首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
By addition of Mg2+ ions to histone H1-DNA complexes formed at 20mM NaCl a transition to strongly cooperative binding of histone H1 to DNA is induced. In the analytical ultracentrifuge, above a critical Mg2+ concentration of about 0.05 mM, the single component representing the original H1-DNA complex is replaced by two components: a higher order H1-DNA complex type characterized by a much higher sedimentation coefficient, and a slow-sedimenting component consisting of essentially H1-free DNA above 0.1 mM Mg2-. The fast complex diappears upon removal of Mg2+, showing that the process is reversible, and also upon addition of urea. Electron microscopy shows the cooperatively formed H1-DNA complexes to appear predominatly as loosely twisted cable rings in unfixed specimens, and as strongly condensed circular structures of different diameter, but approximately uniform thickness (of about 12nm) after fixation with glutaraldehyde. Besides these higher order structures, only single fibres indistinguishable from control DNA may be seen; individual double fibres which, in the absence of Mg2+, represent the predominant H1-DNA complexe structure at about 0.4–0.8 w/w H1/DNA are no longer visible. The transition to strongly cooperative binding of H1 occurs at approximately the same Mg2+ concentration which is known to induce the folding of the 10 nm nucleosome chain into the 30nm solenoid structure of chromatin.  相似文献   

2.
The effect of H1 histone on the action of DNA-relaxing enzyme.   总被引:8,自引:1,他引:7       下载免费PDF全文
The action of DNA-relaxing enzyme on H1-DNA complexes was investigated. Complexes of superhelical and relaxed closed circular duplex DNA with H1 were treated with mammalian relaxing enzyme, deproteinized, and electrophoresed on agarose gels. At relatively low ratios of H1 to superhelical DNA, molecules of superhelical density intermediate between those of the starting material and relaxed DNA, the normal product, were generated. At relatively high H1 histone concentrations (H1:DNA greater than 0.4 w/w), the superhelical DNA was not relaxed. Further, no superhelical turns were introduced into relaxed closed duplex DNA at any concentration of H1 tested. Thus, the binding of H1 histone to DNA prevents the action of the relaxing enzyme. Moreover, H1 histone does not appear to unwind the DNA duplex upon binding. The implications of these observations and the previously demonstrated specificity of H1 histone for superhelical DNA are discussed in relation to the structure of chromatin.  相似文献   

3.
Compactization of supercoiled circular plasmid pBR322 caused by interaction with synthetic oligopeptide dansyl hydrazide trivaline capable of beta-structure formation was studied by electron microscopy. The results show that at rising input peptide concentration circular DNA molecules undergo intramolecular structural transition with the formation of compact ring structures. The compact ring structures are formed by the fiber having the thickness of 60 A. The analysis of morphology of intermediate structures and the contour length measurements enable us to conclude that 60 A-fiber contains three lying side-by-side and interwound double-stranded DNA segments. Thus, the compact ring structures are addressed to as triple rings. The triple ring have one special point, where the triple region ends are locked by a duplex DNA segment. The mechanisms responsible for the triple ring formation may be of importance for DNA and chromatin compactization processes in vivo.  相似文献   

4.
Complexes of circular superhelical pBR322 DNA with a synthetic tripeptide capable of beta-structure formation (dansylhydrazide trivaline) were studied at different peptide/DNA ratios by electron microscopy. It was shown on rotary-shadowed preparations that peptide binding induces intramolecular DNA condensation and compact ring-shaped particles are formed from fibres 120 A thick. The analysis of the morphology of the ring structures observed at various peptide/DNA ratios as well as contour length measurements enabled us to draw conclusions about the organization of the double-stranded DNA filaments in these structures. It was established that the fibres forming compact rings contain three double-stranded DNA segments closely associated due to DNA-peptide and peptide-peptide interactions. The mechanisms leading to the formation of the triple rings may be important in DNA condensation in vivo.  相似文献   

5.
The binding of core histones (H2A, H2B, H3, H4) to a circular plasmid DNA and to a circular DNA-RNA hybrid molecule of similar size has been compared. Circular hybrid molecules were formed from single stranded fd DNA by synthesis of the complimentary strand with ribonucleotides using wheat germ RNA polymerase II. Upon reconstitution of plasmid DNA circles with histone, the sedimentation profiles of the DNA remained sharp by increased several fold in rate. Material from the peak fractions of these sedimentations appeared to be condensed circular loops of nucleosomes when examined by electron microscopy (EM), and the mass ratio of DNA to histone (at the histone concentrations which produced the fastest sedimentations) was typical of native chromatin. In contrast, the sedimentation behavior of DNA-RNA hybrid circles after addition of histone remained unchanged except for a minor fraction which exhibited a broad and faster sedimentation rate. Examination by EM revealed that most of the molecules appeared identical to protein free hybrid circles while the minor, faster sedimenting fraction appeared to be two or more circles bound together by protein aggregates. Finally, a linear molecule consisting of about 3000 base pairs of duplex DNA covalently joined on both ends to 1500 base pairs of RNA-DNA hybrid helix was constructed. Reconstitution of this molecule with core histone showed nucleosome formation only on the central DNA duplex region. Isopycnic banding of fixed hybrid-histone mixtures showed that little or no histone had bound to the bulk of the full hybrid molecules. We suggest that the presence of RNA in a nucleic acid duplex inhibits the condensation of the duplex into a nucleosomal structure by histone.  相似文献   

6.
Effects of non-histone components and histone H1 on the morphology of nucleosomes and chromatin were studied by electron microscopy. Soluble rat liver ehromatin was depleted of non-histone components [NH]or non-histone components and H1 [NH and H1] by dissociation and subsequent fractionation in sucrose gradients in the presence of 300 to 350 mm or 500 mm-NaCl, respectively. In reconstitution experiments the depleted samples were mixed either with [NH] or with [NH and H1] or with purified H1. The morphology of the ionic strength-dependent condensation of the samples was monitored by electron microscopy using 0 mm to 100 mm-NaCl. Based on the appearance of the different types of fibres in very low salt (0 mm up to 10 mm-NaCl), namely the zigzag-shaped, the beads-on-a-string or the DNA-like filaments, it is possible to distinguish between nucleosomes, partially unravelled nucleosomes and unravelled nucleosomes, respectively. Only those fibres which were zigzag-shaped at low ionic strength condense at increasing ionic strength into higher order structures of compact fibres. We demonstrate the dependence of the appearance of nucleosomes and chromatin upon its composition and upon the ionic strength of the solvent.[NH] have no detectable influence upon the formation of higher order chromatin structures, but they can prevent the unravelling of nucleosomes at very low ionic strength, presumably by charge shielding.For the appearance of zigzag-shaped fibres and for the condensation into compact fibres with increasing ionic strength, H1 must be present in about native amounts. Partial removal of H1 (about 10%) promotes a change from fibres into tangles. This supports the model that an H1 polymer is stabilizing the higher order chromatin structures.Reconstitution experiments with purified H1 regenerated fibres containing all the features of [NH]-depleted chromatin. Reconstitution experiments with [NH and H1] promoted fibres compatible with control chromatin. Overloading of chromatin with H1 led to additional condensation. The detailed morphology of the reconstituted fibres showed local distortions. One possibility explaining these local distortions would be competition between “main” and “additional” binding sites for histone H1.  相似文献   

7.
Ellen TP  van Holde KE 《Biochemistry》2004,43(24):7867-7872
The interaction of linker histone H1 with both linear and superhelical double-stranded DNA has been investigated at low ionic strengths. Gel mobility retardation experiments demonstrate strikingly different behavior for the two forms of DNA. First, the experiments strongly suggest that linker histone binds to superhelical DNA in a negatively cooperative mode. In contrast, binding of linker histone to linear DNA under the conditions employed here shows no cooperativity. Second, binding of linker histone to linear DNA results in aggregation of histone-DNA complexes, even at very low levels of input histone H1. Because H1 has been shown to interact as a monomer, this aggregation is evidence of the divalent character of the linker histone, for without H1's ability to bind to two duplex strands of DNA, aggregation could not occur. Although aggregation can be made to occur with superhelical DNA, it can do so only at near-saturation levels of input histone H1. Finally, in direct competition, linker histone binds to superhelical DNA to the complete exclusion of linear DNA, indicating that the linker histone's function is related to the crossover structures that differentiate superhelical DNA from linear DNA. We develop a model that explains the observed behavior of binding of linker histone to superhelical DNA that is consistent with both the divalent character of the linker histone and the negative cooperativity by which linker histone and superhelical DNA interact.  相似文献   

8.
H1 histones bind to DNA as they enter and exit the nucleosome. H1 histones have a tripartite structure consisting of a short N-terminal domain, a highly conserved central globular domain, and a lysine-and arginine-rich C-terminal domain. The C-terminal domain comprises approximately half of the total amino acid content of the protein, is essential for the formation of compact chromatin structures, and contains the majority of the amino acid variations that define the individual histone H1 family members. This region contains several cell cycle-regulated phosphorylation sites and is thought to function through a charge-neutralization process, neutralizing the DNA phosphate backbone to allow chromatin compaction. In this study, we use fluorescence microscopy and fluorescence recovery after photobleaching to define the behavior of the individual histone H1 subtypes in vivo. We find that there are dramatic differences in the binding affinity of the individual histone H1 subtypes in vivo and differences in their preference for euchromatin and heterochromatin. Further, we show that subtype-specific properties originate with the C terminus and that the differences in histone H1 binding are not consistent with the relatively small changes in the net charge of the C-terminal domains.  相似文献   

9.
The linker histones are involved in the salt-dependent folding of the nucleosomes into higher-order chromatin structures. To better understand the mechanism of action of these histones in chromatin, we studied the interactions of the linker histone H1 with DNA at various histone/DNA ratios and at different ionic strengths. In direct competition experiments, we have confirmed the binding of H1 to superhelical DNA in preference to linear or nicked circular DNA forms. We show that the electrophoretic mobility of the H1/supercoiled DNA complex decreases with increasing H1 concentrations and increases with ionic strengths. These results indicate that the interaction of the linker histone H1 with supercoiled DNA results in a soluble binding of H1 with DNA at low H1 or salt concentrations and aggregation at higher H1 concentrations. Moreover, we show that H1 dissociates from the DNA or nucleosomes at high salt concentrations. By the immobilized template pull-down assay, we confirm these data using the physiologically relevant nucleosome array template.  相似文献   

10.
Salt-dependent co-operative interaction of histone H1 with linear DNA   总被引:18,自引:0,他引:18  
The nature of the complexes formed between histone H1 and linear double-stranded DNA is dependent on ionic strength and on the H1 : DNA ratio. At an input ratio of less than about 60% (w/w) H1 : DNA, there is a sharp transition from non-co-operative to co-operative binding at a critical salt concentration that depends on the DNA size and is in the range 20 to 50 mM-NaCl. Above this critical ionic strength the H1 binds to only some of the DNA molecules leaving the rest free, as shown by sedimentation analysis. The ionic strength range over which this change in behaviour occurs is also that over which chromatin folding is induced. Above the salt concentration required for co-operative binding of H1 to DNA, but not below it, H1 molecules are in close proximity as shown by the formation of H1 polymers upon chemical cross-linking. The change in binding mode is not driven by the folding of the globular domain of H1, since this is already folded at low salt in the presence of DNA, as indicated by its resistance to tryptic digestion. The H1-DNA complexes at low salt, where H1 is bound distributively to all DNA molecules, contain thickened regions about 6 nm across interspersed with free DNA, as shown by electron microscopy. The complexes formed at higher salt through co-operative interactions are rods of relatively uniform width (11 to 15 nm) whose length is about 1.6 times shorter than that of the input DNA, or are circular if the DNA is long enough. They contain approximately 70% (w/w) H1 : DNA and several DNA molecules. These thick complexes can also be formed at low salt (15 mM-NaCl) when the H1 : DNA input ratio is sufficiently high (approximately 70%).  相似文献   

11.
Nucleosome structure.   总被引:5,自引:0,他引:5  
Electron microscopic and biochemical results are presented supporting the following conclusions: (1) Two molecules of each histone H2A, H2B, H3 and H4 are necessary and sufficient to form a nucleosome with a diameter of 12.5 +/- 1 nm and containing about 200 base pairs of DNA. (2) H3 plus H4 alone can compact 129 +/- 8 DNA base pairs into a sub-nucleosomal particle with a diameter of 8 +/- 1 nm. In such a particle the DNA duplex is under a constraint equivalent to negative superhelicity. (3) Chromatin should be viewed as a dynamic structure, oscillating between a compact structure (the nucleosome) and more open structures, depending on the environmental conditions.  相似文献   

12.
DNA-putrescine complexes were studied by electron-microscopy with the use of protein-free method. The latter gives the opportunity to investigate the interaction of DNA molecules spread on the surface layer of hypophase and the polyamine molecules in the thick layer of hypophase. Polyamine concentration varied from 5 x 10(-4) mM to 5 x 10(-1) mM. Under the low concentration of putrescine the complexes are represented by agglomerations of kinked knobbed fibres 10 to 20 nm thick, consisting of several fibres of duplex DNA. Upon increasing of putrescine concentration from 5 x 10(-4) to 1.5 x 10(-1) mM, the fibres become more thick (up to 25 nm), highly twisted and have the appearance of cylinders. Very often in the composition of complexes, it is possible to encounter the circular structures, which were formed at the expense of intermolecular interaction of different parts of the complex. The circular structures can serve as "embryos" of toroids of different sizes, that is of different degree of saturation with DNA and putrescine. At the concentration of putrescine 5 x 10(-1) mM the complexes have the appearance of toroids and structures on the basis of toroids, cylinders. The scheme of possible transitions of fibres of various thickness is proposed. The regularities of the compactization process, stimulated by polyamines, don't depend on the degree of compactization (the thickness of compacting fibre), that is they are similar for duplex DNA and for the fibres 25 nm thick, consisting of dozens of DNA molecules.  相似文献   

13.
A set of covalently closed circular duplex simian virus 40 DNA preparations of varying superhelical densities was prepared by closure of nicked duplex DNA with polynucleotide ligase in the presence of varying amounts of ethidium. The resulting molecules were tested for complex formation with the lysine-rich histone f1. The results confirmed earlier experiments in demonstrating that f1 histone reacts preferentially with superhelical DNA compared to relaxed circular DNA. Furthermore, the extent of the reaction is demonstrated to depend on the superhelical density. At the relatively low ratios of histone to DNA used in these experiments, the product of the interaction of f1 histone with superhelical DNA does not precipitate. At higher ratios of histone to DNA, an insoluble aggregate is formed.  相似文献   

14.
The nuclear extract isolated from late Drosophila melanogaster embryos has Mg2+-dependent DNA topoisomerase 1 and nuclease activities. The extract facilitates the closed circular duplex DNA supercoiling in the presence of calf histone fractions H2A, H2B, H3 and H4, and fish protamine but not HI histone.  相似文献   

15.
The interaction of Ag+ with DNA immobilized in polyacrylamide gel was studied by means of the ion-exchange method. Ag+ ions are shown to bind to DNA bases, their charges being neutralized by phosphate groups. The binding sites of Ag+ and H+ are likely to be the same, but the strength of Ag+ binding is greater than that of H+. Ag+ ions like H+ are shown to cause the formation of compact structures in immobilized DNA, the amount of these structures being dependent on subtle differences in DNA samples. DNA samples, not forming compact structures under the influence of H+, do not form them under the influence of Ag+. This fact can indicate the similarity of the mechanisms of the compact structures formation in both cases. The results obtained are compared with the data available for the interaction of Ag+ with DNA in solution. The mechanism of the Ag+-DNA interaction is discussed.  相似文献   

16.
Simian virus 40 (SV40) nucleoprotein complexes were studied with the electron microscope. Depending on the isolation procedure, SV40 chromatin has two different conformations: complexes isolated in the presence of 0.15 M NaCl appeared as very compact globular structures, while those isolated in the presence of 0.6 M NaCl had the typical 'beads-on-a-string' appearance of the primary nucleofilament. Concomitant with this structural change was a variation in the histone pattern and sedimentation behaviour of the complexes: with NaCl at 0.15 mol 1(-1) the isolated complexes contained both the nucleosomal histones and histone H1, and sedimented in sucrose gradients at 70S. Increasing the ionic strength to 0.6 M NaCl resulted in the removal of histone H1 from the complexes and in a decrease of the sedimentation coefficient to 40S. DNA relaxing enzyme is associated with the SV40 nucleoprotein complexes. The numbers of superhelical turns in DNA from compact and open types of complexes were found to be the same. Therefore the transition from the condensed to the open structure of viral chromatin does not require a change in the topological winding number of its DNA.  相似文献   

17.
The interaction of closed circular duplex DNA with the lysine-rich H5 histone fraction of avian erythrocytes has been studied. H5, like H1 histone, interacts preferentially with superhelical DNA. The extent of interaction increases with increasing negative or positive superhelicity. Salt-extracted lysine-rich histones show the same specificity for interaction with superhelices as do acid-extracted preparations. Chicken erythrocyte nuclei contain DNA-relaxing enzyme. This enzyme is extracted from the nuclei at lower salt concentrations than those required to extract H1 and H5 histones and is, therefore, probably a function of a protein distinct from H1 and H5 histones.  相似文献   

18.
19.
It was shown in the past that in the presence of histone H1, plasmidic polynucleosomes formed densely packed aggregates. Our current studies demonstrate that these aggregates are susceptible to the actions of E. coli topoisomerase I, human topoisomerase I and DNA nicking enzyme, which is the indication that negative supercoiling is present in the condensed DNA-protein complexes. Since negative supercoiling leads to formation of highly curved and compact plectonemic and toroidal DNA structures, it would be reasonable to assume that DNA negative supercoils are responsible for aggregation of histone H1-plasmidic polynucleosome complexes.  相似文献   

20.
J M Gale  M J Smerdon 《Biochemistry》1988,27(19):7197-7205
We have examined the ability of intact and histone H1 depleted chromatin fibers to fold into higher ordered structures in vitro following DNA damage by two different agents: UV irradiation at 254 nm and trimethylpsoralen plus near-UV light. Both agents damage DNA specifically, yet cause different degrees of unwinding (and possibly bending) of the DNA helix. In addition, trimethylpsoralen forms interstrand DNA cross-links. The structural transitions of intact and histone H1 depleted chromatin fibers, induced by NaCl, were monitored by analytical ultracentrifugation, light scattering, and circular dichroism. Our results indicate that when chromatin fibers contain even large, nonphysiological amounts of DNA photodamage by either agent, the salt-induced folding of these fibers into higher ordered structures is unaffected. The compact 30-nm fiber must therefore be able to accommodate a large amount of DNA photodamage (greater than one UV-induced photoproduct or trimethylpsoralen interstrand cross-link per nucleosome) with little or no change in the overall size or compaction of this structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号