首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
Incubation of rat-mouse T cell hybridoma cells, 23B6, with rat immunoglobulin E (IgE) results in the formation of the 15,000-dalton IgE-suppressive factor and the 30,000-dalton IgE-binding factor, which has neither potentiating activity nor suppressive activity on the IgE response. Another T cell hybridoma, 23A4 cells, produces the 30,000-dalton "inactive" IgE-binding factor upon incubation with IgE. Both the 15,000-dalton IgE-suppressive factor and the 30,000-dalton IgE-binding factor lacked affinity for lentil lectin but bound to peanut agglutinin. When the 23B6 cells were incubated with IgE in the presence of lysolecithin, the majority of the 15,000-dalton IgE-binding factor formed by the cells gained affinity for lentil lectin, and this factor selectively potentiated the IgE response. The glycosylation-enhancing factor, which was formed by stimulation of normal spleen cells with lymphocytosis-promoting factor (LPF or pertussigen), also switched 23B6 cells from the formation of IgE-suppressive factor to the formation of IgE-potentiating factor. It was also found that the 30,000-dalton "inactive" IgE-binding factor, formed by both 23B6 and 23A4 cells, gained the ability to potentiate the IgE response, when the cells were cultured with IgE in the presence of glycosylation-enhancing factor. The results indicate that IgE-potentiating factor and IgE-suppressive factor share common precursors, and that biologic activities of IgE-binding factors are decided by their carbohydrate moieties. Incubation of the two hybridoma cells with lysolecithin or glycosylation-enhancing factor results in an increase in the proportion of FC epsilon R+ cells, suggesting that the assembly of N-linked oligosaccharide to precursor molecules is intrinsic for the expression of FC epsilon R.  相似文献   

2.
B6D2F1 mice were given three i.v. injections of ovalbumin (OA), and antigen-specific T cell clones were established from their spleen cells. One of the FcR+ T cell clones formed IgE-binding factors on incubation with OA-pulsed syngeneic macrophages. Neither soluble antigen nor macrophages alone induced factor formation. T cell hybridomas were constructed by fusion of the antigen-specific T cell clone with BW 5147 cells. Among 11 T cell hybridomas established, six clones produced IgE-binding factors on incubation with OA-pulsed BDF1 macrophages. Mouse IgE also induced the same hybridoma to form IgE-binding factors. The majority of IgE-binding factors formed by two T hybridomas and by those produced by the parent T cell clone had affinity for peanut agglutinin but for neither lentil lectin nor Con A. These hybridomas and the original T cell clone spontaneously released glycosylation-inhibiting factor, which inhibits the assembly of N-linked oligosaccharide(s) on IgE-binding factors. On antigenic stimulation, the T cell hybridomas produced both IgE-binding factors and IgG-binding factors. The IgE-binding factors consisted of three species with m.w. of 60,000, 30,000, and 15,000. Both the 60K and 15K IgE-binding factors selectively suppressed the IgE response of DNP-OA-primed rat mesenteric lymph node cells, whereas IgG-binding factors selectively suppressed the IgG response. The results indicate that antigen-primed FcR+ T cells produced IgE-suppressive factors and IgG-suppressive factors on antigenic stimulation. However, the T cell hybridomas were not committed to suppressive activity. When the hybridomas were stimulated by antigen in the presence of glycosylation-enhancing factor (GEF), the 60K, 30K, and 15K IgE-binding factors formed by the cells selectively potentiated the IgE response. IgG-binding factors formed by the cells in the presence of GEF failed to suppress the IgG response. It appears that antigen-specific FcR+ T cells regulate the antibody response through the formation of Ig-binding factors, but that the function of the cells could be switched from suppression to enhancement, depending on the environment of the cells.  相似文献   

3.
Incubation of normal mouse spleen cells with homologous IgE resulted in the formation of soluble factors that inhibited rosette formation of mouse Fc epsilon R+ cells with IgE-coated ox erythrocytes. The soluble factors could be absorbed with mouse or rat IgE coupled to Sepharose and recovered from the beads by acid elution. However, the factors had no affinity for either human IgE or mouse IgG. The IgE-binding factors were derived from T cells. Production of the factors required Lyt1+ T cells and Fc gamma R+ cells, which suggests that the factors are derived from Fc gamma R+ Lyt 1+ T cells. The molecular size of IgE-binding factors was approximately 15,000 daltons. When IgE-binding factors were formed by BALB/c spleen cells, nearly one-half of the factors had affinity for lentil lectin, and the remaining half of the factors failed to bind to the lectin. The proportion of the two species of IgE-binding factors differed depending on mouse strains. The majority of the factors formed by B6D2F1 spleen cells had affinity for lentil lectin, but those formed by SJL spleen cells failed to bind to the lectin. The IgE-binding factors were also induced by incubation of normal spleen cells with polyinosinic-polycytidylic acid (pI:pC). The nucleotide stimulated splenic adherent cells to form "inducers" of IgE-binding factors, which in turn induced normal lymphocytes to form IgE-binding factors. The inducers of IgE-binding factors were inactivated (or neutralized) by antibodies specific for mouse Type I interferon. It was also found that purified mouse beta interferon could induce the formation of IgE-binding factors. IgE-binding factors induced by pI:pC consisted of two different molecules: one had a m.w. of 15,000 daltons, and another had a m.w. of between 40,000 and 60,000 daltons.  相似文献   

4.
Glycosylation-enhancing factor (GEF) and IgE-potentiating factor were detected in culture supernatants of rat mesenteric lymph nodes (MLN) cells obtained 14 days after infection with Nippostrongylus brasiliensis (Nb), but not in supernatants of MLN cells of 8-day Nb-infected rats. Both factors were also released from T cells upon antigenic stimulation of KLH + alum-primed spleen cells. The GEF from the Nb-infected rats and KLH + alum-primed spleen cells had affinity for p-aminobenzamidine agarose and were inactivated by phenylmethylsulfonylfluoride, an inhibitor of serine proteases. These results indicate that the GEF obtained in the two systems is a serine protease and is identical to that obtained by stimulation of normal T cells with lymphocytosis-promoting factor (LPF) from Bordetella pertussis. The concomitant formation of IgE-potentiating factor and GEF by Nb infection, by antigenic simulation of KLH + alum-primed spleen cells, and by treatment of rats with Bordetella pertussis vaccine suggests that the serine protease is involved in a common pathway leading to the selective formation of IgE-potentiating factor. In contrast, glycosylation-inhibiting factor (GIF) is always found during the selective formation of IgE-suppressive factor. IgE-suppressive factor and GIF were formed by MLN cells of 8-day Nb-infected rats and KLH-CFA-primed spleen cells. GIF was detected in culture supernatants of T cell hybridomas 23A4 and 23B6, which form unglycosylated IgE-binding factors upon incubation with IgE. GIF obtained from all of these sources bound to monoclonal anti-lipomodulin. These findings indicate that GIF or lipomodulin is involved in all systems, which leads to the selective formation of IgE-suppressive factor. However, the formation of GIF was not restricted to those conditions in which IgE-suppressive factor was selectively formed. The culture supernatants of MLN cells of 14-day Nb-infected rats and antigen-stimulated KLH + alum-primed spleen cells contained a small amount of GIF, which could be detected after inactivation of GEF. It appears that T cells from these sources formed GEF and GIF, but that GEF overcame the effect of GIF on glycosylation of IgE-binding factors. The results indicate that the nature and biologic activities of IgE-binding factors are decided by the balance between GEF and GIF formed by T cells.  相似文献   

5.
Relationship among IgE-binding factors with various molecular weights   总被引:2,自引:0,他引:2  
The rat-mouse T cell hybridoma 23B6 forms IgE-binding factors on incubation with IgE. The hybridoma cells incubated with IgE contained intracellular IgE-binding factors of 60K, 30K, 14K, and 10K daltons, and secreted the 60K, 30K, and 14K IgE-binding factors. Both intracellular and extracellular IgE-binding factors of 60K and 14K daltons selectively suppressed the IgE response, whereas the 30K and 10K factors failed to do so. Reduction and alkylation of the extracellular 60K IgE-binding factors yielded fragments of 30K, 14K, and 10K daltons with IgE-binding activity, and the same treatment of the 30K "inactive" IgE-binding factor yielded the 14K and 10K fragments. Among the fragments obtained by reduction and alkylation, only the 14K IgE-binding factors selectively suppressed the IgE response. Monoclonal antibody OX 3, which recognizes an Ia determinant, bound the 60K and 30K IgE-binding factor, and the 30K fragment obtained by reduction and alkylation. None of the 14K and 10K IgE-binding factors and fragments of comparable size obtained by reduction and alkylation contained the antigenic determinant. The results indicate that 30K, 14K, and 10K IgE-binding factors are derived from the 60K precursor molecules. Transfection of COS 7 monkey kidney cells with a single cloned cDNA, 8.3, which encodes rodent IgE-binding factor, resulted in the formation of IgE-binding factors of 60K and 11K daltons. Both species of the factors had affinity for lentil lectin and selectively potentiated the IgE response, but only the 60K IgE-binding factor bound to the monoclonal anti-Ia antibody. Reduction and alkylation of the 60K IgE-binding factors from the cDNA clone yielded an 11K fragment having the same properties as the 11K IgE-binding factor, with respect to the affinity for lentil lectin, and the biologic activities. Because the cDNA clone was constructed from mRNA of 23B6 cells, it appears that the 60K IgE-binding factor molecule from 23B6 cells is composed of a single peptide chain, and that the naturally formed 30K, 14K, and 10K IgE-binding factors are formed by post-translational modification of the 60K peptide.  相似文献   

6.
BDF1 mice were given three i.v. injections of ovalbumin (OA) to induce antigen-specific suppressor T cells. Incubation of spleen cells of OA-treated mice with homologous antigen resulted in the formation of IgE-suppressive factor. This factor was not derived from antigen-specific suppressor T cells, but suppressor T cells were essential for determining the nature of IgE-binding factors formed. In the spleen cells of OA-treated mice, antigenic stimulation of antigen-primed Lyt-1+ (helper) T cells resulted in the formation of inducers of IgE-binding factor, whereas Lyt-2+, I-J+ T cells released glycosylation-inhibiting factor (GIF), and these two factors, in combination, induced unprimed Lyt-1+ T cells to form IgE-suppressive factor. The role of GIF is to inhibit the assembly of N-linked oligosaccharides on IgE-binding factors during their biosynthesis, and thereby provide them with a biologic activity: suppression of the IgE response. Under the experimental conditions employed, GIF was released spontaneously from antigen-specific suppressor T cells. However, antigenic stimulation of the cells enhanced the release of the factor. GIF from antigen-specific suppressor T cells has a m.w. of 25,000 to 30,000, as estimated by using gel filtration, binds to anti-I-J alloantibodies and to a monoclonal antibody specific for lipomodulin, and has affinity for specific antigen. The possible relationship between antigen-specific GIF and antigen-specific suppressor factors is discussed.  相似文献   

7.
Glycosylation inhibiting factor (GIF) was purified from culture filtrates of a T cell hybridoma, 23A4, by affinity chromatography on anti-lipomodulin Sepharose. The factor exhibited phospholipase inhibitory activity upon dephosphorylation. Immunization of BDF1 mice with aluminum hydroxide gel (alum)-absorbed dinitrophenyl derivatives of ovalbumin (DNP-OA) resulted in persistent IgE and IgG antibody formation. However, repeated injections of the affinity-purified GIF into the DNP-OA-primed mice beginning on the day of priming prevented the primary anti-hapten antibody responses of both the IgE and the IgG1 isotypes. Treatment with GIF also diminished on-going IgE antibody formation in the DNP-OA-primed mice. The treatment changed the nature of IgE-binding factors formed by BDF1 spleen cells. Incubation of spleen cells from OA + alum-primed mice with OA resulted in the formation of IgE-potentiating factor, whereas spleen cells of OA-primed, GIF-treated mice formed IgE-suppressive factor upon antigenic stimulation. It was also found that Lyt-2+ T cells in the OA-primed, GIF-treated mouse spleen cells released GIF, which had affinity for OA and bore I-Jb determinant(s). Transfer of a Lyt-1+ cell-depleted fraction of the OA-primed, GIF-treated mouse spleen cells into naive syngeneic animals resulted in suppression of the primary anti-DNP IgE antibody response of the recipients to alum-absorbed DNP-OA, but failed to affect the anti-DNP antibody response to DNP-keyhole limpet hemocyanin. The results indicate that GIF treatment during the primary response to OA facilitated the generation of antigen-specific suppressor T cells.  相似文献   

8.
Cells of the T cell hybridoma 23A4 produce IgE-binding factors lacking N-linked oligosaccharides (unglycosylated form) when they are incubated with IgE alone. In the presence of glycosylation-enhancing factor (GEF) or bradykinin, however, the same cells produce IgE-binding factors with N-linked oligosaccharides (glycosylated form). Switching the cells from the formation of unglycosylated IgE-binding factors to the formation of glycosylated factors was accompanied by the release of both glycosylation-inhibiting factor (GIF) in its phosphorylated form, i.e., phosphorylated lipomodulin, and arachidonate from the cells. Analysis of the biochemical processes for the release of GIF from 23A4 cells showed that affinity-purified GEF or bradykinin induced transient phospholipid methylation and diacylglycerol (DAG) formation, and enhanced 45Ca uptake into the cells. Inhibitors of methyltransferases, i.e., 3-deaza-adenosine plus L-homocysteine thiolactone, inhibited not only phospholipid methylation but also DAG formation and GIF release. Exogenously added 1-oleoyl-2-acetyl glycerol, i.e., a DAG that is permeable to the plasma membrane, induced the release of GIF from the cells. It was also found that 12-O-tetradecanoyl-phorbol 13-acetate (TPA) switched 23A4 cells and normal lymphocytes to the selective formation of N-glycosylated IgE-binding factor, and induced the release of GIF from the cells. 32PO4-labeled lipomodulin was detected in the extract of 23A4 cells 3 to 5 min after the addition of GEF, bradykinin, or TPA. These results indicate that GEF and bradykinin induced the activation of methyltransferases and phospholipase C for the formation of DAG, which in turn activated Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) for the phosphorylation of lipomodulin. Because lipomodulin loses phospholipase inhibitory activity after phosphorylation, increased phospholipase A2 activity would be expressed by this process.  相似文献   

9.
Normal human peripheral blood T cells were propagated in the presence of human interleukin 2, and activated cells were incubated with human IgE-dimer to induce IgE binding factor formation. The cells were then fused with a mutant of the human T cell line CEM. Five of the T cell hybridomas formed IgE binding factors upon incubation with human IgE-dimer. Because IgE binding factors formed by the human T cell hybridomas had affinity not only for human IgE but also for rat IgE, the biologic activities of the factors were evaluated by using antigen-primed rat mesenteric lymph node (MLN) cells. When parent T cells were propagated with crude IL 2, which contained glycosylation enhancing factor (GEF), IgE binding factors formed by all of the five hybridomas had affinity for Con A, but only a fraction of the factors bound to lentil lectin. The 60,000 and 15,000 IgE binding factors formed by two representative hybridomas, i.e., 166A2 and 166G11, selectively potentiated the IgE-forming cell response of rat MLN cells. When parent T cells were obtained by propagation with purified IL 2, which did not contain GEF, and the cells were incubated with IgE-dimer in the presence of glycosylation inhibiting factor (GIF), T cell hybridomas constructed from the cells formed IgE binding factors that lacked affinity for Con A but bound to peanut agglutinin (PNA). The 30,000 IgE binding factors formed by two of such hybridomas, 398A3 and 400G2, selectively suppressed the IgE response of rat MLN cells. It was also found that the biologic activities and carbohydrate moieties of human IgE binding factors could be switched by changing the culture conditions of the hybridomas. When the 166A2 hybridoma was cultured with human IgE in the presence of bradykinin, essentially all of the IgE binding factors that were formed by the cells bound to lentil lectin, and the factors that were formed in the presence of bradykinin exerted higher potentiating activity than those obtained in the absence of bradykinin. On the other hand, IgE binding factors formed by the same cells in the presence of GIF had affinity for PNA, and selectively suppressed the IgE response of rat MLN cells.  相似文献   

10.
Attempts were made to generate Ag-specific suppressor T cells from Ag-primed spleen cells by using glycosylation inhibiting factor (GIF). BDF1 mice were primed with alum-absorbed OVA and their spleen cells were stimulated with OVA. Ag-activated T cells were then propagated in IL-2-containing conditioned medium. Incubation of the T cells with OVA-pulsed syngeneic macrophages resulted in the formation of IgE-potentiating factor and glycosylation-enhancing factor that has affinity for OVA, i.e., OVA-specific glycosylation-enhancing factor. However, if the same Ag-activated splenic T cells were propagated in the IL-2-containing medium in the presence of GIF T cells obtained in the cultures formed IgE-suppressive factors and OVA-specific GIF on antigenic stimulation. Thus we constructed T cell hybridomas from the Ag-activated T cells propagated by IL-2 in the presence of GIF. A representative hybridoma, 71B4, formed OVA-specific GIF on incubation with OVA-pulsed macrophages of BDF1 mice or C57B1/6 mice. However, if the same hybridoma cells were incubated with OVA alone or with OVA-pulsed macrophages of H-2k or H-2d strains, they produced GIF that had no affinity for OVA. The OVA-specific GIF bound to OVA-Sepharose but did not bind to BSA-Sepharose or KLH Sepharose. Intravenous injections of the OVA-specific GIF from the hybridoma suppressed the IgE and IgG1 anti-DNP antibody response of BDF1 mice to DNP-OVA, but failed to suppress the anti-hapten antibody responses of the strain to DNP-keyhole limpet hemocyanin, indicating that the factors suppressed the antibody response in a carrier-specific manner. However, the same OVA-specific GIF failed to suppress the anti-hapten antibody response of DBA/1 mice to DNP-OVA, suggesting that the immunosuppressive effects of the factors is MHC restricted.  相似文献   

11.
Stimulation of normal rat splenic T cells with pertussigen (lymphocytosis-promoting factor, LPF, from Bordetella pertussis) resulted in the release of a soluble factor that enhanced the glycosylation of IgE-binding factors during their biosynthesis. The soluble factor was detected by the ability of a culture filtrate of LPF-stimulated spleen cells to switch a T cell hybridoma, 23A4, from the formation of unglycosylated IgE-binding factor to the formation of glycosylated IgE-binding factor. The glycosylation-enhancing factor (GEF) had affinity for D-galactose, and the binding of the factor to hybridoma cells via a cell surface galactose was essential for modulation of IgE-binding factors. The GEF was inactivated by irreversible inhibitors of serine proteases such as phenylmethylsulfonyl fluoride, diisopropylfluorophosphate, and p-nitrophenyl ethylpentylphosphonate but was not affected by nonphosphorylating analogues of the organophosphorus compounds. Benzamidine, a competitive and reversible inhibitor of trypsin, also inhibited the glycosylation of IgE-binding factors by GEF. The factor could be purified by absorption to p-aminobenzamidine agarose followed by elution with benzamidine. The capacity of GEF to enhance the glycosylation of IgE-binding factors was inhibited by synthetic substrates of trypsin but not by substrates of chymotrypsin, indicating that GEF is a trypsin-like enzyme. Indeed, trypsin, plasmin, and kallikrein enhanced the glycosylation of IgE-binding factors during their biosynthesis. An inhibitor of trypsin-like enzyme(s), N-alpha-p-tosyl-L-lysine chloromethylketone (TLCK), inhibited trypsin and plasmin but not kallikrein, and TLCK failed to inhibit the GEF-mediated enhancement of glycosylation. It was also found that bradykinin, the biologically active product of cleavage of kininogen by kallikrein, enhanced the glycosylation of IgE-binding factors. The results indicate that GEF is a kallikrein-like enzyme.  相似文献   

12.
A number of lactose-binding lectins have recently been identified in the rat and mouse intestine, one of which corresponds to the C-terminal domain of IgE-binding proteins, originally identified in rat basophilic leukemia (RBL) cells and mouse 3T3 fibroblasts. In the present report, we describe the affinity purification of a rat intestinal lactose-specific lectin which binds murine IgE antibodies. This binding most likely occurs via the immunoglobulin carbohydrate chains, as it is inhibited by lactose. This intestinal lectin molecule is also immunologically related to the previously described IgE-binding protein (epsilon BP) isolated from RBL cells, since it is recognized by antibodies raised against recombinant epsilon BP. This intestinal form of epsilon BP has a molecular mass of 17.5 kDa, which is much lower than that of its RBL cell analogue (31 kDa). The attachment of IgE to the mouse intestinal epithelium was demonstrated by immunohistochemistry, along with the presence of a corresponding mouse intestinal epsilon BP. The carbohydrate-dependent nature of this attachment was established by demonstrating that IgE binding to mouse epithelium was specifically abolished by lactose (4 mM) and by a blood-group-A-active tetrasaccharide (0.2 mM), but not by mannose (10 mM). Finally, the association of IgE with the mouse intestinal epithelium was prevented by competition with the purified IgE-binding lectin isolated from rat intestine. Although the physiological function of this intestinal protein is still unknown, the finding that IgE binds to a lectin in the intestinal epithelium pinpoints a possible novel mechanism for the regulation of IgE-mediated disorders, such as food allergy.  相似文献   

13.
Monoclonal antibody specific for T cell-derived human IgE binding factors   总被引:3,自引:0,他引:3  
A B cell hybridoma secreting monoclonal antibody against human IgE binding factors was obtained by immunization of BALB/c mice with partially purified IgE binding factors, and fusion of their spleen cells with SP-2/0-AG14 cells. The monoclonal antibody bound all of the 60,000, 30,000, and 15,000 dalton IgE binding factors from two T cell hybridomas and those from activated T cells of a normal individual. The antibody bound both IgE-potentiating factors, which had affinity for lentil lectin, and IgE-suppressive factors, which had affinity for peanut agglutinin. However, the monoclonal anti-IgE-binding factor bound neither Fc epsilon R on RPMI 8866 cells nor IgE binding factors from the B lymphoblastoid cells. A monoclonal antibody against Fc epsilon R on B cells (H107) bound the 60,000 and 30,000 dalton IgE binding factors from both T cell hybridomas and RPMI 8866 cells but did not bind the 15,000 dalton IgE binding factors from either T cells or B cells. The results indicate that T cell-derived IgE binding factors have a unique antigenic determinant that is lacking in both Fc epsilon R on B cells and B cell-derived IgE binding factors. The anti-IgE binding factor and anti-Fc epsilon R monoclonal antibodies both failed to stain cell surface components of IgE binding factor-producing T cell hybridomas. However, both antibodies induced the T cell hybridoma to form IgE binding factors. The results suggest that the T cell hybridomas bear low numbers of Fc epsilon R that share antigenic determinants with IgE binding factors secreted from the cells.  相似文献   

14.
BDF1 mice were immunized with a protein antigen, such as ovalbumin (OA) or keyhole limpet hemocyanin (KLH), absorbed to aluminum hydroxide gel, and their spleen cells were stimulated by homologous antigen for the formation of glycosylation-enhancing factor (GEF). It was found that GEF obtained from OA-primed spleen cells had affinity for OA, whereas those derived from KLH-primed spleen cells had affinity for KLH. Nonspecific GEF, which was obtained by stimulation of normal spleen cells with pertussis toxin, failed to bind OA or KLH. Both antigen-specific GEF and nonspecific GEF are inactivated by phenylmethylsulfonyl fluoride, but not by N-alpha-p-tosyl-L-lysyl-chloromethyl ketone. Both factors can be partially purified by binding to p-aminobenzamidine agarose and elution with benzamidine. These findings suggest that not only non-specific GEF but also antigen-specific GEF are serine protease(s). The antigen-specific GEF consisted of two m.w. species, of 65 to 85 kilodaltons (Kd) and 40 to 55 Kd, whereas nonspecific GEF consisted of 50 to 70 Kd and 20 to 30 Kd molecules. The OA-specific GEF augmented the in vitro secondary indirect PFC response of DNP-OA-primed cells to the homologous antigen, but failed to affect the PFC response of DNP-KLH-primed cells to DNP-KLH. Similarly, KLH-specific GEF enhanced the response of DNP-KLH-primed cells but not the response of DNP-OA-primed cells. However, OA-specific GEF failed to replace the requirement for antigen-primed helper T cells. Antigen-specific GEF bound to alloantibodies reactive to the products of the I region of the major histocompatibility complex. The results collectively suggest that antigen-specific GEF is identical to antigen-specific augmenting factors described by other investigators.  相似文献   

15.
Synthesis of IgE by B lymphocytes can be regulated by soluble lymphocyte factors which have affinity for the Fc region of IgE (IgE-binding factors). In previous studies, we identified cDNA clones encoding rodent IgE-binding factors by direct expression in transfected mammalian cells. Here we show that IgE-binding factor cDNA clone 8.3 is a member of the endogenous, retrovirus-like intracisternal A-particle gene family of the mouse. This conclusion is supported by blot hybridization, DNA sequence comparisons, heteroduplex analysis, and immunochemical cross-reactivity of the encoded proteins. The results identify a member of this highly reiterated gene family with a role in regulation of the allergic immune response.  相似文献   

16.
Stimulation of normal rat splenic T cells with pertussigen (lymphocytosis-promoting factor from Bordetella pertussis) resulted in the release of a soluble factor that enhanced the assembly of N-linked oligosaccharides to IgE-binding factors during their biosynthesis. The glycosylation-enhancing factor (GEF) is a kallikrein-like enzyme and is purified by absorption to p-aminobenzamidine-Agarose followed by elution with benzamidine. Incubation of normal mouse mast cells with affinity-purified GEF or bradykinin, a product of cleavage of kininogen by kallikrein, resulted in the release of histamine and arachidonate from the cells. Passive sensitization of mast cells with mouse IgE antibody, followed by pretreatment of the cells with a suboptimal concentration of GEF, resulted in an enhancement of antigen-induced histamine release. It was found that GEF and bradykinin induced the same biochemical events in mast cells as those induced by bridging of IgE receptors. Both GEF and bradykinin induced phospholipid methylation and an increase in intracellular cyclic AMP (cAMP). Incorporation of 3H-methyl groups into phospholipids and intracellular cAMP levels both reached a maximum 30 sec after challenge with GEF or bradykinin, and then declined to base-line levels within 2 to 3 min. These biochemical events were followed by 45Ca influx and histamine release; 45Ca uptake reached a plateau value at 2 min, and histamine release reached a maximum at 5 to 8 min. The initial rise in cAMP induced by GEF (or bradykinin) was not inhibited by indomethacin, indicating that the activation of adenylate cyclase is not the result of prostaglandin synthesis. In both IgE-mediated and GEF-induced histamine release, inhibitors of methyltransferases, such as 3-deaza adenosine and L-homocysteine thiolactone, inhibited not only phospholipid methylation but also the cAMP rise and subsequent Ca2+ uptake and histamine release. The results indicate that GEF induces activation of methyltransferases and that phospholipid methylation is involved in the cAMP rise, Ca2+ uptake, and histamine release. The induction of the same biochemical events in the same sequence by bridging of IgE receptors and by GEF (bradykinin) supports the hypothesis that receptor bridging induces the activation of serine protease(s) and cleavage products of this enzyme in turn activate methyltransferases in mast cells.  相似文献   

17.
Glycosylation enhancing factor (GEF) from rat T cells is a kallikrein-like enzyme and enhances the assembly of N-linked oligosaccharides to IgE binding factors during their biosynthesis, whereas another T cell factor, i.e., glycosylation inhibiting factor (GIF), is a fragment of phosphorylated lipomodulin (i.e., phospholipase inhibitor), which when dephosphorylated inhibits phospholipase and the glycosylation process. The two T cell factors compete with each other when they are added to normal mesenteric lymph node cells during the formation of IgE binding factors. The addition of GEF to T cell hybridoma 23A4 cell switches the cells from the formation of unglycosylated IgE binding factor to the formation of N-glycosylated IgE binding factor. However, GEF neither inactivated GIF nor inhibited the formation of GIF by the T cell hybridoma. Stimulation of the T cell hybridoma with either affinity-purified GEF or bradykinin resulted in the release of GIF from the cells. GIF released by GEF stimulation had a m.w. of approximately 15,000 and bound to monoclonal antibody against lipomodulin. GEF and bradykinin also induced normal mesenteric lymph node cells to release GIF. Incorporation of 14C-arachidonic acid into 23A4 cells, followed by stimulation of the cells with GEF, resulted in the release of 14C-arachidonate. The results suggest that lipomodulin, a phospholipase inhibitory protein, is present in lymphocytes, and indicate that GEF and bradykinin induce the activation of phospholipase by stimulating cells to release lipomodulin.  相似文献   

18.
BDF1 mice were immunized with alum-absorbed OVA and T cell hybridomas were constructed from their splenic T cells. Many of the hybridomas constitutively produced glycosylation enhancing factor (GEF), which could switch the T cell hybridoma 23A4 cells from the formation of IgE-suppressive factors to the formation of IgE-potentiating factors. When one of the hybridoma clones, 12H5, was incubated with OVA-pulsed syngeneic or semi-syngeneic (H-2b) macrophages, the hybridoma produced GEF that have affinity for OVA, but not for either keyhole limpet hemocyanin or BSA. However, the same hybridoma constitutively produced nonspecific GEF, that lacked affinity for OVA. Upon incubation with OVA-pulsed macrophages, the same hybridoma produced both IgE-potentiating factors and IgG-potentiating factors which selectively enhance the IgE response and IgG response, respectively. Both Ag-specific GEF and nonspecific GEF from the hybridoma bind to p-aminobenzamidine-agarose, and are recovered by elution with benzamidine. It was also found that both OVA-specific GEF and nonspecific GEF from the hybridoma induced the release of arachidonic acid from phospholipids of mouse fibrosarcoma cell line, HSDM1C1 cells. GEF formed by the 12H5 hybridoma bound to alloantibodies reactive to the product(s) of the I-Ab subregion of major histocompatibility complex. The Ag-specific GEF consisted of two Mr species, of 70 to 90 kDa and 50 to 60 kDa, whereas nonspecific GEF consisted of 50 to 60 kDa and 25 to 30 kDa molecules. Reduction and alkylation treatment of the OVA-specific GEF resulted in the formation of nonspecific GEF, suggesting that Ag-specific GEF is composed of Ag-binding polypeptide chain and nonspecific GEF.  相似文献   

19.
BALB/c mouse spleen cells primed with either keyhole limpet hemocyanin or DNP-keyhole limpet hemocyanin formed not only IgG-binding factors (BF) and IgE-BF but also IgD-BF upon antigenic stimulation. Analysis of cellular mechanisms involved in the formation of Ig-BF by antigenic stimulation revealed that Ag-primed Th cells released lymphokines upon antigenic stimulation, and that the lymphokine(s) in turn stimulates unprimed T cells to form Ig-BF. Normal unprimed lymphocytes formed IgD-BF upon incubation with culture supernatants of Ag-stimulated spleen cells. The formation of IgD-BF induced by the culture supernatant was prevented by anti-IL-4 mAb (11B11). It was also found that 0.3 to 10 U/ml mouse rIL-4, but none of the rIL-1, IL-2, and IFN-gamma, induced normal T cells to form IgD-BF. Indeed, both IL-2 and IFN-gamma inhibited IL-4 to induce the formation of IgD-BF. In contrast, 10 to 50 U/ml of IFN-gamma induced the formation of IgE-BF, and 50 to 200 U/ml IFN-gamma induced the formation of IgG-BF. However, none of the other lymphokines tested, i.e., IL-1, IL-2, and IL-4, induced the formation of either IgE-BF or IgG-BF. The IgD-BF formed by antigenic stimulation of keyhole limpet hemocyanin-primed spleen cells and those formed by stimulation of normal lymphocytes with 1 to 2 U/ml IL-4 enhanced both IgM and IgG1 plaque-forming cell responses of SRBC-primed spleen cells to homologous Ag. In contrast, 1 to 2 U/ml of IL-4, which could induce the formation of IgD-BF, failed to affect the PFC responses. It appears that the formation of IgD-BF may be involved in the effects of IL-4 to enhance the antibody response.  相似文献   

20.
IgE is highly glycosylated, but the function of the oligosaccharide side chains is largely unknown. The previous discovery of an animal lectin, IgE-binding protein (epsilon BP), affords an opportunity to study potential carbohydrate-dependent effector functions of IgE. epsilon BP is a beta-galactoside-specific lectin with binding affinity for IgE and is now known to be equivalent to carbohydrate-binding protein 35 and the Mac-2 Ag; thus, it may have multiple functions in addition to IgE binding. We have previously shown that rat r epsilon BP recognizes sialidase-treated human myeloma IgE to a much greater extent than the untreated IgE. In contrast, human epsilon BP binds essentially equivalently to a monoclonal murine IgE with or without sialidase pretreatment. To validate a possible role for epsilon BP in the IgE system, we investigated the pattern of recognition of epsilon BP for various polyclonal human IgE samples. We show that polyclonal IgE derived from four individuals with hyper-IgE syndrome or atopic dermatitis recognizes epsilon BP and that there is individual variation in the proportion of IgE recognized by epsilon BP, ranging from greater than 60% for one sample to almost undetectable levels in another. We conclude that epsilon BP does indeed recognize polyclonal IgE and that this recognition is modulated by sialylation of IgE oligosaccharides. Furthermore, there exist different IgE glycoforms, varying in the degree of sialylation, and these are distributed in a distinct manner in different individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号