首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
Sediments from Haihe River mainstream, located in Xingjiaquan, Zhangjiazui, Tianjin, were collected and examined on the basis of P fractionation. SMT (standards, measurements and testing) procedure was adopted to investigate the changes in P concentration with depth in the core sediments collected from the different sampling sites of Haihe River mainstream. The relationships among different P fractions, such as exchangeable P (Ex-P), metal oxide bounded P (NaOH-P), organic matter and grain size, were also discussed. The results indicate that in both sites the rank order of P fractions was HCl-P > Organic P (OP) > NaOH-P > Ex-P in terms of their concentration. The Ex-P represented < 4% of the sediment total P, while the NaOH-P ranged 5–21%. The calcium bound phosphorus (HCl-P) showed considerable contribution (53–80%) to the sediment total P loads. Silt/clay sized sediments exhibited significantly higher concentrations of HCl-P and Ex-P in both sites. However, coarse-sand-sized sediments exhibited significantly higher concentrations of OP in both sites and NaOH-P in Xingjiaquan. Multivariate statistics were performed to identify the factors that influenced the sediment P.  相似文献   

2.
To understand the effect of submerged macrophytes on P in sediment, P fractions in the surface sediments (0–20 cm) of Potamogeton crispus, Potamogeton maackianus and non-vegetated areas were investigated. In the submerged macrophytes areas, the concentrations of HCl-P, NaOH-P, IP, OP and BD-P were significantly lower than in the non-vegetated area. NH4Cl-P did not differ significantly among areas.

In the submerged macrophyte distribution areas, TP was significantly correlated with IP and OP. However, in the non-vegetated area, TP was significantly correlated with NH4Cl-P and OP. In all of the areas sampled, IP was the major phosphorus fraction in the sediments, which consists largely of NAOH-P and HCl-P. The decreasing order of P fractions was: IP > HCl-P > NaOH-P > OP > BD-P > NH4Cl-P. These results show that submerged macrophytes can decrease the concentrations of all P fractions and imply that submerged macrophytes play a key role in the retention of P nutrients.  相似文献   


3.
林下养殖是一种经济有效的林地空间利用方式,但长期高负载的林下养殖对林地土壤性状究竟产生何种影响,目前尚无定论.以不同林下养鸡年限(0年、1年、3年和5年)的美洲黑杨(Populus deltoides)人工林为对象,采用Hedley磷素分级法,分析其林地土壤的磷素组成和形态变化,探讨林下养鸡年限对土壤磷库特征及其生物有...  相似文献   

4.
Understanding the spatial and temporal variation of nutrient concentrations, loads, and their distribution from upstream tributaries is important for the management of large lakes and reservoirs. The Three Gorges Dam was built on the Yangtze River in China, the world’s third longest river, and impounded the famous Three Gorges Reservoir (TGR). In this study, we analyzed total nitrogen (TN) concentrations and inflow data from 2003 till 2010 for the main upstream tributaries of the TGR that contribute about 82% of the TGR’s total inflow. We used time series analysis for seasonal decomposition of TN concentrations and used non-parametric statistical tests (Kruskal-Walli H, Mann-Whitney U) as well as base flow segmentation to analyze significant spatial and temporal patterns of TN pollution input into the TGR. Our results show that TN concentrations had significant spatial heterogeneity across the study area (Tuo River> Yangtze River> Wu River> Min River> Jialing River>Jinsha River). Furthermore, we derived apparent seasonal changes in three out of five upstream tributaries of the TGR rivers (Kruskal-Walli H ρ = 0.009, 0.030 and 0.029 for Tuo River, Jinsha River and Min River in sequence). TN pollution from non-point sources in the upstream tributaries accounted for 68.9% of the total TN input into the TGR. Non-point source pollution of TN revealed increasing trends for 4 out of five upstream tributaries of the TGR. Land use/cover and soil type were identified as the dominant driving factors for the spatial distribution of TN. Intensifying agriculture and increasing urbanization in the upstream catchments of the TGR were the main driving factors for non-point source pollution of TN increase from 2003 till 2010. Land use and land cover management as well as chemical fertilizer use restriction were needed to overcome the threats of increasing TN pollution.  相似文献   

5.
The interaction of the phage T4 Dam DNA-[N6-adenine] methyltransferase with 24mer synthetic oligonucleotide duplexes having different purine base substitutions in the palindromic recognition sequence, GATC, was investigated by means of gel shift and methyl transfer assays. The substitutions were introduced in either the upper or lower strand: guanine by 7-deazaguanine (G-->D) or 2-aminopurine (G-->N) and target adenine by purine (A-->P) or 2-aminopurine (A-->N). The effects of each base modification on binding/methylation were approximately equivalent for both strands. G-->D and G-->N substitutions resulted in a sharp decrease in binary complex formation. This suggests that T4 Dam makes hydrogen bonds with either the N7- or O6-keto groups (or both) in forming the complex. In contrast, A-->P and A-->N substitutions were much more tolerant for complex formation. This confirms our earlier observations that the presence of intact 5'-G:C base pairs at both ends of the methylation site is critical, but that base substitutions within the central A:T base pairs show less inhibition of complex formation. Addition of T4 Dam to a complete substrate mixture resulted in a burst of [3H]methylated product. In all cases the substrate dependencies of bursts and methylation rates were proportional to each other. For the perfect 24mer k cat = 0.014/s and K m = 7.7 nM was obtained. In contrast to binary complex formation the two guanine substitutions exerted relatively minor effects on catalytic turnover (the k cat was reduced at most 2. 5-fold), while the two adenine substitutions showed stronger effects (5- to 15-fold reduction in k cat). The effects of base analog substitutions on K m(DNA) were more variable: A-->P (decreased); A-->N and G-->D (unchanged); G-->N (increased).  相似文献   

6.
In this study, the fractionation and distribution of phosphorus (P) in the core sediments of the Shanmei reservoir were investigated by using the chemical extraction method in directions for the first time in order to understand its bio-availability, adsorption characteristics, potential release and environmental significance. The results of the study showed that P in the sediments mainly consisted of inorganic phosphorus (IP) and that IP mainly consisted of non-apatite phosphorus (NAIP). The horizontal and temporal distributions of the P fractions were different from each other, but the vertical distribution was similar, which indicated a trend of stabilization after falling. The content of total phosphorus (TP), IP, organic phosphorus (OP), NAIP, apatite phosphorus (AP), and bio-available phosphorus (BAP) in the sediments during the three seasons ranged from 193.85 to 1664.05 mg·kg?1, 126.90 to 1127.70 mg·kg?1, 43.74 to 669.29 mg·kg?1, 57.62 to 937.07 mg·kg?1, 32.58 to 250.71 mg·kg?1, and 41.06 to 871.82 mg·kg?1, respectively. NAIP contents in the sediments accounted for more than 50% of TP. Using an analysis from three aspects, the eutrophication risk index (ERI) could be used to assess the potential release of P in the sediments, and there was a high release risk of P in the sediments in the Shanmei reservoir.  相似文献   

7.
Concentrations of phosphorus (P) fractions and changes in their bioavailability in the sediments as influenced by repeated resuspension were determined by sequential fractionation in laboratory experiments. The water and sediment samples used were taken from the campus canal. Sequential fractionation indicated that the concentrations of the iron bound P (BD–P) were predominant, consisting of over 50% of total P (Tot-P) in the sediments that did and did not undergo resuspension. BD–P mobility was reduced due to resuspension resulting from the decline of the proportion ratio of non-occluded Fe–P and occluded Fe–P from 0.53 to 0.29. Therefore, under sediment resuspension conditions, using the sum of loosely sorbed P (NH4Cl–P), BD–P, aluminium bound P (Al–P), and organic-P (NaOH–nrP) to estimate bio-available P (BAP) might be problematic. However, BAP could be accurately estimated by the sum of NH4Cl–P, % BD–P (bio-available, non-occluded Fe–P), and NaOH–nrP. By this estimation, the amount of BAP in the sediments as influenced by repeated resuspension decreased by about 10% of Tot-P, compared with the initial state (raw sediments). The results suggest that repeated resuspension could accelerate the transformation of P from mobile fractions to refractory fractions, which can be attributed to the increase of occluded Fe–P, Al–P, and calcium bound P (HCl–P).  相似文献   

8.
Young  T. C. 《Hydrobiologia》1982,91(1):111-119
Control of phytoplankton production in the Great Lakes can be achieved most efficiently by limiting inputs of biologically available P. We report the results of studies performed to characterize the chemical forms and availability of particulate P in wastewater and tributaries which enter the lower Lakes, the eroding bluffs which border Lake Erie, and bottom samples from the near-shore of western Lake Erie. Rates of release of available P were estimated from a simple first-order model of the process, as observed during algal bioassays. Available P in wastewater samples, as a fraction of total particulate P, was affected minimally by wastewater treatment, including chemical precipitation and filtration; it correlated well with levels of total particulate P. Available particulate P levels in fluvial suspended sediments showed regional uniformity, but appeared to be strongly dependent on levels of both NaOH-P and CDB-P. Rates of release of available P decreased during wastewater treatment to values which were similar in magnitude to those observed for fluvial sediments. Release rates, however, were not related to any of the particulate P fractions which were measured. Analysis of the bluff and bottom samples indicated that P availability in the former was negligible, but the latter contained levels which approached those of wastewater particulates, though available P was released from the bottom sediments at relatively low rates.  相似文献   

9.
We investigated the distribution and chemical speciation of Cd, Cr, Cu, Pb and Zn in the water level-fluctuating (WLF) zone of the main stream (MS) and tributaries (ZX and MX) of the Three Gorges Reservoir. We evaluated the ecological risk and pollution level from heavy metals based on the Potential Ecological Risk Index (RI), Risk Assessment Code (RAC), and Ratio of Secondary Phase and Primary Phase (RSP). Our results indicated that the total and bio-available heavy metal contents were higher in the tributaries than in the MS. Moderate pollution from Cd and light pollution from Pb were observed both at the MS and ZX sites, whereas the MX site exhibited a pattern of heavy Cd pollution and light Cr and Pb pollution. In our study area, the results indicated that Cd exhibited a higher ecological risk than did the other heavy metals. Finally, the pH and nitrogen content of sediments may play a key role in controlling the amount of heavy metal bioavailability, further inducing a higher potential ecological risk.  相似文献   

10.
以小兴安岭原始阔叶红松林(对照)和经过轻度、中度和强度择伐干扰后形成的天然林林地表层(0~10 cm)土壤为对象,采用Sui修正后的Hedley磷素分级法对土壤样品进行连续浸提,研究不同林地土壤各形态磷素含量的差异及变化规律,分析择伐干扰对阔叶红松林土壤磷素有效性的影响.结果表明: 各林地土壤全磷含量为1.09~1.66 g·kg-1,以原始阔叶红松林最高,强度择伐林地最低,且不同处理间差异显著;各林地土壤有效磷和磷素活化系数的变化幅度分别为7.26~17.79 mg·kg-1和0.67%~1.07%,均表现出随择伐强度的增加而显著降低;除酸溶性有机磷(HCl-Po)外,经过择伐干扰的林地与原始林相比,土壤水溶性磷(H2O-Pi)、碳酸氢钠磷(NaHCO3-P)、氢氧化钠磷(NaOH-P)、酸溶性无机磷(HCl-Pi)和残留磷(Residual-P)含量均表现出随择伐强度的增加而降低的趋势.各组分间以水溶性(H2O-Pi)与土壤有效磷的相关系数最大(0.98),但其含量仅占磷素总量的1.5%~2.2%;氢氧化钠磷(NaOH-P)含量占磷素总量的48.0%以上,是土壤的潜在磷源.可以认为,择伐干扰通过显著降低土壤无机态磷和氢氧化钠有机磷(NaOH-Po)的含量,限制和影响了阔叶红松林土壤有效磷及潜在磷源的供应水平,并且其表现出随择伐强度的增加而逐渐降低的趋势.  相似文献   

11.
Kisand  Anu  Nõges  Peeter 《Hydrobiologia》2003,492(1-3):129-138
Increased discharges of organic matter from different sources in Morales Stream, one of the main tributaries of the Matanza-Riachuelo River, caused not only an increase in its primary production but also drastic changes in the composition of its sediments, thus favoring eutrophication processes. An in situ study was carried out in order to assess the effects of an organic point source contamination (from intensive cattle rearing) on the sediments of Morales Stream. Surface water and sediment samples were analysed to determine the chemical characteristics of the water–sediment system. The amounts and forms of sediment phosphorus were determined using the `EDTA method' (Golterman, 1996) at two sites of the stream having different nutrient loads. The increase in the organic load of Morales Stream waters influences the dynamics of sediment P, producing two main effects: (1) an increase in the organic matter amount of the sediment that leads to an increase in the amount of P associated to organic fractions, which may be released by bacterial activity under anoxic conditions; and (2) a decrease in the concentration of P in the fraction bound to iron. Morales Stream sediments may act as a potential source of P, which can release this nutrient to water under the reducing conditions originated by uncontrolled discharges of organic residues to this water body.  相似文献   

12.
The concentration of major elements (Si, Al, Ca, Mg, Na, K, Fe, Ti, Mn and P), particulate phosphorus forms (NH4Cl-RP, BD-RP, NaOH-RP, HCl-RP and NaOH(85)-RP) and carbon content were determined in six size fractions (<8, 8–12, 12–19, 19–31, 31–42 and 42–<60 µm) of sediment collected at gauging stations located in two Lake Erie tributaries (Big Creek and Big Otter Creek). Concentrations of major elements and phosphorus forms were remarkably similar in sediment size fractions from both rivers. Nonapatite inorganic P (NAIP) and organic P (OP) concentrations increased with decreasing grain size while apatite inorganic P (AIP) content decreased with decreasing grain size. Results of phosphorus fractionation studies were combined with historical (particle size) and hydrometric data to simulate the export of particle P on tributary sediment < 63 µm. AIP represents 67 and 70% of the calculated particulate P mass while NAIP accounts for 26 and 23% of sediment-bound P transported in Big Otter Creek and Big Creek, respectively. The < 8 µm size fraction of tributary sediment is the most significant for the potential release of bioavailable P into the water column.  相似文献   

13.
The distribution of phosphate species in the Catatumbo River, Venezuela, was studied using a sequential extraction scheme. Extraction was performed using 1.0 M NH4Cl, 0.1 M Na2S2O4–NaHCO3, 1.0 M NaOH and 0.5 M HCl. Total phosphate was in the range between 121 and 581 g g–1 D.W. About 64% of the total phosphate is inorganic and present the following composition: 1% NH4Cl-P, 10% BD-P, 20% NaOH-P, 33% HCl-P; while org-P is 36%. The main form of P in sediment from the Catatumbo River is calcium bound-P, like apatite. The metal concentrations present in sediment are in the following order: Fe> Al > Ca > Mg > Mn. Relationships between P and Fe, Al and Ca were found. Cluster analysis showed that speciation is not dependent on the inorganic matrix of the sediments. Analysing the influence of NaOH concentration and duration of the extraction invalidated the use of NaOH as extracting agent in P-speciation.  相似文献   

14.
Sedimentary phosphorus fractions and phosphorus release from the sediments were studied in Lake Ladoga at altogether 46 sampling sites, representing the full range of sediment types encountered in the lake. Determination of P fractions and physico-chemical analyses were made of surface sediment cores (10–20 cm long, each sampled at 3–4 levels) and in the overlying water. The range of total phosphorus per dry weight of sediment was 0.2–3.3 mg g–1, and that of inorganic P 0.1–2.5 mg g–1. The levels of interstitial soluble phosphorus, range 2–613 µg 1–1 for total P and 1–315 µg 1–1 for inorganic P, were higher than those of dissolved P concentrations in the overlying water. Diffusive fluxes of phosphate from sediment to the overlying water were estimated using three independent methods. The estimated range was 4–914 µg P m–2 d–1; the mean value for the whole bottom area, 0.1 mg P m–2 d–1, is lower than previously published estimates. The estimated annual contribution of sedimentary inorganic P flux to Lake Ladoga water is equal to 620 tons of P per year, which amounts to more than 10% of the estimated external P load into the lake. 68% of the total diffusive flux emanates from deep water sediments, which are not exposed to seasonal variation of conditions. In deep lakes, such as Lake Ladoga, phosphorus release from the sediments is controlled primarily by diffusive mechanisms. Wave action and currents as well as bioturbation are probably of importance mainly in shallow near-shore areas. Phosphorus release by gas ebullition and macrophytes is considered negligible.  相似文献   

15.
The phosphorus (P) fractions and bioavailable P in the sediments from the Quanzhou Bay Estuarine Wetland Nature Reserve were investigated using chemical extraction methods for the first time to study the distribution and bioavailability of P in the reserve sediments. A hypothesis was presented suggesting that the bioavailable P in the sediments could be evaluated using the P fractions. The total phosphorus (TP), inorganic phosphorus (IP), organic phosphorus (OP), non-apatite phosphorus (NAIP), and apatite phosphorus (AP) contents in the sediments were in the ranges of 303.87–761.59 mg kg−1, 201.22–577.66 mg kg−1, 75.83–179.16 mg kg−1, 28.86–277.90 mg kg−1, and 127.36–289.94 mg kg−1, respectively. The water soluble phosphorus (WSP), readily desorbable phosphorus (RDP), algal available phosphorus (AAP), and NaHCO3 extractable phosphorus (Olsen-P) contents in the sediments were in the ranges of 0.58–357.17 mg kg−1, 80.77–586.75 mg kg−1, 1.09–24.12 mg kg−1, and 54.96–676.82 mg kg−1, respectively. The correlation analysis results showed that the NAIP was the major component of the bioavailable P and that the impact of the AP on the bioavailable phosphorus may be minimal. Due to the low TP content in the sediments of the Quanzhou Bay Estuarine Wetland Nature Reserve, the potential pollution risks of P in the sediments may not be very high. The results also show that the bioavailable P concentrations in the sediments of the Quanzhou Bay Estuarine Wetland Nature Reserve could not be evaluated by measuring the P fractions and that the hypothesis was untenable.  相似文献   

16.
The Huanghe River (Yellow River) had been the second largest river in the world in terms of sediment load to the sea; however, the river water discharge and sediment flux to the sea and their seasonal variability have been significantly altered by the dam activities and recent water–sediment regulation. These changes are believed to have important impacts on the flux of phosphorus that is generally transported in particulate form. In this article, the samples of suspended particulate matter (SPM) were collected at the Lijin Station during two high-discharge events in 2005 and were separated by particle size. Sequential extractions were applied to determine the forms of P in different particle size fractions and to assess the potential bio-availability of particulate phosphorus (PP). Based on the in-laboratory measurement, the impacts of different hydrological regimes on the source of PP and its bio-availability were also analyzed. The results indicate that exchangeable, organic, authigenic, and refractory P were preferentially associated with clay, very fine, and fine silt fractions. Detrital P was mainly associated with the medium and coarse silt fractions. Detrital P and authigenic P (two forms of calcium bound phosphorus) were the dominant fractions in all samples. Thus, the potential bio-available PP (exchangeable P and organic P) was mainly associated with the finer particles, such as clay. Higher content of exchangeable, organic, authigenic, and residual P and lower content of detrital P were found during the period of rainstorm compared to that of WSR. P forms and partitioning of P forms among different particle size fractions were assumed to depend on the sources of SPM. It is likely that the pathways and fates of PP forms were controlled by damming and by the related changes of hydrological regime. Therefore, anthropogenic changes of hydrological regime and particle size dominanted the amount and distribution pattern of bio-available P transportation to the estuary and the adjacent sea, which will have profound impacts on the marine ecosystems at the Huanghe River Estuary and even the Bohai Sea.  相似文献   

17.
Internal phosphorus loading is particularly concerned for the shallow lakes due to the frequent sediment disturbance, which may play a vital role in changing nutrient level in overlying water. A historical perspective on internal phosphorus loading may contribute to understanding its contribution to recent eutrophication. In this work, a study on the changes in internal phosphorus loading and release potential in Taihu Lake, a shallow eutrophic lake in China, was performed based on the analysis of spatio-temporal variations of sedimentary total phosphorus and three operationally defined fractions (NaOH-P, HCl-P and OP). The influencing factors for changing internal loading were discussed. The results showed that internal phosphorus loading was elevated compared to pre-eutrophication periods and the increase has occurred since approximately the late 1970s to early 1980s. Changes in internal phosphorus loading were primarily attributed to the NaOH-P and OP fractions, relating to anthropogenic inputs and enhanced productivity, respectively. The internal phosphorus release potential may be enhanced by up to 22% currently relative to the pre-eutrophication period; however, it should play a secondary role to external input in enhancing nutrient levels and sustaining the eutrophication in Taihu Lake.  相似文献   

18.
杭州湾滨海湿地不同植被类型沉积物磷形态变化特征   总被引:7,自引:0,他引:7  
梁威  邵学新  吴明  李文华  叶小齐  蒋科毅 《生态学报》2012,32(16):5025-5033
研究了杭州湾滨海湿地不同植被类型下0-5 cm和10-20 cm沉积物总磷(TP)、无机磷(IP)、有机磷(OP)及其形态变化特征,揭示湿地植被演替对沉积物磷形态的影响.结果表明,沉积物TP,互花米草(MC)显著高于其他植被类型.在IP中,可溶性松散态磷(Soluble and loosely bound P,SL-Pi)含量光滩(CK)最小、MC最大;还原态可溶性磷(Reductant soluble P,RS-Pi)含量芦苇(LW)和MC显著高于CK和海三棱藤草(BC);钙磷(Ca-Pi)含量CK和BC显著大于LW和MC.在OP中,活性有机磷( Labile Po,L-Po)含量最低、中等活性有机磷(Moderately labile Po,ML-Po)含量最高、非活性有机磷(Nonlabile Po,NL-Po)处于中间水平.IP是磷素的主要形态、占TP的74% -89%,而Ca-Pi又是IP的主要形态、于湿地沉积物淤积初期通过吸附沉淀作用存留.杭州湾湿地植被自然演替过程中不同植物生物量积累和营养物质循环过程的变化导致沉积物中磷形态的差异.植被演替初期,BC显著改变0-5 cm沉积物磷形态,对10-20 cm沉积物无显著影响;植物演替后期的LW和MC促使0-5 cm沉积物有机磷快速积累、10-20 cm沉积物有机磷小幅增加,同时促进Ca-Pi向可溶性、活性态磷转变.  相似文献   

19.
武汉南湖水体及沉积物不同形态磷的季节变化   总被引:2,自引:0,他引:2  
在武汉南湖5个采样点分别采集了湖水和柱状沉积物样品,对水体、沉积物及其间隙水中磷的季节变化以及沉积物中的不同形态磷进行了研究.结果表明: 水体总磷(TP)和正磷酸盐磷(PO43--P)的平均含量分别为0.240和0.033 mg·L-1.TP和PO43--P均在11月含量最高,但TP含量的最低值出现在2月,PO43--P含量的最低值出现在8月.沉积物中TP的平均含量为1.005 mg·g-1, 4—11月呈上升趋势,11月至次年2月趋于稳定;其垂直分布上随沉积深度增加逐渐降低.其间隙水PO43--P的平均含量为0.209 mg·L-1,11月最高,2月最低,其垂直分布规律与沉积物TP一致.沉积物中的不同形态磷以无机磷为主,占TP的61.4%~77.1%.沉积物中活性磷(BA-P)的含量很高,但BA-P随沉积深度增加显著降低.相关性分析表明,沉积物主要通过BA-P和自生钙磷(ACa-P)的释放向水体供给磷.  相似文献   

20.
During each of the first 8 years following an 80–90% reduction in external phosphorus loading of shallow, hypertrophic Lake Søbygaard, Denmark in 1982, phosphorus retention was found to be negative. Phosphorus release mainly occurred from April to October, net retention being close to zero during winter. Net internal phosphorus loading was 8 g P m–2 y–1 in 1983 and slowly decreased to 2 g P m–2 y–1 in 1990, mainly because of decreasing sediment phosphorus release during late summer and autumn. The high net release of phosphorus from Lake Søbygaard sediment is attributable to a very high phosphorus concentration and to a high transport rate in the sediment caused by bioturbation and gas ebullition. Sediment phosphorus concentration mainly decreased at a depth of 5 to 20 cm, involving sediment layers down to 23 cm. Maximum sediment phosphorus concentration, which was 11.3 mg P g–1 dw at a depth of 14–16 cm in 1985, decreased to 8.6 mg P g–1 dw at a depth of 16–18 cm in 1991. Phosphorus fractionation revealed that phosphorus release was accompanied by a decrease in NH4Cl-P + NaOH-P and organic phosphorus fractions. HCl-P increased at all sediment depths. The Fe:P ratio in the superficial layer stabilized at approximately 10. Net phosphorus release can be expected to continue for another decade at the present release rate, before an Fe:P ratio of 10 will be reached in the sediment layers from which phosphorus is now being released.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号