首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study evaluated the effect of nasally given Lactobacillus rhamnosus CRL1505 on the immunocoagulative response during pneumococcal infection in immunocompetent mice. In addition, we aimed to gain insight into the mechanism involved in the immunomodulatory effect of the L. rhamnosus CRL1505 strain by evaluating the role of TLR2. Results showed that nasally given L. rhamnosus CRL1505 effectively regulates inflammation and hemostatic alterations during the pneumococcal infection. Immunobiotic treatment significantly reduced permeability of the bronchoalveolar–capillary barrier, and general cytotoxicity, decreasing lung tissue damage. The CRL1505 strain improved the production of TNF‐α, IFN‐γ, and IL‐10 after pneumococcal challenge. In addition, increased TM and TF expressions were found in lungs of L. rhamnosus CRL1505‐treated mice. Moreover, we demonstrated, for the first time, that the TLR2 signaling pathway has a role in the induction of IFN‐γ and IL‐10 and in the reduction of TF. The results also allow us to speculate that a PRR, other than TLR2, may mediate the immunobiotic activity of L. rhamnosus CRL1505 and could explain changes in TNF‐α and TM.  相似文献   

2.
This work studied the effect of protein malnutrition on the hemato-immune response to the respiratory challenge with Streptococcus pneumoniae and evaluated whether the dietary recovery with a probiotic strain has a beneficial effect in that response. Three important conclusions can be inferred from the results presented in this work: a) protein-malnutrition significantly impairs the emergency myelopoiesis induced by the generation of the innate immune response against pneumococcal infection; b) repletion of malnourished mice with treatments including nasally or orally administered Lactobacillus rhamnosus CRL1505 are able to significantly accelerate the recovery of granulopoiesis and improve innate immunity and; c) the immunological mechanisms involved in the protective effect of immunobiotics vary according to the route of administration. The study demonstrated that dietary recovery of malnourished mice with oral or nasal administration of L. rhamnosus CRL1505 improves emergency granulopoiesis and that CXCR4/CXCR12 signaling would be involved in this effect. Then, the results summarized here are a starting point for future research and open up broad prospects for future applications of probiotics in the recovery of immunocompromised malnourished hosts.  相似文献   

3.
Lactobacillus rhamnosus CRL1505 (Lr1505), L. rhamnosus CRL1506 (Lr1506) and L. casei CRL431 (Lc431) are able to stimulate intestinal immunity, but only Lr1505 and Lc431 are able to stimulate immunity in the respiratory tract. With the aim of advancing the understanding of the immunological mechanisms involved in stimulation of distant mucosal sites, this study evaluated the effects of orally administered probiotics on the functions of alveolar and peritoneal macrophages. Compared to a control group, these three lactobacilli were able to significantly increase phagocytic and microbicidal activities of peritoneal macrophages. After intraperitoneal challenge with pathogenic Candida albicans, mice treated with immunobiotics had significantly lower pathogen counts in infected organs. Moreover, lactobacilli‐treated mice had a stronger immune response against C. albicans. On the other hand, only Lc1505 and Lc431 were able to improve activity of and cytokine production by alveolar macrophages. Only in these two groups was there better resistance to respiratory challenge with C. albicans, which correlated with improved respiratory immune response. The results of this study suggest that consumption of some probiotic strains could be useful for improving resistance to infections in sites distant from the gut by increasing the activity of macrophages at those sites.  相似文献   

4.
Aims: To evaluate the immunosuppressive properties of the exopolysaccharide (EPS) from high‐EPS producer Lactobacillus rhamnosus RW‐9595M on inflammatory cytokines produced by macrophages. Methods and Results: The conditioned media (CM) were produced by macrophages treated with parental Lact. rhamnosus ATCC 9595 and its isogenic variant, the high‐EPS producer Lact. rhamnosus RW‐9595M, and the levels of TNF‐α, IL‐6, IL‐10 and IL‐12 were evaluated. Results revealed that CM from parental Lact. rhamnosus induced higher levels of TNF‐α, IL‐6 and IL‐12 but inhibited IL‐10 production, whereas its mucous variant induced low or no TNF‐α and IL‐6. Addition of purified EPS to macrophages treated with parental Lact. rhamnosus decreased the inflammatory cytokines and inhibited the metabolic activity of lymphocytes. The intermediate polysaccharide chains (16–30 units) produced by time‐controlled hydrolysis of EPS increased the IL‐10 produced by macrophages. Conclusions: Polysaccharide chains of EPS induced immunosuppression by the production of macrophagic anti‐inflammatory IL‐10. Significance and impact of the Study: These results indicate that the EPS from Lact. rhamnosus RW‐9595M may be useful as a new immunosuppressive product in dairy food.  相似文献   

5.
Cold-set whey protein (WP) gels with addition of xanthan or guar were evaluated by mechanical properties and scanning electron microscopy. Gels were formed after the addition of different amounts of glucono-δ-lactone to thermally denatured WP solutions, leading to different acidification rates and final pH values. At lower acidification rates and higher final pH, gels showed more discontinuous structure and weaker and less elastic network, which was attributed to a predominance of phase separation during gel formation due to slower gelation kinetics. In contrast, at higher acidification rates and lower final pHs, gelation prevailed over phase separation, favoring the formation of less porous structures, resulting in stronger and more elastic gels. The gels’ fractal dimension (D f; structure complexity) and lacunarity were also influenced by the simultaneous effects of gelation and phase separation. For systems where phase separation was the prevailing mechanism, greater lacunarity parameters were usually observed, describing the heterogeneity of pore distribution, while the opposite occurred at prevailing gelation conditions. Increase in guar concentration or lower final pH of xanthan gels entailed in D f reduction, while the increase in xanthan concentration resulted in higher D f. Such a result suggests that the network contour length was rugged, but this pattern was reduced by the increase of electrostatic interactions among WP and xanthan. Guar addition caused the formation of gel network with smoother surfaces, which could be attributed to the guar–protein excluded volume effects leading to an increase in protein–protein interactions.  相似文献   

6.
Lactobacillus (L.) rhamnosus CRL1505 accumulates inorganic polyphosphate (polyP) in its cytoplasm in response to environmental stress. The aim of this study was to evaluate the potential effects of polyP from the immunobiotic CRL1505 on an acute respiratory inflammation murine animal model induced by lipopolysaccharide (LPS).First, the presence of polyP granules in the cytoplasm of CRL1505 strain was evidenced by specific staining. Then, it was demonstrated in the intracellular extracts (ICE) of CRL1505 that polyP chain length is greater than 45 phosphate residues. In addition, the functionality of the genes involved in the polyP metabolism (ppk, ppx1 and ppx2) was corroborated by RT-PCR. Finally, the possible effect of the ICE of CRL1505 strain containing polyP and a synthetic polyP was evaluated in vivo using a murine model of acute lung inflammation. It was observed that the level of cytokines pro-inflammatory (IL-17, IL-6, IL-2, IL-4, INF-γ) in serum was normalized in mice treated with ICE, which would indicate that polyP prevents the local inflammatory response in the respiratory tract. The potential application of ICE from L. rhamnosus CRL1505 as a novel bioproduct for the treatment of respiratory diseases is one of the projections of this work.  相似文献   

7.
Whey proteins (WP) gelation process with addition of Arabic gum (AG) was studied. Two different driving processes were employed to induce gelation: (1) heating of 12% whey protein isolate (WPI) solutions (w/w) or (2) acidification of previous thermal denatured WPI solutions (5% w/w) with glucono-δ-lactone (GDL). Protein concentrations were different because they were minimal to form gel in these two processes, but denaturation conditions were the same (90 °C/30 min). Water-holding capacity and mechanical properties of the gels were evaluated. The BST equation was used to evaluate the nonlinear part of the stress–strain data. Cold-set gels were weaker than heat-set gels at the pH range near the isoelectric point (pI) of the main whey proteins, but heated gels were more deformable (did not exhibit rupture point) and showed greater elasticity modulus. However, gels formed by heating far from the pI (pH 6.7 or 3.5) showed more fragile structure, indicating that, in these mixed gels, there are prevailing biopolymers interactions. Cold-set and heat-set gels at pH near or below the WP pI showed strain-weakening behavior, but heated gels at neutral pH showed strong strain-hardening behavior. Such results suggest that differences in stress–strain curve at the nonlinear part of the data could be correlated to structure particularities obtained from different gelation processes.  相似文献   

8.
Aims: To evaluate the effect of oral administration of Lactobacillus fermentum CRL1446 on the intestinal feruloyl esterase (FE) activity and oxidative status of mice. Methods and Results: Adult Swiss albino mice received Lact. fermentum CRL1446 at the doses 107 and 109 cells per day per mouse for 2, 5, 7 and 10 days. Intestinal FE activity, intestinal microbiota counts, plasmatic thiobarbituric acid‐reactive substances (TBARS) percentage and glutathione reductase (GR) activity were determined. Mice that received Lact. fermentum CRL1446 at the dose 107 cells per day for 7 days showed a twofold increase in total intestinal FE activity, compared to the nontreated group. In large intestine content, FE activity increased up to 6·4 times. No major quantitative changes in colonic microbiota were observed in treated animals. Administration of this strain produced an approx. 30–40% decrease in the basal levels of plasmatic TBARS and an approx. twofold increase in GR activity from day 5 of feeding with both doses. Conclusions: Oral administration of Lact. fermentum CRL1446 to mice increases total intestinal FE activity, decreases the basal percentage of plasmatic lipoperoxides and increases GR activity. Significance and Impact of the Study: Lactobacillus fermentum CRL1446 could be orally administered as a dietary supplement or functional food for increasing the intestinal FE activity to enhance the bioavailability of ferulic acid, thus improving oxidative status.  相似文献   

9.
Aims: To determine the inhibitory effect of oral Lactobacillus against putative oral pathogens. Methods and Results: Total 357 strains comprising 10 species of oral Lactobacillus, Lactobacillus fermentum (195), Lactobacillus salivarius (53), Lactobacillus casei (20), Lactobacillus gasseri (18), Lactobacillus rhamnosus (14), Lactobacillus paracasei (12), Lactobacillus mucosae (12), Lactobacillus oris (12), Lactobacillus plantarum (11) and Lactobacillus vaginalis (10) were used as producer strains. Inhibitory effect against a panel of indicators, periodontitis‐ and caries‐related pathogens, was assessed. Most oral Lactobacillus was able to inhibit the growth of both periodontitis‐ and caries‐related pathogens. The strongest inhibitory activity was associated with Lact. paracasei, Lact. plantarum, Lact. rhamnosus, Lact. casei and Lact. salivarius. Lactobacillus SD1–SD6, representing the six species with the strong inhibitory effect, inhibited growth of Streptococcus mutans ATCC 25175 in the biofilm model. Also, it was demonstrated that growth of Strep. mutans was inhibited in a mixture with Lact. paracasei SD1. The inhibition was enhanced in acidic condition and 5% glucose. Conclusions: The results have shown that oral Lactobacillus SD1–SD6 showed a strong inhibitory effect against Strep. mutans and Streptococcus sobrinus, as well as, Gram‐negative periodontal pathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Significance and Impact of the Study: The results indicated that Lactobacillus may be of benefit as probiotics for the prevention of oral diseases.  相似文献   

10.
AIMS: To evaluate the ability of themophilic lactic acid bacteria (LAB) to hydrolyse the whey proteins beta-lactoglobulin (BLG) and alpha-lactalbumin (ALA) in a chemically defined medium (CDM). METHODS AND RESULTS: The ability of three LAB strains to hydrolyse BLG and ALA was studied in a CDM supplemented with these proteins or whey protein concentrate (WPC). Protein hydrolysis was determined by Tricine/SDS-PAGE and RP-HPLC. Maximum BLG (21%) and ALA (26%) degradation by LAB was observed using WPC. Under starving conditions, BLG degradation was greater for Lactobacillus delbrueckii ssp. bulgaricus CRL 454 than for Lactobacillus acidophilus CRL 636 and Streptococcus thermophilus CRL 804. All three strains showed different peptide profiles and were not able to hydrolyse ALA under starvation. CONCLUSIONS: The assayed LAB strains were able to degrade BLG during growth in a CDM and under starving conditions. The different peptide profiles obtained indicate distinct protease specificities. SIGNIFICANCE AND IMPACT OF THE STUDY: These strains could be used as adjunct cultures to increase BLG digestibility in whey-based or whey-containing foods. To our knowledge, this is the first report on the ability of a Lact. acidophilus strain to degrade BLG.  相似文献   

11.
Aims: To investigate the ability of lactic acid bacteria (LAB) to convert linoleic acid (LA) and α‐linolenic acid (α‐LNA) to conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA), respectively. To assess pH and temperature influences on CLA and CLNA production by Lactobacillus sakei LMG 13558. Methods and Results: A screening of 48 LAB yielded one Lactobacillus curvatus, five Lactobacillus plantarum and four Lact. sakei strains displaying linoleate isomerase (LAI) activity. CLNA conversion percentages varied largely (1–60%). CLA conversion, occurring in three strains, was lower (2–5%). The LAI gene sequences of the ten LAI‐positive strains shared 75–99% identity with the LAI gene sequence of a Lact. plantarum AS1.555. At pH 6·2, CLA and CLNA production by Lact. sakei LMG 13558 was higher at 30°C than at 20 and 25°C. At pH 5·5 (30°C) or 37°C (pH 6·2), LA was not converted and α‐LNA only slightly converted. Conclusions: LAB show strain‐dependent LAI activity. Production of CLA and CLNA is affected by pH and temperature, as shown for Lact. sakei LMG 13558. Significance and Impact of the Study: Several LAB produce CLA and/or CLNA, as shown for Lact. sakei and Lact. curvatus for the first time. These findings offer potential for the manufacturing of fermented functional foods.  相似文献   

12.

Aims

The aim of this study was to evaluate the impact of the administration of microencapsulated Lactobacillus plantarum CRL 1815 with two combinations of microbially derived polysaccharides, xanthan : gellan gum (1%:0·75%) and jamilan : gellan gum (1%:1%), on the rat faecal microbiota.

Methods and Results

A 10‐day feeding study was performed for each polymer combination in groups of 16 rats fed either with placebo capsules, free or encapsulated Lact. plantarum or water. The composition of the faecal microbiota was analysed by fluorescence in situ hybridization and temporal temperature gradient gel electrophoresis. Degradation of placebo capsules was detected, with increased levels of polysaccharide‐degrading bacteria. Xanthan : gellan gum capsules were shown to reduce the Bifidobacterium population and increase the Clostridium histolyticum group levels, but not jamilan : gellan gum capsules. Only after administration of jamilan : gellan gum‐probiotic capsules was detected a significant increase in Lactobacillus‐Enterococcus group levels compared to controls (capsules and probiotic) as well as two bands were identified as Lact. plantarum in two profiles of ileum samples.

Conclusions

Exopolysaccharides constitute an interesting approach for colon‐targeted delivery of probiotics, where jamilan : gellan gum capsules present better biocompatibility and promising results as a probiotic carrier.

Significance and Impact of Study

This study introduces and highlights the importance of biological compatibility in the encapsulating material election, as they can modulate the gut microbiota by themselves, and the use of bacterial exopolysaccharides as a powerful source of new targeted‐delivery coating material.  相似文献   

13.
Aims: To evaluate the probiotic properties of strains isolated from smoked salmon and previously identified as bacteriocin producers. Methods and Results: Strains Lactobacillus curvatus ET06, ET30 and ET31, Lactobacillus fermentum ET35, Lactobacillus delbrueckii ET32, Pediococcus acidilactici ET34 and Enterococcus faecium ET05, ET12 and ET88 survived conditions simulating the gastrointestinal tract (GIT) and produced bacteriocins active against several strains of Listeria monocytogenes, but presented very low activity against other lactic acid bacteria (LAB). Cell‐free supernatants containing bacteriocins, added to 3‐h‐old cultures of L. monocytogenes 603, suppressed growth over 12 h. Auto‐aggregation was strain‐specific, and values ranged from 7·2% for ET35 to 12·1% for ET05. Various degrees of co‐aggregation with L. monocytogenes 603, Lactobacillus sakei ATCC 15521 and Enterococcus faecalis ATCC 19443 were observed. Adherence of the bacteriocinogenic strains to Caco‐2 cells was within the range reported for Lactobacillus rhamnosus GG, a well‐known probiotic. The highest levels of hydrophobicity were recorded for Lact. curvatus (61·9–64·6%), Lact. fermentum (78·9%), Lact. delbrueckii (43·7%) and Ped. acidilactici (51·3%), which are higher than the one recorded for Lact. rhamnosus GG (53·3%). These strains were highly sensitive to several antibiotics and affected by several drugs from different generic groups in a strain‐dependent manner. Conclusions: Smoked salmon is a rich source of probiotic LAB. All strains survived conditions simulating the GIT and produced bacteriocins active against various pathogens. Adherence to Caco‐2 cells was within the range reported for Lact. rhamnosus GG, a well‐known probiotic. In addition, the high hydrophobicity readings recorded define the strains as good probiotics. Significance and Impact of the Study: Smoked salmon contains a number of different probiotic LAB and could be marketed as having a potential beneficial effect.  相似文献   

14.
Aims:  The effect of the common curing conditions used during the manufacture of dry fermented sausage on the proteolytic activity of Lactobacillus casei CRL705 against meat proteins was investigated.
Methods and Results:  Hydrolysis of pork muscle sarcoplasmic and myofibrillar proteins was evaluated by SDS-PAGE and reverse phase-HPLC analysis. Ascorbic acid exerted a stimulatory effect on both sarcoplasmic and myofibrillar protein breakdown by Lact. casei CRL705 with the release of hydrophilic peptides and free amino acids, while NaCl and NaNO2 mainly stimulated myofibrillar degradation.
Conclusions:  Even when processing temperature (25°C) did not positively affect bacterial protein hydrolysis, the presence of curing salts accounted for a remarkable increase in the non-volatile components that constitute taste-active compounds that strongly influence the final flavour of the product.
Significance and Impact of the Study:  To predict the suitability of Lact. casei CRL705 and its proteolytic enzymes as a starter culture for the dry processing of dry fermented sausages.  相似文献   

15.
Full-sib family selection for rate (WP) or efficiency (WP/F) of protein gain in rats from 3 to 9 weeks of age was applied for five generations. Three rats per litter were killed to estimate carcass protein. Standardized response/cumulative selection for WP was.19±.10 for WP,.28±.10 for 3- to 9-week gain,.28±.08 for 9-week weight,.16±.08 for litter size,.22±.12 for skinning loss and -.07±.09 for fraction of protein in the live weight. Response from selection for WP/F was.18±.16 for WP/F,.20±.11 for WP,.21±.11 for weight gain,.16±.11 for 3-week weight,.21±.10 for 9-week weight, but negligible for skinning loss or body protein. Response to WP/F selection was extremely variable among generations, associated with generation differences in weight and composition at 9 weeks. Estimates of heritability from offspring-midparent regression were.20±.12 for WP and.24±.08 for WP/F. Estimates of genotype-generation environment interaction were large for growth, feed intake and skinning loss. Maternal effects were large for weaning weight, fraction of body protein and WP. Sire component genetic correlations were 1.08±.13 for WP with total gain,.92±.08 for WP/F with gross efficiency and.29±.25 for WP with WP/F. A partitional calorimeter was used to evaluate heat production of rats. Lines differed in average heat loss but not in heat loss per unit actual or metabolic weight. Response to selection has been steady for WP but probably could be improved by selecting for WP/F at a constant weight rather than a constant age.  相似文献   

16.
Aim: To evaluate the influence of biosynthetic precursors, intermediates and electron acceptors on the production of antifungal compounds [phenyllactic acid (PLA) and hydroxyphenyllactic acid (OH‐PLA)] by Lactobacillus plantarum CRL 778, a strain isolated from home‐made sourdough. Methods and Results: Growth of fermentative activity and antifungal compounds production by Lact. plantarum CRL 778 were evaluated in a chemically defined medium (CDM) supplemented with biosynthetic precursors [phenylalanine (Phe), tyrosine (Tyr)], intermediates [glutamate (Glu), alpha‐ketoglutarate (α‐KG)] and electron acceptors [citrate (Cit)]. Results showed that the highest PLA production (0·26 mmol l?1), the main antifungal compound produced by Lact. plantarum CRL 778, occurred when greater concentrations of Phe than Tyr were present. Both PLA and OH‐PLA yields were increased 2‐folds when Cit was combined with α‐KG instead of Glu at similar Tyr/Phe molar ratio. Similarly, glutamate dehydrogenase (GDH) activity was significantly (P < 0·01) stimulated by α‐KG and Cit in Glu‐free medium. Conclusion: Phe was the major stimulant for PLA formation; however, Cit could increase both PLA and OH‐PLA synthesis by Lact. plantarum CRL 778 probably due to an increase in oxidized NAD+. This effect, as well as the GDH activity, was enhanced by α‐KG and down regulated by Glu. Significance and Impact of the Study: This is the first study where the role of Glu and GDH activity in the PLA and OH‐PLA synthesis was evidenced in sourdough lactic acid bacteria (LAB) using a CDM. These results contribute to the knowledge on the antifungal compounds production by sourdough LAB with potential applications on the baked goods.  相似文献   

17.
Aims: This study aims to investigate the effect of different kinds of food products enriched with a combination of two potential probiotic strains, Lactobacillus rhamnosus IMC 501® and Lactobacillus paracasei IMC 502®, on bowel habits of healthy adults. Methods and Results: Fifty healthy volunteers took part in a double‐blind placebo probiotic feeding study (25 fed probiotics, 25 fed placebo) for 12 weeks. Each volunteer ingested daily one or more food products enriched with a combination of the two potential probiotic strains (probiotic group) or the same food products without the probiotics (control group). Faecal samples were collected before, at the end and 2 weeks later the intervention period, and some of the main groups of faecal bacteria were enumerated by plate count and real‐time PCR. Questionnaires on bowel habits were submitted to volunteers. After the intervention, a significant increase in faecal lactobacilli and bifidobacteria were observed in the probiotic group, and stool frequency and stool volume were higher in the probiotic group than in the placebo group. Conclusions: Daily consumption of food products enriched with the two potential probiotic strains, Lact. rhamnosus IMC 501® and Lact. paracasei IMC 502®, contributes to improve intestinal microbiota with beneficial properties and enhances bowel habits of healthy adults. Significance and Impact of the Study: The study revealed that Lact. rhamnosus IMC 501® and Lact. paracasei IMC 502® exert a positive effect, in terms of improved bowel habits, on healthy adults.  相似文献   

18.
Improving crop water productivity is necessary for ensuring food and ecological security. To quantify the water utilization in grain production from multiple perspectives, gross inflow water productivity (WPg), generalized water productivity (WPu), evapotranspiration water productivity (WPET) and irrigation water productivity (WPI) were screened in this study. Then, we calculated and analyzed the temporal and spatial variation of the water productivity indices (WPs) in the irrigated land of 31 provinces of China based on the data collected from 459 irrigation districts. The results show that the national values of the four indices were 0.694, 0.860, 1.314, and 1.361 kg/m3, and almost all of the provincial WPs increased from 1998 to 2010. The Moran's I analysis shows all of the WP indices were significantly clustered, both globally and locally, in the study years. WPs of the provinces in and around Huang-Huai-Hai Plain are high, while provinces in the northeast, south of the Yangtze River and the northwest of China showed lower water use efficiency. There is a large difference among the four indices in the scientific connotation and numerical performance, and the degree of the spatial difference was WPI > WPET > WPu > WPg. It is necessary to promote WP in the irrigated land of China, and the provinces in the northeast should be chosen as the key regions to develop water-saving agriculture because of the high production of grain and the low value of WP. Policy decision-making based on the spatial pattern of WP and their relationships among indices for specified regions are also discussed in this paper.  相似文献   

19.
Hyaluronic acid (HA) production using a dairy industrial waste is a more cost-efficient strategy than using an expensive synthetic medium. In this study, we investigated the production of HA using Streptococcus thermophilus under shake flask conditions using dairy industrial waste as nutritional supplements, namely whey permeate (WP) and whey protein hydrolysate (WPH). Preliminary screening using Plackett–Burman design exhibited WP, WPH, initial pH, and inoculum size as significant factors influencing HA titer. Response surface methodology design of four factors was formulated at three levels for enhanced production of HA. Shake flask HA fermentation by S. thermophilus was performed under global optimized process conditions and the optimal HA titer (342.93?mg?L?1) corroborates with Box–Behnken design prediction. The molecular weight of HA was elucidated as 9.22–9.46?kDa. The ultralow-molecular weight HA reported in this study has a potential role in drug and gene delivery applications.  相似文献   

20.
Whey protein beads were successfully produced using a new emulsification/cold gelation method. The principle of this method is based on an emulsifying step followed by a Ca(2+)-induced gelation of pre-denatured (80 degreesC/30 min) whey protein. Beads are formed by the dropwise addition of the suspension into a calcium chloride (CaCl(2)) solution. IR results show that bead formation has a pronounced effect on the secondary structure of whey protein, which leads to the formation of intermolecular hydrogen-bonded beta-sheet structures. Their preparation conditions (CaCl(2) concentrations of 10, 15, and 20% (w/w)) influence their sphericity and homogeneity: an increase in CaCl(2) favors regular-shaped beads. The physicochemical and mechanical characterizations of beads were also carried out. Their properties, such as swelling, elasticity, deformability, and resistance at fracture, change according to pH levels (1.9, 4.5, and 7.5) and preparation conditions. Indeed, protein chain networks exhibit different behavior patterns with respect to their charge. Finally, bead degradation by enzymatic hydrolysis reveals that beads are gastroresistant and form good matrixes to protect fat-soluble bioactive molecules such as retinol, that have in vivo intestinal absorption sites. The experiment demonstrated the potential of whey protein beads to protect molecules sensitive (i.e., vitamins) to oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号