein have been determined by calorimetry and, independently, by far-UV circular dichroism (CD) measurements of isothermal urea denaturations and thermal denaturations at fixed urea concentrations. These equilibrium unfolding transitions are adequately described by the two-state model. The far-UV CD denaturation data yield average temperature-independent values of 0.99 +/- 0.10 kcal mol(-)(1) M(-)(1) for m and 0.98 +/- 0.05 kcal mol(-)(1) K(-)(1) for DeltaC(p)()(,U), the heat capacity change accompanying unfolding. Calorimetric data yield a temperature-independent DeltaC(p)()(,U) of 0.95 +/- 0.30 kcal mol(-)(1) K(-)(1) or a temperature-dependent value of 1.00 +/- 0.10 kcal mol(-)(1) K(-)(1) at 25 degrees C. DeltaC(p)()(,U) and m determined for 434 Cro are in accord with values predicted using known empirical correlations with structure. The free energy of unfolding is pH-dependent, and the protein is completely unfolded at pH 2.0 and 25 degrees C as judged by calorimetry or CD. The stability of 434 Cro is lower than those observed for the structurally similar N-terminal domain of the repressor of phage 434 (R1-69) or of phage lambda (lambda(6)(-)(85)), but is close to the value reported for the putative monomeric lambda Cro. Since a protein's structural stability is important in determining its intracellular stability and turnover, the stability of Cro relative to the repressor could be a key component of the regulatory circuit controlling the levels and, consequently, the functions of the two proteins in vivo.  相似文献   

6.
The present report describes application of advanced analytical methods to establish correlation between changes in human serum proteins of patients with coronary atherosclerosis (protein metabolism) before and after moderate beer consumption. Intrinsic fluorescence, circular dichroism (CD), differential scanning calorimetry and hydrophobicity (So) were used to study human serum proteins. Globulin and albumin from human serum (HSG and HSA, respectively) were denatured with 8 m urea as the maximal concentration. The results obtained provided evidence of differences in their secondary and tertiary structures. The thermal denaturation of HSA and HSG expressed in temperature of denaturation (Td, degrees C), enthalpy (DeltaH, kcal/mol) and entropy (DeltaS kcal/mol K) showed qualitative changes in these protein fractions, which were characterized and compared with fluorescence and CD. Number of hydrogen bonds (n) ruptured during this process was calculated from these thermodynamic parameters and then used for determination of the degree of denaturation (%D). Unfolding of HSA and HSG fractions is a result of promoted interactions between exposed functional groups, which involve conformational changes of alpha-helix, beta-sheet and aperiodic structure. Here evidence is provided that the loosening of the human serum protein structure takes place primarily in various concentrations of urea before and after beer consumption (BC). Differences in the fluorescence behavior of the proteins are attributed to disruption of the structure of proteins by denaturants as well as by the change in their compactability as a result of ethanol consumption. In summary, thermal denaturation parameters, fluorescence, So and the content of secondary structure have shown that HSG is more stable fraction than HSA.  相似文献   

7.
A new method has been developed for determining the stability parameters of proteins from their heat-induced transition curves followed by observation of changes in the far-UV circular dichroism (CD). This method of analysis of the thermal denaturation curve of a protein gave values of stability parameters that not only are identical to those measured by the differential scanning calorimetry (DSC), but also are measured with the same error as that observed with a calorimeter. This conclusion has been reached from our studies of the reversible heat-induced denaturation of lysozyme and ribonuclease A at various pH values. For each protein, the conventional method of analysis of the conformational transition curve, which assumes a linear temperature dependence of the pre- and posttransition baselines, gave the estimate of DeltaH(van)(m) (enthalpy change on denaturation at T(m), the midpoint of denaturation) which is significantly lower than DeltaH(cal)(m), the value obtained from DSC measurements. However, if the analysis of the same denaturation curve assumes that a parabolic function describes the temperature dependence of the pre- and posttransition baselines, there exists an excellent agreement between DeltaH(van)(m) and DeltaH(cal)(m) of the protein. The latter analysis is supported by the far-UV CD measurements of the oxidized ribonuclease A as a function of temperature, for the temperature dependence of this optical property of the protein is indeed nonlinear. Furthermore, it has been observed that, for each protein, the constant-pressure heat capacity change (DeltaC(p)) determined from the plots of DeltaH(van)(m) versus T(m) is independent of the method of analysis of the transition curve.  相似文献   

8.
The cardiac-specific Nkx2.5 homeodomain has been expressed as a 79-residue protein with the oxidizable Cys(56) replaced with Ser. The Nkx2.5 or Nkx2.5(C56S) homeodomain is 73% identical in sequence to and has the same NMR structure as the vnd (ventral nervous system defective)/NK-2 homeodomain of Drosophila when bound to the same specific DNA. The thermal unfolding of Nkx2.5(C56S) at pH 6.0 or 7.4 is a reversible, two-state process with unit cooperativity, as measured by differential scanning calorimetry (DSC) and far-UV circular dichroism. Adding 100 mM NaCl to Nkx2.5(C56S) at pH 7.4 increases T(m) from 44 to 54 +/- 0.2 degrees C and DeltaH from 34 to 45 +/- 2 kcal/mol (giving a DeltaC(p) of approximately 1.2 kcal K(-)(1) mol(-)(1) for homeodomain unfolding). DSC profiles of Nkx2.5 indicate fluctuating nativelike structures at <37 degrees C. Titrations of specific 18 bp DNA with Nkx2.5(C56S) in buffer at pH 7.4 with 100 mM NaCl yield binding constants of 2-6 x 10(8) M(-)(1) from 10 to 37 degrees C and a stoichiometry of 1:1 for homeodomain binding DNA, using isothermal titration calorimetry. The DNA binding reaction of Nkx2.5 is enthalpically controlled, and the temperature dependence of DeltaH gives a DeltaC(p) of -0.18 +/- 0.01 kcal K(-)(1) mol(-)(1). This corresponds to 648 +/- 36 A(2) of buried apolar surface upon Nkx2.5(C56S) binding duplex B-DNA. Thermodynamic parameters differ for Nkx2.5 and vnd/NK-2 homeodomains binding specific DNA. Unbound NK-2 is more flexible than Nkx2.5.  相似文献   

9.
Talla-Singh D  Stites WE 《Proteins》2008,71(4):1607-1616
The change in heat capacity, DeltaC(p), on protein unfolding has been usually determined by calorimetry. A noncalorimetric method which employs the Gibbs-Helmholtz relationship to determine DeltaC(p) has seen some use. Generally, in this method the free energy change on unfolding of the protein is determined at a variety of temperatures and the temperature at which DeltaG is zero, T(m), and change in enthalpy at T(m) are determined by thermal denaturation and DeltaC(p) is then calculated using the Gibbs-Helmholtz equation. We show here that an abbreviated method with stability determinations at just two temperatures gives values of DeltaC(p) consistent with values from free energy change on unfolding determination at a much wider range of temperatures. Further, even the free energy change on unfolding from a single solvent denaturation at the proper temperature, when coupled with the melting temperature, T(m), and the van't Hoff enthalpy, DeltaH(vH), from a thermal denaturation, gives a reasonable estimate of DeltaC(p), albeit with greater uncertainty than solvent denaturations at two temperatures. We also find that nonlinear regression of the Gibbs-Helmholtz equation as a function of stability and temperature while simultaneously fitting DeltaC(p), T(m), and DeltaH(vH) gives values for the last two parameters that are in excellent agreement with experimental values.  相似文献   

10.
The temperature-induced helix to coil transition in a series of host peptides was monitored using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). Combination of these two techniques allowed direct determination of the enthalpy of helix-coil transition for the studied peptides. It was found that the enthalpy of the helix-coil transition differs for different peptides and this difference is related to the difference in the temperature for the midpoint of helix-coil transition. The enthalpy of the helix-coil transition decreases with the increase in temperature, thus providing the first experimental estimate for the heat capacity changes upon helix-coil transition, DeltaC(p). The values for DeltaC(p) of helix-coil transition are found to be negative, which is in contrast to the positive DeltaC(p) for protein unfolding. Analysis suggests that this negative DeltaC(p) of helix-coil transition is due to the exposure of the polar peptide backbone to solvent upon helix unfolding.  相似文献   

11.
Amphipathic alpha-helices are the membrane binding motif in many proteins. The corresponding peptides are often random coil in solution but are folded into an alpha-helix upon interaction with the membrane. The energetics of this ubiquitous folding process are still a matter of conjecture. Here, we present a new method to quantitatively analyze the thermodynamics of peptide folding at the membrane interface. We have systematically varied the helix content of a given amphipathic peptide when bound to the membrane and have correlated the thermodynamic binding parameters determined by isothermal titration calorimetry with the alpha-helix content obtained by circular dichroism spectroscopy. The peptides investigated were the antibiotic magainin 2 amide and three analogs in which two adjacent amino acid residues were substituted by their d-enantiomers. The thermodynamic parameters controlling the alpha-helix formation were found to be linearly related to the helicity of the membrane-bound peptides. Helix formation at the membrane surface is characterized by an enthalpy change of DeltaH(helix) approximately -0.7 kcal/mol per residue, an entropy change of DeltaS(helix) approximately -1.9 cal/molK residue and a free energy change of DeltaG(helix)=-0.14 kcal/mol residue. Helix formation is a strong driving force of peptide insertion into the membrane and accounts for about 50 % of the free energy of binding. An increase in temperature entails an unfolding of the membrane-bound helix. The temperature dependence can be described with the Zimm-Bragg theory and the enthalpy of unfolding agrees with that deduced from isothermal titration calorimetry.  相似文献   

12.
To characterize the thermal stability of 3-isopropylmalate dehydrogenase (IPMDH) from an extreme thermophile, Thermus thermophilus, urea-induced unfolding of the enzyme and of its mesophilic counterpart from Escherichia coli was investigated at various temperatures. The unfolding curves were analyzed with a three-state model for E.coli IPMDH and with a two-state model for T.thermophilus IPMDH, to obtain the free energy change DeltaG degrees of each unfolding process. Other thermodynamic parameters, enthalpy change DeltaH, entropy change DeltaS and heat capacity change DeltaC(p), were derived from the temperature dependence of DeltaG degrees. The main feature of the thermophilic enzyme was its lower dependence of DeltaG degrees on temperature resulting from a low DeltaC(p). The thermophilic IPMDH had a significantly lower DeltaC(p), 1.73 kcal/mol.K, than that of E.coli IPMDH (20.7 kcal/mol.K). The low DeltaC(p) of T.thermophilus IPMDH could not be predicted from its change in solvent-accessible surface area DeltaASA. The results suggested that there is a large structural difference between the unfolded state of T.thermophilus and that of E.coli IPMDH. Another responsible factor for the higher thermal stability of T.thermophilus IPMDH was the increase in the most stable temperature T(s). The DeltaG degrees maximum of T.thermophilus IPMDH was much smaller than that of E.coli IPMDH. The present results clearly demonstrated that a higher melting temperature T(m) is not necessarily accompanied by a higher DeltaG degrees maximum.  相似文献   

13.
Arnulphi C  Jin L  Tricerri MA  Jonas A 《Biochemistry》2004,43(38):12258-12264
The interaction of lipid-free apolipoprotein A-I (apoA-I) with small unilamellar vesicles (SUVs) of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) with and without free cholesterol (FC) was studied by isothermal titration calorimetry and circular dichroism spectroscopy. Parameters reported are the affinity constant (K(a)), the number of protein molecules bound per vesicle (n), enthalpy change (DeltaH degrees), entropy change (DeltaS degrees ), and the heat capacity change (DeltaC(p) degrees). The binding process of apoA-I to SUVs of POPC plus 0-20% (mole) FC was exothermic between 15 and 37 degrees C studied, accompanied by a small negative entropy change, making enthalpy the main driving force of the interaction. The presence of cholesterol in the vesicles increased the binding affinity and the alpha-helix content of apoA-I but lowered the number of apoA-I bound per vesicle and the enthalpy and entropy changes per bound apoA-I. Binding affinity and stoichiometry were essentially invariant of temperature for binding to SUVs of POPC/FC at a molar ratio of 6/1 at (2.8-4) x 10(6) M(-1) and 2.4 apoA-I molecules bound per vesicle or 1.4 x 10(2) phospholipids per bound apoA-I. A plot of DeltaH degrees against temperature displayed a linear behavior, from which the DeltaC(p) degrees per mole of bound apoA-I was calculated to be -2.73 kcal/(mol x K). These results suggested that binding of apoA-I to POPC vesicles is characterized by nonclassical hydrophobic interactions, with alpha-helix formation as the main driving force for the binding to cholesterol-containing vesicles. In addition, comparison to literature data on peptides suggested a cooperativity of the helices in apoA-I in lipid interaction.  相似文献   

14.
The folding of the alpha-helix domain hbSBD of the mammalian mitochondrial branched-chain alpha-ketoacid dehydrogenase complex is studied by the circular dichroism technique in absence of urea. Thermal denaturation is used to evaluate various thermodynamic parameters defining the equilibrium unfolding, which is well described by the two-state model with the folding temperature T(F) = 317.8 +/- 1.95 K and the enthalpy change DeltaH(G) = 19.67 +/- 2.67 kcal/mol. The folding is also studied numerically using the off-lattice coarse-grained Go model and the Langevin dynamics. The obtained results, including the population of the native basin, the free-energy landscape as a function of the number of native contacts, and the folding kinetics, also suggest that the hbSBD domain is a two-state folder. These results are consistent with the biological function of hbSBD in branched-chain alpha-ketoacid dehydrogenase.  相似文献   

15.
16.
Y Chi  T K Kumar  H M Wang  M C Ho  I M Chiu  C Yu 《Biochemistry》2001,40(25):7746-7753
The thermodynamic parameters characterizing the conformational stability of the human acidic fibroblast growth factor (hFGF-1) have been determined by isothermal urea denaturation and thermal denaturation at fixed concentrations of urea using fluorescence and far-UV CD circular dichroism (CD) spectroscopy. The equilibrium unfolding transitions at pH 7.0 are adequately described by a two-state (native <--> unfolded state) mechanism. The stability of the protein is pH-dependent, and the protein unfolds completely below pH 3.0 (at 25 degrees C). hFGF-1 is shown to undergo a two-state transition only in a narrow pH range (pH 7.0-8.0). Under acidic (pH <6.0) and basic (pH >8.0) conditions, hFGF-1 is found to unfold noncooperatively, involving the accumulation of intermediates. The average temperature of maximum stability is determined to be 295.2 K. The heat capacity change (DeltaC(p)()) for the unfolding of hFGF-1 is estimated to be 2.1 +/- 0.5 kcal.mol(-1).K(-1). Temperature denaturation experiments in the absence and presence of urea show that hFGF-1 has a tendency to undergo cold denaturation. Two-dimensional (1)H-(15)N HSQC spectra of hFGF-1 acquired at subzero temperatures clearly show that hFGF-1 unfolds under low-temperature conditions. The significance of the noncooperative unfolding under acidic conditions and the cold denaturation process observed in hFGF-1 are discussed in detail.  相似文献   

17.
Noland BW  Dangott LJ  Baldwin TO 《Biochemistry》1999,38(49):16136-16145
Bacterial luciferase is a heterodimeric (alphabeta) enzyme composed of homologous subunits. When the Vibrio harveyi luxA gene is expressed in Escherichia coli, the alpha subunit accumulates to high levels. The alpha subunit has a well-defined near-UV circular dichroism spectrum and a higher intrinsic fluorescence than the heterodimer, demonstrating fluorescence quenching in the enzyme which is reduced in the free subunit [Sinclair, J. F., Waddle, J. J., Waddill, W. F., and Baldwin, T. O. (1993) Biochemistry 32, 5036-5044]. Analytical ultracentrifugation of the alpha subunit has revealed a reversible monomer to dimer equilibrium with a dissociation constant of 14.9 +/- 4.0 microM at 18 degrees C in 50 mM phosphate and 100 mM NaCl, pH 7.0. The alpha subunit unfolded and refolded reversibly in urea-containing buffers by a three-state mechanism. The first transition occurred over the range of 0-2 M urea with an associated free-energy change of 2.24 +/- 0.25 kcal/mol at 18 degrees C in 50 mM phosphate buffer, pH 7.0. The second, occurring between 2.5 and 3.5 M urea, comprised a cooperative transition with a free-energy change of 6.50 +/- 0.75 kcal/mol. The intermediate species, populated maximally at ca. 2 M urea, has defined near-UV circular dichroism spectral properties distinct from either the native or the denatured states. The intrinsic fluorescence of the intermediate suggested that, although the quantum yield had decreased, the tryptophanyl residues remained largely buried. The far-UV circular dichroism spectrum of the intermediate indicated that it had lost ca. 40% of its native secondary structure. N-Terminal sequencing of the products of limited proteolysis of the intermediate showed that the C-terminal region of the alpha subunit became protease labile over the urea concentration range at which the intermediate was maximally populated. These observations have led us to propose an unfolding model in which the first transition is the unfolding of a C-terminal subdomain and the second transition represents the unfolding of a more stable N-terminal subdomain. Comparison of the structural properties of the unfolding intermediate using spectroscopic probes and limited proteolysis of the alpha subunit with those of the alphabeta heterodimer suggested that the unfolding pathway of the alpha subunit is the same, whether it is in the form of the free subunit or in the heterodimer.  相似文献   

18.
19.
Human acidic fibroblast growth factor (FGF-1) is a powerful mitogen and angiogenic factor with an apparent melting temperature (Tm) in the physiological range. FGF-1 is an example of a protein that is regulated, in part, by stability-based mechanisms. For example, the low Tm of FGF-1 has been postulated to play an important role in the unusual endoplasmic reticulum-independent secretion of this growth factor. Despite the close relationship between function and stability, accurate thermodynamic parameters of unfolding for FGF-1 have been unavailable, presumably due to effects of irreversible thermal denaturation. Here we report the determination of thermodynamic parameters of unfolding (DeltaH, DeltaG, and DeltaCp) for FGF-1 using differential scanning calorimetry (DSC). The thermal denaturation is demonstrated to be two-state and reversible upon the addition of low concentrations of added guanidine hydrochloride (GuHCl). DeltaG values from the DSC studies are in excellent agreement with values from isothermal GuHCl denaturation monitored by fluorescence and circular dichroism (CD) spectroscopy. Furthermore, the results indicate that irreversible denaturation is closely associated with the formation of an unfolding intermediate. GuHCl appears to promote reversible two-state denaturation by initially preventing aggregation of this unfolding intermediate, and at subsequently higher concentrations, by preventing formation of the intermediate.  相似文献   

20.
The peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2, EC 2.3.1.12) binds tightly but mutually exclusively to dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4) and pyruvate decarboxylase (E1, EC 1.2.4.1) in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Isothermal titration calorimetry (ITC) experiments demonstrated that the enthalpies of binding (DeltaH degrees ) of both E3 and E1 with the PSBD varied with salt concentration, temperature, pH, and buffer composition. There is little significant difference in the free energies of binding (DeltaG degrees = -12.6 kcal/mol for E3 and = -12.9 kcal/mol for E1 at pH 7.4 and 25 degrees C). However, the association with E3 was characterized by a small, unfavorable enthalpy change (DeltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TDeltaS degrees = +14.8 kcal/mol), whereas that with E1 was accompanied by a favorable enthalpy change (DeltaH degrees = -8.4 kcal/mol) and a less positive entropy change (TDeltaS degrees = +4.5 kcal/mol). Values of DeltaC(p) of -316 cal/molK and -470 cal/molK were obtained for the binding of E3 and E1, respectively. The value for E3 was not compatible with the DeltaC(p) calculated from the nonpolar surface area buried in the crystal structure of the E3-PSBD complex. In this instance, a large negative DeltaC(p) is not indicative of a classical hydrophobic interaction. In differential scanning calorimetry experiments, the midpoint melting temperature (T(m)) of E3 increased from 91 degrees C to 97.1 degrees C when it was bound to PSBD, and that of E1 increased from 65.2 degrees C to 70.0 degrees C. These high T(m) values eliminate unfolding as a major source of the anomalous DeltaC(p) effects at the temperatures (10-37 degrees C) used for the ITC experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号