首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Landraces are domesticated local plant varieties that did not experience a deliberate and intensive selection during a formal breeding programme. In Europe, maize landraces are still cultivated, particularly in marginal areas where traditional farming is often practiced. Here, we have studied the evolution of flint maize landraces from central Italy over 50 years of on-farm cultivation, when dent hybrid varieties were introduced and their use was widespread. We have compared an 'old' collection, obtained during the 1950s, before the introduction of hybrids, and a recent collection of maize landraces. For comparison, a sample of maize landraces from north Italy, and of improved germplasm, including hybrids and inbred lines were also used. A total of 296 genotypes were analysed using 21 microsatellites. Our results show that the maize landraces collected in the last 5–10 years have evolved directly from the flint landrace gene pool cultivated in central Italy before the introduction of modern hybrids. The population structure, diversity and linkage disequilibrium analyses indicate a significant amount of introgression from hybrid varieties into the recent landrace populations. No evidence of genetic erosion of the maize landraces was seen, suggesting that in situ conservation of landraces is an efficient strategy for preserving genetic diversity. Finally, the level of introgression detected was very variable among recent landraces, with most of them showing a low level of introgression; this suggests that coexistence between different types of agriculture is possible, with the adoption of correct practices that are aimed at avoiding introgression from undesired genetic sources.  相似文献   

2.
Landraces are valuable genetic resources for broadening the genetic base of elite germplasm in maize. Extensive exploitation of landraces has been hampered by their genetic heterogeneity and heavy genetic load. These limitations may be overcome by the in-vivo doubled haploid (DH) technique. A set of 132 DH lines derived from three European landraces and 106 elite flint (EF) lines were genotyped for 56,110 single nucleotide polymorphism (SNP) markers and evaluated in field trials at five locations in Germany in 2010 for several agronomic traits. In addition, the landraces were compared with synthetic populations produced by intermating DH lines derived from the respective landrace. Our objectives were to (1) evaluate the phenotypic and molecular diversity captured within DH lines derived from European landraces, (2) assess the breeding potential (usefulness) of DH lines derived from landraces to broaden the genetic base of the EF germplasm, and (3) compare the performance of each landrace with the synthetic population produced from the respective DH lines. Large genotypic variances among DH lines derived from landraces allowed the identification of DH lines with grain yields comparable to those of EF lines. Selected DH lines may thus be introgressed into elite germplasm without impairing its yield level. Large genetic distances of the DH lines to the EF lines demonstrated the potential of DH lines derived from landraces to broaden the genetic base of the EF germplasm. The comparison of landraces with their respective synthetic population showed no yield improvement and no reduction of phenotypic diversity. Owing to the low population structure and rapid decrease of linkage disequilibrium within populations of DH lines derived from landraces, these would be an ideal tool for association mapping. Altogether, the DH technology opens new opportunities for characterizing and utilizing the genetic diversity present in gene bank accessions of maize.  相似文献   

3.
Studies of the level and the structure of the genetic diversity of local varieties of Phaseolus vulgaris are of fundamental importance, both for the management of genetic resources and to improve our understanding of the pathways of dissemination and the evolution of this species in Europe. We have here characterized 73 local bean populations from Sardinia (Italy) using seed traits and molecular markers (phaseolins, nuSSRs and cpSSRs). American landraces and commercial varieties were also included for comparison. We see that: (a) the Sardinian material is distinct from the commercial varieties considered; (b) the variation in the seed traits is high and it mostly occurs among populations (95%); (c) compared to the American sample and the commercial varieties, the Sardinian collection has a low level of diversity; (d) the majority (>95%) of the Sardinian individuals belong to the Andean gene pool; (e) the Sardinian material shows a strong genetic structure, both for cpSSRs and nuSSRs; (f) the nuSSRs and cpSSRs concur in differentiating between gene pools, but a lack of congruence between nuclear and chloroplast has been observed within gene pools; and (g) there are three putative hybrids between the Andean and Mesoamerican gene pools. Despite the relatively low level of diversity, which is probably due to a strong founder effect, the Sardinian landraces are worth being conserved and studied further because of their distinctiveness and because hybridization within and between the gene pools could generate variation that will be useful for breeding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The capability of molecular markers to provide information of genetic structure is influenced by their number and the way they are chosen. This study evaluates the effects of single nucleotide polymorphism (SNP) number and selection strategy on estimates of germplasm diversity and population structure for different types of barley germplasm, namely cultivar and landrace. One hundred and sixty-nine barley landraces from Syria and Jordan and 171 European barley cultivars were genotyped with 1536 SNPs. Different subsets of 384 and 96 SNPs were selected from the 1536 set, based on their ability to detect diversity in landraces or cultivated barley in addition to corresponding randomly chosen subsets. All SNP sets except the landrace-optimised subsets underestimated the diversity present in the landrace germplasm, and all subsets of SNP gave similar estimates for cultivar germplasm. All marker subsets gave qualitatively similar estimates of the population structure in both germplasm sets, but the 96 SNP sets showed much lower data resolution values than the larger SNP sets. From these data we deduce that pre-selecting markers for their diversity in a germplasm set is very worthwhile in terms of the quality of data obtained. Second, we suggest that a properly chosen 384 SNP subset gives a good combination of power and economy for germplasm characterization, whereas the rather modest gain from using 1536 SNPs does not justify the increased cost and 96 markers give unacceptably low performance. Lastly, we propose a specific 384 SNP subset as a standard genotyping tool for middle-eastern landrace barley.  相似文献   

5.
The East African highlands are a region of important common bean production and high varietal diversity for the crop. The objective of this study was to uncover the diversity and population structure of 192 landraces from Ethiopia and Kenya together with four genepool control genotypes using morphological phenotyping and microsatellite marker genotyping. The germplasm represented different common bean production ecologies and seed types common in these countries. The landraces showed considerable diversity that corresponded well to the two recognized genepools (Andean and Mesoamerican) with little introgression between these groups. Mesoamerican genotypes were predominant in Ethiopia while Andean genotypes were predominant in Kenya. Within each country, landraces from different collection sites were clustered together indicating potential gene flow between regions within Kenya or within Ethiopia. Across countries, landraces from the same country of origin tended to cluster together indicating distinct germplasm at the national level and limited gene flow between the two countries highlighting divided social networks within the regions and a weak trans-national bean seed exchange especially for landrace varieties. One exception to this may be the case of small red-seeded beans where informal cross-border grain trade occurs. We also observed that genetic divergence was slightly higher for the Ethiopian landraces compared to Kenyan landraces and that Mesoamerican genotypes were more diverse than the Andean genotypes. Common beans in eastern Africa are often cultivated in marginal, risk-prone farming systems and the observed landrace diversity should provide valuable alleles for adaptation to stressful environments in future breeding programs in the region.  相似文献   

6.

Background

Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley.

Methods

A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity.

Results

According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation.

Conclusions

Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area.  相似文献   

7.
Conservation of crop genetic resources is now considered an important component of sustainable agricultural development. If conservation of genetic resources for agriculture is to be successful, a more complete understanding of the dynamics affecting traditional (landrace) crop populations is needed. We conducted a study of maize-based agriculture in the Central Highlands of Mexico in communities at 2400, 1700, 1400, and 1200 masl to assess the status of traditional varieties in an area characterized by thorough integration into the national economy. Our research contradicts the view that modern varieties persist because of marginal conditions, deficient infrastructure, weaker markets, or traditional attitudes. One or two landraces dominated highland maize populations and farmers appeared to be more conservative in terms of their emphasis on traditional maize varieties than at lower elevations. The dominance of traditional varieties in the highlands is well known but poorly explained, and the coexistence of traditional and modern varieties in the mid-elevations was unexpected. Our highland study area has good roads, is near Mexico City, and is less than 50 km away from four major crop research institutes that have done maize breeding since 1950’s. We suggest that in situ conservation of maize genetic resources in the highlands is sustained because the landraces there have good agronomic performance and are highly valued by farmers for their end-use qualities. At the mid-elevations, competition between local and modern maize was sharpest, and farmers have found that both landraces and improved varieties suit their needs, hence enhancing genetic diversity. Interventions and incentives would appropriately be carried out here to assure in situ conservation of locally adapted landraces of maize.  相似文献   

8.
Dyer GA  González C  Lopera DC 《PloS one》2011,6(12):e29067
Our ability to manage gene flow within traditional agroecosystems and their repercussions requires understanding the biology of crops, including farming practices' role in crop ecology. That these practices' effects on crop population genetics have not been quantified bespeaks lack of an appropriate analytical framework. We use a model that construes seed-management practices as part of a crop's demography to describe the dynamics of cassava (Manihot esculenta Crantz) in Cauca, Colombia. We quantify several management practices for cassava--the first estimates of their kind for a vegetatively-propagated crop--describe their demographic repercussions, and compare them to those of maize, a sexually-reproduced grain crop. We discuss the implications for gene flow, the conservation of cassava diversity, and the biosafety of vegetatively-propagated crops in centers of diversity. Cassava populations are surprisingly open and dynamic: farmers exchange germplasm across localities, particularly improved varieties, and distribute it among neighbors at extremely high rates vis-à-vis maize. This implies that a large portion of cassava populations consists of non-local germplasm, often grown in mixed stands with local varieties. Gene flow from this germplasm into local seed banks and gene pools via pollen has been documented, but its extent remains uncertain. In sum, cassava's biology and vegetative propagation might facilitate pre-release confinement of genetically-modified varieties, as expected, but simultaneously contribute to their diffusion across traditional agroecosystems if released. Genetically-modified cassava is unlikely to displace landraces or compromise their diversity; but rapid diffusion of improved germplasm and subsequent incorporation into cassava landraces, seed banks or wild populations could obstruct the tracking and eradication of deleterious transgenes. Attempts to regulate traditional farming practices to reduce the risks could compromise cassava populations' adaptive potential and ultimately prove ineffectual.  相似文献   

9.
Hao C  Wang L  Ge H  Dong Y  Zhang X 《PloS one》2011,6(2):e17279
Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of <5% were found in the landrace and modern variety gene pools, respectively, indicating greater numbers of rare variants, or likely new alleles, in landraces. Analysis of molecular variance (AMOVA) showed that A genome had the largest genetic differentiation and D genome the lowest. In contrast to genetic diversity, modern varieties displayed a wider average LD decay across the whole genome for locus pairs with r(2)>0.05 (P<0.001) than the landraces. Mean LD decay distance for the landraces at the whole genome level was <5 cM, while a higher LD decay distance of 5-10 cM in modern varieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5 ~ 25 cM) compared to landraces (<5 ~ 15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources.  相似文献   

10.
Dynamic Management of Maize Landraces in Central Mexico   总被引:1,自引:0,他引:1  
Conservationists of crop genetic resources have feared that in situ conservation was not viable for agriculture precisely because of changes resulting from introduction of new varieties of existing crops, new crops, and new farm practices. In addition, conservation within farming systems necessarily implies a constantly changing crop population resulting from the processes of crop evolution. Even though in situ conservation of crop genetic resources is now generally understood to be dynamic, there are few examples of how evolution takes place in farmers fields. This study describes several changes in maize landraces in four communities along an altitude transect in Central Mexico (1200 to 2400 masl). While true modern varieties have not been widely adopted in the study region, farmer management results in numerous changes in maize landrace populations. Five types of dynamic management were observed: (1) purposeful hybridization between traditional and modern maize types, (2) possible creation of a new maize landrace by directional selection of the progeny of hybridization between two traditional landraces, (3) displacement of a local landrace by the introduction of a modern variety and a non-local landrace, (4) maintenance of stable populations of a locally dominant landrace, and (5) market-driven selection for a minor variety. We concur that in situ conservation of crops must be conceived as an open process where the objective is not to maintain historic varieties or static genetic conditions. Rather, in situ conservation of crops is totally in the hands of the farmer, although interventions may be designed to influence farmers’ management of agrobiodiversity.  相似文献   

11.
The genetic diversity of high-molecular-weight (HMW) glutenin subunits in 18 cultivated emmer wheat landrace populations, originating from Turkey, was investigated using sodium dodecyl sulphate polyacrylamide gel electrophoresis. The mean number of alleles (n a) and effective alleles (n ea) were observed as 3.67 and 1.53, respectively. The mean values of expected heterozygosity (gene diversity) (H e) and average heterozygosity (H e,av) were calculated as 0.31 and 0.12, respectively. Actual genetic differentiation (D) and gene flow (N m) between the different populations were observed as 0.24 and 0.16, respectively. Statistical analysis of Pearson’s correlation, multiple regressions and principal component analysis indicated that eco-geographical variables have a significant effect on HMW-glutenin diversity. Considering the dramatic decrease in genetic diversity of modern high-yielding cultivars, the conservation of genetic diversity in these wheat landraces, and in other old cultivars, is important for improving modern monocultures and their ability to resist biotic and abiotic conditions caused by climate changes, thus generating a wide adaption to a variety of environmental conditions. Adoptation measures for germplasm conservation of Turkish emmer wheat landraces and utilisation of their germplasm for improvement of modern wheat varieties were discussed in this study.  相似文献   

12.
《Trends in plant science》2023,28(5):544-551
Future crops need to be sustainable in the face of climate change. Modern barley varieties have been bred for high productivity and quality; however, they have suffered considerable genetic erosion, losing crucial genetic diversity. This renders modern cultivars vulnerable to climate change and stressful environments. We highlight the potential to tailor crops to a specific environment by utilising diversity inherent in an adapted landrace population. Tapping into natural biodiversity, while incorporating information about local environmental and climatic conditions, allows targeting of key traits and genotypes, enabling crop production in marginal soils. We outline future directions for the utilisation of genetic resources maintained in landrace collections to support sustainable agriculture through germplasm development via the use of genomics technologies and big data.  相似文献   

13.
We present the first study of patterns of genetic diversity of sorghum landraces at the local scale. Understanding landrace diversity aids in deciphering evolutionary forces under domestication, and has applications in the conservation of genetic resources and their use in breeding programs. Duupa farmers in a village in Northern Cameroon distinguished 59 named sorghum taxa, representing 46 landraces. In each field, seeds are sown as a mixture of landraces (mean of 12 landraces per field), giving the potential for extensive gene flow. What level of genetic diversity underlies the great morphological diversity observed among landraces? Given the potential for gene flow, how well defined genetically is each landrace? To answer these questions, we recorded spatial patterns of planting and farmers’ perceptions of landraces, and characterized 21 landraces using SSR markers. Analysis using distance and clustering methods grouped the 21 landraces studied into four clusters. These clusters correspond to functionally and ecologically distinct groups of landraces. Within-landrace genetic variation accounted for 30% of total variation. The average F is over landraces was 0.68, suggesting high inbreeding within landraces. Differentiation among landraces was substantial and significant (F st = 0.36). Historical factors, variation in breeding systems, and farmers’ practices all affected patterns of genetic variation. Farmers’ practices are key to the maintenance, despite gene flow, of landraces with different combinations of agronomically and ecologically pertinent traits. They must be taken into account in strategies of conservation and use of genetic resources.  相似文献   

14.
There is an increasing concern over the loss of germplasm diversity in areas of crop domestication. Nevertheless in these areas many farmers continue to maintain a pool of varieties, many of them landraces, despite the fact that they have also incorporated improved varieties, and that some landraces have been eliminated. This paper provides a framework for analyzing the decision of a farmer to maintain, incorporate or discard a variety from his/her repertoire of varieties of one crop. It is based on an analysis of the roles that crop infraspecific diversity can play in a farmer’s well-being, how these roles change, the limits to these changes, and some predictions and suggestions derived from this framework.  相似文献   

15.
Multilocus digenic linkage disequilibria (LD) and their population structure were investigated in eleven landrace populations of barley (Hordeum vulgare ssp. vulgare L.) in Sardinia, using 134 dominant simple-sequence amplified polymorphism markers. The analysis of molecular variance for these markers indicated that the populations were partially differentiated (F(ST) = 0.18), and clustered into three geographic areas. Consistent with this population pattern, STRUCTURE analysis allocated individuals from a bulk of all populations into four genetic groups, and these groups also showed geographic patterns. In agreement with other molecular studies in barley, the general level of LD was low (13% of locus pairs, with P < 0.01) in the bulk of 337 lines, and decayed steeply with map distance between markers. The partitioning of multilocus associations into various components indicated that genetic drift and founder effects played a major role in determining the overall genetic makeup of the diversity in these landrace populations, but that epistatic homogenising or diversifying selection was also present. Notably, the variance of the disequilibrium component was relatively high, which implies caution in the pooling of barley lines for association studies. Finally, we compared the analyses of multilocus structure in barley landrace populations with parallel analyses in both composite crosses of barley on the one hand and in natural populations of wild barley on the other. Neither of these serves as suitable mimics of landraces in barley, which require their own study. Overall, the results suggest that these populations can be exploited for LD mapping if population structure is controlled.  相似文献   

16.
As maize was domesticated in Mexico around 9,000 years ago, local farmers have selected and maintained seed stocks with particular traits and adapted to local conditions. In the present day, many of these landraces are still cultivated; however, increased urbanization and migration from rural areas implies a risk that this invaluable maize germplasm may be lost. In order to implement an efficient mechanism of conservation in situ, the diversity of these landrace populations must be estimated. Development of a method to select the minimum number of samples that would include the maximum number of alleles and identify germplasm harboring rare combinations of particular alleles will also safeguard the efficient ex‐situ conservation of this germplasm. To reach this goal, a strategy based on SSR analysis and a novel algorithm to define a minimum collection and rare genotypes using landrace populations from Puebla State, Mexico, was developed as a “proof of concept” for methodology that could be extended to all maize landrace populations in Mexico and eventually to other native crops. The SSR‐based strategy using bulked DNA samples allows rapid processing of large numbers of samples and can be set up in most laboratories equipped for basic molecular biology. Therefore, continuous monitoring of landrace populations locally could easily be carried out. This methodology can now be applied to support incentives for small farmers for the in situ conservation of these traditional cultivars.  相似文献   

17.
The pool of Western Mediterranean landraces has been under-utilised for barley breeding so far. The objectives of this study were to assess genetic diversity in a core collection of inbred lines derived from Spanish barley landraces to establish its relationship to barleys from other origins, and to correlate the distribution of diversity with geographical and climatic factors. To this end, 64 SSR were used to evaluate the polymorphism among 225 barley (Hordeum vulgare ssp. vulgare) genotypes, comprising two-row and six-row types. These included 159 landraces from the Spanish barley core collection (SBCC) plus 66 cultivars, mainly from European countries, as a reference set. Out of the 669 alleles generated, a large proportion of them were unique to the six-row Spanish barleys. An analysis of molecular variance revealed a clear genetic divergence between the six-row Spanish barleys and the reference cultivars, whereas this was not evident for the two-row barleys. A model-based clustering analysis identified an underlying population structure, consisting of four main populations for the whole genotype set, and suggested further possible subdivision within two of these populations. Most of the six-row Spanish landraces clustered into two groups that corresponded to geographic regions with contrasting environmental conditions. The existence of wide genetic diversity in Spanish germplasm, possibly related to adaptation to a broad range of environmental conditions, and its divergence from current European cultivars confirm its potential as a new resource for barley breeders, and make the SBCC a valuable tool for the study of adaptation in barley. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Landraces and old, obsolete cultivars are a rich source of diversity and could become important and easy‐to‐use germplasm resources for breeding. They are characterised by yield stability, broad adaptation, tolerance to diseases and a greater competitiveness in the presence of weeds. The main objective of this study was to estimate and compare the genetic diversity among and within landraces, old cultivars and modern cultivars of common oat. Inter simple sequence repeats were used to study the genetic diversity of 12 modern Polish cultivars, 23 old Polish cultivars, 19 native landraces and 5 contemporary European cultivars. The results indicated a low amount of diversity among Polish modern cultivars, but an even lower diversity among old Polish cultivars, as well as large differences between these two gene pools. As expected, the landraces were the most diverse group and showed the highest internal variation. The landraces and old cultivars might serve as sources of useful alleles that have never been used in breeding. Additionally, it was possible to identify errors and inconsistencies in the passport data of gene‐bank accessions. These results can be applied to the maintenance and management of gene‐bank collections.  相似文献   

19.
Results from a study of maize varieties and seed sources in a traditional community in Jalisco, Mexico, raise questions about the relationship between genetic erosion and the introduction of varieties. The relevance of models for in situ conservation of crop genetic resources based on geographical isolation of a community is discussed. The morphophenological diversity of local materials is shown to be enhanced by introductions of both improved cultivars and landraces from farmers in other communities. On the other hand, the geographical point of reference for defining “local” landrace is shown to be larger than the community itself. Farmers will classify seed obtained from other farmers in and outside the community as that of a local landrace if it resembles their own according to the phenotypic characteristics they use to distinguish varieties. Maize diversity in this community is then the result of a certain level of introduction of genetic material and not of geographical isolation.  相似文献   

20.
Genetic interpretation and diversity of 9 isozyme loci have been estimated in 7 improved varieties and 19 landraces from Sweden by means of starch gel electrophoresis. The isozyme systems were ACO, DIA, GPI, MDH, PGD and PGM. For the statistic analysis we used the following measures: average number of alleles per locus, percentage of polymorphic loci, average heterozygosity direct count and average heterozygosity Hardy-Weinberg expected unbiased estimate. The measures were made on species and population levels. The distribution of the total genetic diversity among populations was also calculated. To illustrate the genetic relationships among populations, genetic distances were measured and principal component analysis performed. As expected in a cross-pollinated crop we found high genetic diversity and a larger variation within than among the populations. Somewhat unexpectedly, however, we found that the currently used varieties have the same high level of heterozygosity as the landraces but in the dendrogram the two groups are separated. The dendrogram showed three main clusters. The large cluster included 21 populations and the two small clusters were clearly distinguishable from the rest. The landrace spring-type could not be separated from the landraces winter-type, but we did detect a difference between different spring types. A few populations had unique alleles for certain loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号