首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.

Supplementing suckling piglets with Lactobacillus reuteri isolated from a homologous source improves L. reuteri colonization number in the gastrointestinal tract, which can have health benefits. This study investigated dietary L. reuteri supplementation on the growth and health—including immune status—of piglets, as well as its colonization. A total of 60 sows with similar parity and body weight were allocated into one of three groups after secretion (n = 20 each, with 10 neonatal piglets of each): untreated control, L. reuteri supplementation, and antibiotic treatment. The experimental duration was 28 days, from birth of piglets to their group transferred. For the first 7 days after birth, all neonatal piglets were fed by sows. Piglets in the L. reuteri supplementation group were administered with 1.0 ml L. reuteri fermentation broth containing 5.0 × 107 CFU. From 7 to 28 days, piglets were given basal feed (control), basal feed supplemented with L. reuteri (1.0 × 107 CFU/g), or aureomycin (150 mg/kg). L. reuteri colonization in the distal jejunum and ileum was increased in piglets in the L. reuteri-supplemented as compared to the control group after 28 days, as determined by fluorescence in situ hybridization and real-time PCR analysis. Total Lactobacillus and Bifidobacterium counts in the cecum were higher whereas total aerobic bacteria (Escherichia coli and Staphylococcus) counts were lower in the L. reuteri as compared to the control group. L. reuteri supplementation also improved body antioxidant status and immune function relative to control animals. Strain-specific L. reuteri administered to piglets colonizes the intestinal mucosa and improves cecal microbiota profile and whole-body antioxidant and immune status, leading to better growth and lower morbidity and mortality rates.

  相似文献   

2.

The effect of Lactococcus lactis subsp. lactis strain PTCC 1403 as a potential probiotic was investigated on the growth, hematobiochemical, immune responses, and resistance to Yersinia ruckeri infection in rainbow trout. A total of 240 fish were distributed into 12 fiberglass tanks representing four groups (× 3 replicates). Each tank was stocked with 20 fish (average initial weight: 11.81 ± 0.32 g) and fed L. lactis subsp. lactis PTCC 1403 at 0 (control, T0), 1 × 109 (T1), 2 × 109 (T2), and 3 × 109 (T3) CFU/g feed for 8 weeks. The results showed enhanced protein efficiency ratio and reduced feed conversion ratio in the fish-fed T2 diet. Further, fish-fed T2 and T3 diets showed a significantly higher survival rate than the control (p < 0.05). Trypsin, lipase, and protease activities were increased in fish-fed L. lactis subsp. lactis PTCC 1403 compared to the control (p < 0.05). Fish fed with a T2 diet showed significantly (p < 0.05) lower glucose content than other groups. The blood lysozyme activity and IgM showed significantly (p < 0.05) higher values in fish-fed T2 and T3 diets than in other groups. The antioxidative responses were increased in fish-fed T2 and T3 diets (p < 0.05). After 7 days post-Y. ruckeri challenge, the cumulative mortality rate showed the lowest value in fish fed with T1 and T2 diets, while the highest value was recorded in the control group. In conclusion, the results revealed beneficial effects of L. lactis subsp. lactis PTCC 1403 on the feed efficiency, immune response, and resistance to Y. ruckeri infection in rainbow trout.

  相似文献   

3.

Sixty-week-old Hy-Line brown laying hens were randomly divided into five groups and fed different diets over a period of 84 days. Experimental treatments included a basal diet (control); the basal diet supplemented with 1.0 × 106B. licheniformis yb-214245; the basal diet supplemented with 1.0 × 106B. subtilis yb-114246; a combination of both strains in a 2:1 ratio (6.6 × 105:3.3 × 105B. licheniformis yb-214245:B. subtilis yb-114246); and the latter, added with 5 mg/kg flavomycin. Basal diet supplementation with the combined Bacillus species improved egg-laying performance in aging hens significantly (P < 0.05). Eggshell strength improved significantly with this treatment, compared to the control or the antibiotic-supplemented groups (P < 0.05). The levels of total cholesterol, triglycerides, and very low-density lipoprotein cholesterol in egg yolk declined significantly more in the Bacillus-treated group than in the control or the antibiotic-supplemented groups (P < 0.01). Small intestinal morphology was better in the hens treated with the Bacillus combination than in the hens in the control group (P < 0.05). The total number of aerobic bacteria (Bacillus, Lactobacillus, and Bifidobacterium) in the cecum was significantly higher in all the Bacillus-supplemented hens than either in the control or the antibiotic-supplemented hens (P < 0.01); additionally, the number of E. coli and Salmonella was significantly lower than in the control group (P < 0.01). In conclusion, diet supplementation with the combination of Bacillus species used here for aging laying hens improved their growth performance, cecal bacterial composition, egg quality, and small intestine morphology.

  相似文献   

4.

The present study investigated the effect of enriched Artemia with Bacillus subtilis on growth performance, reproductive factors, proximate composition, intestinal microflora, and resistance to Aeromonas hydrophila of ornamental fish, Poecilia latipinna. Using a completely randomized design, the experiment included three groups. The first group was fed with commercial food without any probiotic. The second group was fed with unenriched Artemia, and the last group consumed long-time enriched Artemia with Bacillus subtilis. The bacteria B. subtilis with a density of 1 × 105 CFU mL−1 was added daily to Artemia culture medium. The total microflora and Bacillus subtilis counts were significantly increased in enriched Artemia compared to the unenriched group (P < 0.05). In fish fed groups, growth factors did not show any significant difference (P > 0.05). The maximum relative fecundity (28.65 ± 2.52 egg number g−1), fry production (62.93 ± 4.6 individual per female), and fry survival (70.97 ± 1.56%) obtained in the third group were found to be significantly more than those in the first and the second groups. Moreover, intestinal bacterial count for Bacillus revealed that the higher concentration of bacteria was significantly related to the third group (6.24 ± 0.11 log CFU g−1) (P < 0.05). Maximum protein and fat contents were observed in fish fed with Bacillus-enriched Artemia; however, no significant difference was found between control and unenriched Artemia groups (P > 0.05). The highest amount of ash was observed in fish fed with commercial food without any probiotic (P < 0.05). At the end of the feeding period, each of the three groups along with positive group (oxytetracycline 100 mg kg−1 of commercial food) was exposed to A. hydrophila (BCCM5/LMG3770) bacteria intraperitoneally. Based on the results, the lowest cumulative mortality was significantly found in group three (68.75 ± 3.6%) and positive group (62.5 ± 7.0%) compared to control and unenriched Artemia groups (P < 0.05). Hence, B. subtilis with a concentration of 1 × 105 CFU mL−1 during the period of Artemia culturing can improve the reproductive parameters, intestinal microflora, and resistance to pathogenic bacteria of Poecilia latipinna.

  相似文献   

5.

This study investigates the effects of dietary Aeromonas veronii V03 supplementation on growth performances, innate immunity, and expression of immune-related genes in lymphoid organs of Cyprinus carpio and resistance to Aeromonas hydrophila infection. Fish were fed for 4 weeks with basal diet (BD; without probiotic), and experiment diet containing different doses of A. veronii V03 at 3.2 × 107 (DI) and 3.5 × 109 (DII) CFU g−1 of diet. At the end of the probiotic feeding trial, fish were challenged with A. hydrophila, and the percentage of survival rates was recorded over 7 days. Results revealed that fish fed with A. veronii V03 demonstrated a significant improvement in growth and enhancement of innate immunity, including respiratory burst, myeloperoxidase, and lysozyme activities, and total immunoglobulin level compared with BD fed to fish. Relatively, expression of cytokines (MyD88, IL-1β1, IL-8, and IL-10) and c- and g-type lysozymes were significantly up- and downregulated in lymphoid organs of fish. Moreover, dietary supplementation of A. veronii V03 exhibited significantly (p < 0.001) higher survival rates of DI (90%) and DII (96.66%) compared with BD (53.33%) fed fish against A. hydrophila infection. These findings help to understand the effects of probiotic A. veronii V03 administrated feed influences on growth and ailment resistance to A. hydrophila infection by regulating innate and systemic immunity in common carp fish.

  相似文献   

6.
This study aimed to examine the effects of multi-species probiotic on growth, hematological status, intestinal microbes, and intestinal morphology of mrigal (Cirrhinus cirrhosus). The mrigal fries (average weight 0.51 g) were reared for 60 days by supplementing multi-species probiotics containing Bacillus spp. (1 × 109 cfu/mL) and Lactobacillus spp. (1 × 1011 cfu/mL) in the raising water at doses of 0 (control), 0.5, and 1.0 mL/L. The results indicated that fish reared with multi-species probiotics showed significantly higher growth performance and feed efficiency where the survival rate was similar in all cases. Accordingly, significant higher red blood cell (RBC) and white blood cell (WBC) were counted from the fish reared with multi-species probiotic. There was a considerable difference in bacterial microbiota between the experimental and control group. Multi-species probiotics significantly enhanced the length, width, and villus area. Several immune response indicators like fattening of intestinal mucosal fold, width of lamina propria, the width of enterocytes, and abundance of goblet cells were also increased significantly in fish that received multi-species probiotics. This study revealed that multi-species probiotics can significantly contribute to the growth of mrigal through upgrading intestinal microbiota and morphology, which can be suggested as an eco-friendly growth stimulator in mrigal farming.  相似文献   

7.

The effect of dietary supplementation with a synbiotic mixture of galacto-oligosaccharides (GOS) and Bacillus spp. was examined in Caspian salmon, Salmo trutta caspius (Kessler, 1877) fingerlings. Caspian salmon fed with the synbiotic diet had significantly higher weight gain rate, protein efficiency ratio, and survival rate, as well as lower feed conversion ratio, compared to the control group (P < 0.05). The serum protein, albumin, globulin, and lactate dehydrogenase levels of the fish fed with the synbiotic diet were significantly higher than the control group (P < 0.05), while the serum alkaline phosphatase levels were significantly lower (P < 0.05). The activities of the innate immune response parameters, including lysozyme, superoxide dismutase, and catalase were significantly higher in the Caspian salmon fed with the synbiotic diet (P < 0.05). The gut microbiota of the Caspian salmon fed with the synbiotic diet contained significantly elevated total viable aerobic bacterial counts (TVABCs), lactic acid bacteria (LAB) levels, and LAB/TVABCs ratio (P < 0.05). Additionally, the gut activities of amylase, trypsin, and chymotrypsin in the gut, as well as the trypsin/chymotrypsin ratio, were significantly increased in the fish that received the synbiotic diet (P < 0.05). In conclusion, the combined GOS and Bacillus spp. supplement positively affected the growth, survival rate, immunobiochemical parameters, digestive activity, and beneficial microbial density in the gut of Caspian salmon fingerlings.

  相似文献   

8.
9.
Fermented feed has the potential to improve poultry gastrointestinal microecological environment, health condition and production performance. Thus, the present study was undertaken to explore the effects of fermented feed on the laying performance, egg quality, immune function, intestinal morphology and microbiota of laying hens in the late laying cycle. A total of 360 healthy Hy-Line Brown laying hens aged 80 weeks were used to conduct a 56-day study. All hens were randomly separated into two treatment groups, with five replicates of 36 hens each as follows: basal diet containing 0.0% fermented feed (CON) and 20% fermented feed (FF). Subsequent analyses revealed that fermented feed supplementation was associated with significant increases in laying rates together with reduced broken egg rates and feed conversion ratio for hens in FF group (P < 0.05). There were additionally significant increases in both albumen height and Haugh unit values in hens following fermented feed supplementation (P < 0.05). Fermented feed was also associated with increases in duodenal, jejunal and ileac villus height (P < 0.05). Laying hens fed fermented feed had higher immune globulin (Ig)A, IgG, IgM levels (P < 0.01,) and higher interleukin 2, interleukin 6, tumour necrosis factor α and interferon γ (P < 0.05) concentrations than CON. Analysis of the microbiota in these laying hens revealed the alpha diversity was not significantly affected by fermented feed supplementation. Firmicutes abundance was reduced in caecal samples from FF hens relative to those from CON hens (30.61 vs 35.12%, P < 0.05). At the genus level, fermented feed was associated with improvements in relative Lactobacillus, Megasphaera and Peptococcus abundance and decreased Campylobacter abundance in laying hens. These results suggest that fermented feed supplementation may be beneficial to the laying performance, egg quality, immunological function, intestinal villus growth and caecal microecological environment of laying hens at the end of the laying cycle.  相似文献   

10.
One hundred and four rabbits, five weeks old at the beginning of the experiment, were divided into four groups according to a feed additive treatment. Rabbits of the 1st, 2nd, 3rd and 4th group were fed a basal granulated feed (control), basal feed supplemented with CuSO4 · 5H2O at 50mg Cu · kg‐1, basal feed supplemented with 150mg Cu · kg‐1, and the latter feed supplemented with 100mg · kg‐1 vitamin E, respectively. The duration of the experiment was 42 days. Addition of Cu at 150mg · kg.‐1 increased weight gain non‐significantly by 9.1%. This effect was the most pronounced in the first two weeks of fattening. The lowest mortality was observed in rabbits fed the highest amount of additives (7.7% vs. 19.2% in the control). Rabbits were slaughtered at the age of 11 weeks. Neither treatment influenced proportions of saturated, monounsaturated and polyunsaturated fatty acids in lipids extracted from the loin and hindleg muscles. In rabbits fed the highest amount of copper and vitamin E, the cholesterol concentration was significantly decreased by 13.6% and 17.9% in the loin and hindleg meat, respectively. Effects of Cu added at 50mg · kg‐1 were marginal. Copper had no effect on the oxidative stability of meat, measured as thiobarbituric acid‐reactive substances in meat stored at 4°C for 0, 3 and 8 days. Vitamin E added in excess of nutritional requirement improved the oxidative stability of meat. In copper‐fed rabbits, Cu accumulated in the liver, but not in muscles. Feeding of the basal feed for 7 days to rabbits previously fed copper sulphate decreased the hepatic Cu concentration by 14.0 to 24.4%  相似文献   

11.
To investigate the effects of administration of raffinose and encapsulated Bifidobacterium breve JCM 1192T cells on the rat cecal microbiota, in a preclinical synbiotic study groups of male WKAH/Hkm Slc rats were fed for 3 weeks with four different test diets: basal diet (group BD), basal diet supplemented with raffinose (group RAF), basal diet supplemented with encapsulated B. breve (group CB), and basal diet supplemented with both raffinose and encapsulated B. breve (group RCB). The bacterial populations in cecal samples were determined by fluorescence in situ hybridization (FISH) and terminal restriction fragment length polymorphism (T-RFLP). B. breve cells were detected only in the RCB group and accounted for about 6.3% of the total cells as determined by FISH analysis. B. breve was also detected only in the RCB group by T-RFLP analysis. This was in contrast to the CB group, in which no B. breve signals were detected by either FISH or T-RFLP. Increases in the sizes of the populations of Bifidobacterium animalis, a Bifidobacterium indigenous to the rat, were observed in the RAF and RCB groups. Principal-component analysis of T-RFLP results revealed significant alterations in the bacterial populations of rats in the RAF and RCB groups; the population in the CB group was similar to that in the control group (group BD). To the best of our knowledge, these results provide the first clear picture of the changes in the rat cecal microbiota in response to synbiotic administration.  相似文献   

12.

Skin mucosal lymphoid tissues of fish are the first line of defence against pathogen invasion. We investigated the effects of Lactiplantibacillus plantarum subsp. plantarum L7, singularly or in combination with Limosilactobacillus reuteri P16, on mucosal immunity and diseases resistance of carp Cyprinus carpio. C. carpio (average weight: 26.28 ± 1.02 g) were divided into five experimental groups. Fish in each group were fed with one of the following potential probiotic-supplemented diets: control (0 – basal diet), D1 (107 CFU/g L7), D2 (108 CFU/g L7), D3 (109 CFU/g L7), and D4 (108 CFU/g L7 + 108 CFU/g P16). Eight weeks post-feeding, growth performance was higher in D4, with a final weight gain of 67.18 ± 1.47 g. Results showed a significantly higher skin mucosal lysozyme, alkaline phosphatase, mucus protein level, superoxide dismutase, and catalase activities in D2 and D4 compared to the control. However, potential probiotics had no significant effect on skin mucosal immunoglobulin level. Skin mucus of D4 exhibited stronger inhibition zones against pathogenic bacterial strains. Moreover, digestive enzyme activities (protease, lipase) were highest in D4. Intesinal lactic acid bacterial counts of fish fed combind probiotics (i.e. D4) was significantly higher than the control. Further, supplementation of potential probiotics altered the expression of IL-1β, TNF-α, and IL-10 cytokines. Fish from D4 exhibited significantly higher relative post-challenge survival (69.7%) against Aeromonas hydrophila, followed by D2 (66.67%). Therefore, the inclusion of L. plantarum subsp. plantarum L7 at 108 CFU/g or in combination with L. reuteri P16 could enhance the growth performance, mucosal immune responses, and disease resistance of C. carpio.

  相似文献   

13.

The present study was conducted to assess the effects of combined and singular dietary administration of PrimaLac® and potassium diformate (KDF) on growth performance, feed utilization, digestive enzymes activity, and some physiological parameters of rainbow trout (Oncorhynchus mykiss) juvenile. Three hundred sixty rainbow trout juveniles (25 ± 1.8 g) were randomly stocked in 300-L tanks (30 fish/tank), and fed three times daily on a basal diet (control), diets incorporated with 12 g kg−1 KDF (FT1), 1.5 g kg−1 PrimaLac® (FT2), and combination of 1.5 g kg−1 probiotic and 12 g kg−1 KDF (FT3) in triplicates, for 8 weeks. At the end of feeding trial, growth performance, body composition, digestive enzymes, liver enzymes, and biochemical parameters were measured. Our results revealed that combined administration of PrimaLac® and KDF (FT3) exhibited significantly higher weight gain and specific growth rate (SGR) compared to other groups (P < 0.05). Glucose and cortisol levels showed no significant differences between fish fed different test diets (P > 0.05). The highest lipase, protease and amylase activity were observed in group of fish fed FT3 followed by FT2 and FT1. Besides, the diets FT2 and FT3 led to significantly lower of ALP, ALT, and AST compared to control group. The present results indicated that combined administration of PrimaLac® and KDF can be considered as a beneficial feed additive and growth promotor for O. mykiss juvenile.

  相似文献   

14.
A 3 to 4 week feed restriction of about 20% to 25% of the free intake is widely applied in rabbit breeding systems to reduce post-weaning digestive disorders. However, a short intensive feed restriction is described in few studies and can be beneficial for growing rabbits due to a longer re-alimentation period. The aim of this study was to evaluate the effect of ad libitum (AL) and two restriction levels of feeding (50 and 65 g/rabbit per day) applied for 1 week on performance, gastrointestinal morphology and physiological parameters during the restriction and during the re-alimentation period. Rabbits were divided into three experimental groups: AL rabbits were fed AL, R1 rabbits were restricted from 42 to 49 days of age and received 50 g daily (29% of AL) and R2 rabbits were restricted at the same age and were fed 65 g of feed daily (37% of AL). In the 1st week after weaning and in the weeks after restriction, all the groups were fed AL. During the restriction period, daily weight gain (DWG) in R1 significantly dropped to 11% (experiment 1) and 5% (experiment 2) compared with rabbits in the AL group, although they were fed 29% of AL, whereas in the R2 group it decreased to 20% (experiment 1) and 10% (experiment 2). In the week following feed restriction, DWG in the restricted groups increased (P<0.001) to 166% and 148% in R1 and to 128% and 145% in R2. Restricted rabbits in both the experiments reached up to 90% to 93% of the final live weight (70 days) of the AL group. Over the entire experimental period, feed restriction significantly decreased feed intake to 85% to 88% of the AL group; however, the feed conversion ratio was lower (P<0.05) only in experiment 1 (−6% in R1 and −4% in R2). Digestibilities of CP and fat were not significantly higher during the restriction period and during the 1st week of re-alimentation compared with the AL group. Significant interactions between feeding regime and age revealed the shortest large intestine in the AL group at 49 days of age and the longest at 70 days in the AL and R1 groups. Small intestinal villi were significantly higher and the crypts were significantly deeper in the restricted groups. It could be concluded that short intensive feed restriction increased digestible area in the small and large intestines, including the height of villi and depth of crypts, which might be involved in the compensatory growth and defence mechanism.  相似文献   

15.
微生态制剂对断奶仔兔生产性能及免疫的影响   总被引:1,自引:0,他引:1  
目的研究微生态制剂对断奶仔兔生产性能、免疫功能的影响,为开发应用新型添加剂提供依据。方法选择64只35日龄、体重相近的断奶仔兔,随机分为4组,每组设2个重复,每个重复8只。实验期为40 d。对照组Ⅰ饲喂基础饲粮,实验组Ⅱ、Ⅲ、Ⅳ在基础日粮中分别添加0.1%、0.3%、0.5%的微生态制剂。测定日增重、饲料报酬、发病率、死亡率、胸腺指数、脾脏指数及T淋巴细胞ANAE阳性细胞百分率等指标。结果实验组Ⅱ、Ⅲ、Ⅳ日增重分别比对照组I提高了10.6%(P〈0.05)、23.967%、27.0%(P〈0.01),饲料报酬分别提高了6.8%、14.3%、15.1%,发病率分别降低了12.5%、18.7%、18.7%,死亡率分别降低了12.5%、12.5%、18.7%,脾脏指数分别提高了11.5%(P〈0.05)、29.5%、34.4%(P〈0.01),胸腺指数分别提高了2.3%、15.9%、17.9%,T淋巴细胞阳性率分别提高了17.7%(P〈0.05)、26.9%、28.4%(P〈0.01)。结论在断奶应激的情况下,饲料中添加微生态制剂可提高仔兔的生产性能和免疫功能。  相似文献   

16.
Dong  Yunxiang  Li  Rong  Liu  Yu  Ma  Lianying  Zha  Jihua  Qiao  Xibo  Chai  Tongjie  Wu  Bo 《Probiotics and antimicrobial proteins》2020,12(4):1385-1397

A strain of Bacillus subtilis (B. subtilis) BYS2 was previously isolated from Mount Tai, which is located in Tai’an City in the Shandong Province of China. The strain was then stored in the Environmental Microbiology Laboratory at Shandong Agricultural University. To evaluate the effect of the bacterium preparation in broiler production, we fed the bacterium (106 CFU/g) to 1-day-old broilers and continued this feeding for 6 weeks to analyze its effect on growth and immune performance. We found that the average weight of the bacterium-fed group increased by 17.19% at weeks 5 compared to the control group (P < 0.05). The height of the villi in the duodenum and jejunum and the ratio of villi to crypt were significantly increased in the bacterium-fed group at weeks 5 (P < 0.05). Also, the IgG in the serum of broilers in the experimental group increased by 31.60% (P < 0.05) and IgM 30.52% (P < 0.05) compared with those in the control group. The expressions of the major pattern recognition receptors (PRRs), antiviral proteins, pro-inflammatory cytokines, and β-defensins were significantly higher than those in the control group (P < 0.05). Meanwhile, the bursa immune organ indices of broilers in the experimental group were significantly higher than those in the control group (P < 0.05). Also, after 5 weeks of continuous feeding, when infected with Escherichia coli (E. coli) O1K1 and Newcastle disease virus (NDV) F48E8, the content of bacteria and virus in tissues and organs of the experimental group decreased significantly, and the survival rate of infected chickens increased by 31.1% and 17.7%, respectively (P < 0.05). These results show that the anti-infective B. subtilis BYS2 could, to some extent, replace antibiotics to promote growth, improve innate immunity, and enhance disease resistance in broilers.

  相似文献   

17.
In the present study, Bacillus subtilis Ch9 was evaluated as a probiotic in grass carp, Ctenopharyngodon idella (Valenciennes, 1844). For 56 days the grass carp (50 ± 2.5 g) were given a feed containing B. subtilis Ch9 in three concentrations: 1.0 × 109 (T1), 3.0 × 109 (T2) and 5.0 × 109 (T3) CFU kg?1 feed in triplicate treatments. The control group (T0) was given feed without B. subtilis Ch9 for the same period. Determined were the specific growth rate (SGR), feed conversion ratio (FCR), and digestive enzyme activities in the intestine and hepatopancreas as well as the intestinal microflora. After 56 days, fish receiving the diets supplemented with B. subtilis Ch9 showed significantly higher SGR and lower FCR (P < 0.05) than those fed the control diet. There was no significant different in SGR and FCR among T1, T2 and T3 nor was the survival rate affected (P > 0.05) by the dietary treatments. From days 14 to 56 of the experiment, higher protease, amylase and lipase activities in the foregut, midgut hindgut and hepatopancreas were observed in T1, T2 and T3 (P < 0.05) compared with the control over a short‐term (14–28 days). Enzyme activity did not increase after long‐term feeding with B. subtilis Ch9 (56 days), but was still higher than that of control fish (P < 0.05). Fish fed the probiotic had an increase in trend of total aerobic and facultative anaerobic bacterial quantity (P > 0.05), but the ratio of Bacillus was significantly higher (P < 0.05) than in control fish. The total anaerobic bacterial quantity, Bifidobacterium and Lactobacillus were significantly higher (P < 0.05) in fish fed B. subtilis Ch9 compared with fish fed control feed. In conclusion, an optimum dose of B. subtilis Ch9 could modulate intestinal microflora, induce digestive enzyme activity and potentially promote the digestion and absorption of nutrients, as well as improve the growth performance of grass carp significantly.  相似文献   

18.

The present study was conducted to evaluate the effects of dietary supplementation of recombinant plectasin (Ple) on the growth performance, intestinal health, and serum immune parameters in broilers. A total of 288 1-day-old male broilers (Arbor Acres) were randomly allotted to four dietary treatments including the basal diet (NC) and basal diet supplemented with 10 mg enramycin/kg (PC), 100 mg Ple/kg (LPle), and 200 mg Ple/kg (HPle) diets. The results indicated Ple increased (P < 0.01) average daily gain and decreased (P ≤ 0.02) feed to gain ratio of broilers. In addition, the supplementation of Ple in the diets increased (P ≤ 0.01) duodenal lipase (day 21) and trypsin (day 42) activities compared with the NC group. Similar as the supplementation of enramycin, Ple also increased villus height and decreased crypt depth in jejunum (day 21), and thus the villus height to crypt depth ratio (P < 0.01) was increased compared to the NC group on day 42. The serum immunoglobulin M (days 21 and 42), immunoglobulin G (day 42), complement 3 (day 21), and complement 4 (days 21 and 42) were significantly increased (P ≤ 0.02) due to the supplementation of Ple and enramycin, while the concentration of malondialdehyde in jejunum was decreased (P < 0.01) in PC, LPle, and HPle groups on day 21 compared with those in the NC group. Furthermore, Ple reduced (P < 0.01) Escherichia coli and total aerobic bacteria population in ileum and cecum of birds on days 21 and 42. These results indicate that the recombinant plectasin has beneficial effects on growth performance, intestinal health, and innate immunity in broilers.

  相似文献   

19.
Lactobacilli have been associated with a variety of immunomodulatory effects and some of these effects have been related to changes in gastrointestinal microbiota. However, the relationship between probiotic dose, time since probiotic consumption, changes in the microbiota, and immune system requires further investigation. The objective of this study was to determine if the effect of Lactobacillus casei 32G on the murine gastrointestinal microbiota and immune function are dose and time dependent. Mice were fed L. casei 32G at doses of 106, 107, or 108 CFU/day/mouse for seven days and were sacrificed 0.5h, 3.5h, 12h, or 24h after the last administration. The ileum tissue and the cecal content were collected for immune profiling by qPCR and microbiota analysis, respectively. The time required for L. casei 32G to reach the cecum was monitored by qPCR and the 32G bolus reaches the cecum 3.5h after the last administration. L. casei 32G altered the cecal microbiota with the predominance of Lachnospiraceae IS, and Oscillospira decreasing significantly (p < 0.05) in the mice receiving 108 CFU/mouse 32G relative to the control mice, while a significant (p < 0.05) increase was observed in the prevalence of lactobacilli. The lactobacilli that increased were determined to be a commensal lactobacilli. Interestingly, no significant difference in the overall microbiota composition, regardless of 32G doses, was observed at the 12h time point. A likely explanation for this observation is the level of feed derived-nutrients resulting from the 12h light/dark cycle. 32G results in consistent increases in Clec2h expression and reductions in TLR-2, alpha-defensins, and lysozyme. Changes in expression of these components of the innate immune system are one possible explanation for the observed changes in the cecal microbiota. Additionally, 32G administration was observed to alter the expression of cytokines (IL-10rb and TNF-α) in a manner consistent with an anti-inflammatory response.  相似文献   

20.
Lactobacillus casei strain Shirota (LcS) is a widely used probiotic strain with health benefits. In this study, the survival of LcS in the intestines of healthy Chinese adults was assessed and the effects of LcS on stool consistency, stool SCFAs and intestinal microbiota evaluated. Subjects consumed 100 mL per day of a probiotic beverage containing 1.0 × 108 CFU/mL of LcS for 14 days. LcS were enumerated using a culture method and the colony identity confirmed by ELISA. Fourteen days after ingestion, the amount of LcS recovered from fecal samples was between 6.86 ± 0.80 and 7.17 ± 0.57 Log10 CFU/g of feces (mean ± SD). The intestinal microbiotas were analyzed by denaturing gradient gel electrophoresis. Principal component analysis showed that consuming LcS significantly changed fecal microbiota profiles. According to redundancy analysis, the amounts of 25 bacterial strains were significantly correlated with LcS intake (P < 0.05), 11 of them positively and fourteen negatively. Concentrations of acetic acid and propionic acid in feces were significantly lower during the ingestion period than during the baseline period (P < 0.05). These results confirm that LcS can survive passage through the gastrointestinal tract of Chinese people; however, they were found to have little ability to persist once their consumption had ceased. Furthermore, consumption of probiotic beverages containing LcS can modulate the composition of the intestinal microbiota on a long‐term basis, resulting in decreased concentrations of SCFAs in the gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号