首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New brain peptides are being discovered with increasing frequency.The discovery of multiple forms of MSH and evidence for a novelpeptide structurally related to MIF-1 may provide avenues fornew insights into the mechanisms controlling MSH release Demonstrationthat levels of the new tetrapeptide Tyr-MIF-1 are higher insome parts of the brain than in others and can be altered byneuroendocrine manipulations raises the possibility that thispeptide may affect CNS functions regardless of any effects onMSH release. Early studies on the extra-pigmentary effects ofMSH and MIF-1, which ushered in the field of brain peptides,provide models for the exploration of these possibilities. Explanationsfor unusual dose-response relationships, chronic effects afterneonatal injections, and the mechanisms by which peripherallyadministered peptides reach the brain to exert behavioral andEEG actions remain to be found  相似文献   

2.
Selenium and exendin-4 exert antidiabetic effects by unknown mechanisms. Herein, we investigated their effects on the expression of glucagon-like peptide-1 receptor (GLP-1R), insulin receptor substrate-1 (IRS-1), and Raf-1 in the livers of rats with streptozotocin-induced diabetes. Diabetic rats were injected intraperitoneally with exendin-4 (0.03?μg/kg body weight) twice daily or treated with 5?ppm selenium as sodium selenite in drinking water for 4?weeks. Both selenium and exendin-4 reduced the hyperglycemia in diabetic rats. Induction of diabetes mellitus resulted in decreased level of GLP-1R and increased levels of IRS-1 and Raf-1 in the liver. Treatment of diabetic rats with selenium or exendin-4 resulted in increased level of GLP-1R and decreased levels of IRS-1 and Raf-1 in the liver, compared with the levels in diabetic rats. Therefore, the antidiabetic actions of selenium and exendin-4 involve their effects on GLP-1R, IRS-1, and Raf-1 levels in the liver.  相似文献   

3.
4.
BackgroundPresence of unperfused regions containing cells under hypoxia and nutrient starvation; contributes to radioresistance in solid human tumors. We have previously reported that cultured cells; under nutrient starvation show resistance to ionizing radiation compare with cells under normal; condition, and that nutrient starvation increases ATM activity, which causes cellular resistance to; ionizing radiation (Murata et al., BBRC2018). For further investigation of molecular mechanisms; underlying radioresistance of cells under nutrient starvation, effects of nutrient starvation on activity; of DNA-PKcs have been investigated because both DNA-PKcs and ATM belong to the PIKK family; and are required for DNA DSBs repair. In addition to DNA-PKcs, effects of nutrient starvation on; activities of FoxO3a and its regulators Akt, MST1 and AMPK have been investigated because FoxO3a; mediates cellular responses to stress and is activated under nutrient starvation.MethodsA human glioblastoma cell line, T98G was used to examine the effects of nutrient starvation on activities and expression of DNA-PKcs, Akt, MST1, FoxO3a, NDR1, and AMPK. To elucidate; signal transduction pathways for FoxO3a activation under nutrient starvation, we examined effects of; specific inhibitors or siRNA for DNA-PKcs or Akt on activities and expression of MST1, FoxO3, NDR1, andAMPK.ResultsUnder nutrient starvation, phosphorylations of DNA-PKcs at Ser2056, Akt at Ser473, MST at Thr183, FoxO3a at Ser413, NDR1 at Ser281 and Thr282, and AMPK at Thr172 were increased, which suggests their activation. Nutrient starvation did not affect expression of DNA-PKcs, Akt, MST1, or NDR1, with decreased expression of FoxO3a and increased expression of AMPK. Inhibition; of DNA-PK suppressed phosphorylation of Akt under nutrient starvation. Inhibition of DNA-PK or; Akt suppressed phosphorylations of MST1, FoxO3a, and NDR1 under nutrient starvation, which; suggests DNA-PKcs and Akt activate MST1, FoxO3a, and NDR1. Inhibition of DNA-PK did not; suppress phosphorylation ofAMPK under nutrient starvation.ConclusionOur data suggest that DN-PKcs is activated under nutrient starvation and activates AktMST1, FoxO3a, and NDR1.  相似文献   

5.
In these experiments we have examined the effects of PGE1, PGE2, PGF1alpha and PGF2alpha on synovial perfusion in the normal canine synovial microcirculation. The effects of the drugs on synovial perfusion were determined indirectly from the changes produced in the rate of clearance of 133Xenon from the joint by their intra-articular injection. Prostaglandins PGE1 and PGE2 were found to be strongly vasodilator with PGE1 being the more active. PGF1alpha appeared to have little or no vasoactive properties in doses up to 1 ugm. (2.8 times 10(-5M)) in our preparation while PGF2alpha was vasodilator at this high dosage only. Neither SC19920 nor diphloretin phosphate antagonished the effects of PGE1 in these experiments.  相似文献   

6.
W L Dills  W L Meyer 《Biochemistry》1976,15(20):4506-4512
1-Deoxy-D-fructose was synthesized in 27% yield from D-glucosamine in a three-step procedure involving Raney nickel desulfurization and oxidative deamination with 3,5-di-tert-butyl- 1,2-benzoquinone applied to appropriate intermediates. 1-Deoxyfructose and its reduction products, 1-deoxyglucitol and 1-deoxymannitol, were tested as substrates and antimetabolites. For sheep liver glucitol dehydrogenase, the Km is 53 mM for 1-deoxymannitol, were tested as substrates and antimetabolites. For sheep liver glucitol dehydrogenase, the Km is 53 mM for 1-deoxyglucitol and 89 mM for 1-deoxymannitol with maximal velocities 33 and 18%, respectively, of that with glucitol as substrate. These results require substantial revision of the long-accepted polyol substrate structural requirements for this enzyme which have been reported to include a 1-hydroxy group and a cis-2,4-dihydroxy configuration. Km is 614 and 280 mM for yeast and muscle hexokinases, respectively, acting on 1-deoxyfructose; maximal velocities are 2 and 5% of those obtained with fructose. 1-Deoxyfructose 6-phosphate is a competitive inhibitor of phosphoglucose isomerase with a Ki of 1.1 mM; this is about the same as Km for the natural substrates. It is also an effective inhibitor of phosphofructokinase but does not alter the cooperativity of the enzyme interaction with fructose 6-phosphate nor exhibit cooperativity in its own interaction therewith. These results suggest that the 1-hydroxy group is not crucial for binding but does play a role in the cooperative interactions of this allosteric protein. At equivalent concentrations, 1-deoxyfructose is somewhat better than 2-deoxyglucose as an inhibitor of erythrocyte glycolysis; the 1-deoxypolyols are ineffective. All three 1-deoxy compounds are readily, though incompletely, absorbed from the intestine of mice; most of the absorbed dose appears in the urine unchanged within 24 h. Whether given by oral or intraperitoneal routes, 2 to 6% of administered deoxypolyol or deoxyketose appears in the urine as ketose or polyol, respectively. No acute toxic effects or growth retardation are noted for any of the 1-deoxy analogues when given to mice at levels where 2-deoxyglucose has such effects. The properties of these 1-deoxy sugar analogues recommend them for further studies of enzyme mechanisms, for metabolic studies, and for testing as therapeutic agents against such organisms as certain mammalian parasites with heavy reliance on glycolysis.  相似文献   

7.
8.
Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.  相似文献   

9.
Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s K m, increasing its V max, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ K m are concerned. In the cases of V max values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to V max increases. Additionally, the BSA effects may be UGT subfamily dependent since K m decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large V max increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs.  相似文献   

10.
p-Carbethoxyphenyl episol-guanidinocaproate and p-(p'-guanidinobenzoyloxy)-phenyl derivatives were prepared, and their inhibitory effects on trypsin, plasmin, plasma kallikrein, thrombin, C1r- and C1 esterase were examined. Among the various inhibitors tested, p-nitrophenyl p'-guanidinobenzoate, N,N-dimethylamino p-(p'-guanidinobenzoyloxy)-benzoyl glycolate and N,N-dimethylamino p-(p'-guanidinobenzoyloxy)-benzilcarbonyloxy glycolate were the most effective inhibitors of trypsin, plasmin, plasma kallikrien and thrombin, and they strongly inhibited the esterolytic activities of C1r- and C1 esterase.  相似文献   

11.
p-Guanidinobenzoate derivates were prepared and their inhibitory effects on trypsin, plasmin, pancreatic kallikrein, plasma kallikrein, thrombin, C1r and C1 esterase were examined. Among the various inhibitors tested, 6'-amidino-2-naphthyl-4-guanidinobenzoate dihydrochloride, 4-(beta-amidinoethenyl)phenyl-4-guanidinobenzoate dimethanesulfonate and 4-amidino-2-benzoylphenyl-4-guanidinobenzoate dimethanesulfonate were the most effective inhibitors of trypsin, plasmin, pancreatic kallikrein. plasma kallikrein and thrombin and they strongly inhibited the esterolytic activities of C1r and C1 esterase, and then strongly inhibited complement-mediated hemolysis.  相似文献   

12.
The purpose of this study was to determine whether all D-vasoactive intestinal peptide (VIP), an inactive optical isomer of L-VIP, modulates the vasorelaxant effects of human L-VIP and pituitary adenylate cyclase activating peptide (PACAP)1-38, two ubiquitous and pleiotropic neuropeptides that activate VPAC1 and VPAC2, two VIP subtype receptors, in the intact peripheral microcirculation. Using intravital microscopy, we found that suffusion of all D-VIP had no significant effects on arteriolar diameter in the intact hamster cheek pouch. However, all D-VIP significantly attenuated L-VIP-induced vasodilation in a concentration-dependent fashion (P<0.05). likewise, all D-VIP significantly attenuated the vasorelaxant effects of L-VIP associated with sterically stabilized phospholipid micelles (SSM; P<0.05). Although all D-VIP had no significant effects on L-PACAP1-38-induced vasodilation, it abrogated PACAP1-38 in SSM-induced responses (P<0.05). The effects of all D-VIP were specific because it had no significant effects on acetylcholine-, nitroglycerin- and bradykinin-induced vasodilation. Taken together, these data indicate that all D-VIP attenuates the vasorelaxant effects of random coil and alpha-helix L-VIP as well as those of alpha-helix but not random coil PACAP in the intact peripheral microcirculation in a specific fashion. These effects are mediated, most likely, through interactions with VPAC1/VPAC2 receptors. We suggest that all D-VIP could be exploited as a novel, safe and active targeting moiety of VPAC1/VPAC2 receptors in vivo.  相似文献   

13.
Endothelin-1 (ET-1) and angiotensin II (AngII), two potent vasoactive peptides involved in the regulation of cardiovascular homeostasis, also induce mitogenic and pro-angiogenic responses in vitro and in vivo. Both peptides are produced by cleavage of inactive precursors by metalloproteases (endothelin-converting enzyme and angiotensin-converting enzyme, respectively) and activate two subtypes of membrane receptors (ETA-R and ETB-R for ET-1, AT1R and AT2R for AngII) that all belong to the superfamily of G-protein coupled receptors. There is increasing evidence that ETA-R, ETB-R and AT1R are expressed in a variety of cancer cells and tissues, and may play a role on tumor growth, angiogenesis and invasion in vivo. This review summarizes the similarities and differences between the ET-1 and AngII systems with regard to their reported effects on various aspects of cancer. In addition to being expressed on vascular endothelium, ET-1 and AngII receptors participate in tumor angiogenesis through the production of the angiogenic factor VEGF. Furthermore, recent clinical studies indicate that a selective ETA-R antagonist has beneficial effects in prostate cancer, suggesting that a similar approach using ETB-R and AT1R blockers might be envisioned. Experimental data presented here suggest that a combined therapy targeting both ET-1 and AngII systems may prove valuable for future treatments of highly angiogenic tumors.  相似文献   

14.
TRPV1 and TRPA1 are cation channels that play key roles in inflammatory signaling pathways. They are co-expressed on airway C-fibers, where they exert synergistic effects on causing inflammation and cough. Licorice, the root of Glycyrrhiza uralensis, has been widely used in China as an anti-inflammatory and anti-coughing herb. To learn if TRPV1 and TRPA1 might be key targets of the anti-inflammatory and antitussive effects of licorice, we examined liquiritin, the main flavonoid compound and active ingredient of licorice, on agonist-evoked TRPV1 and TRPA1 activation. Liquiritin inhibited capsaicin- and allyl isothiocyanate-evoked TRPV1 and TRPA1 whole-cell currents, respectively, with a similar potency and maximal inhibition. In a mouse acute lung injury (ALI) model induced by the bacterial endotoxin lipopolysaccharide, which involves both TRPV1 and TRPA1, an oral gavage of liquiritin prevented tissue damage and suppressed inflammation and the activation of NF-κB signaling pathway in the lung tissue. Liquiritin also suppressed LPS-induced increase in TRPV1 and TRPA1 protein expression in the lung tissue, as well as TRPV1 and TRPA1 mRNA levels in cells contained in mouse bronchoalveolar lavage fluid. In cultured THP-1 monocytes, liguiritin, or TRPV1 and TRPA1 antagonists capsazepine and HC030031, respectively, diminished not only cytokine-induced upregulation of NF-κB function but also TRPV1 and TRPA1 expression at both protein and mRNA levels. We conclude that the anti-inflammatory and antitussive effects of liquiritin are mediated by the dual inhibition of TRPV1 and TRPA1 channels, which are upregulated in nonneuronal cells through the NF-κB pathway during airway inflammation via a positive feedback mechanism.  相似文献   

15.
The genetic analysis of 5 tomato hybrids (Danubius F1, Luna F1, Lido F1, Balkan F1 and Mi-10 F1) was made. We produced their F1, F2, BC1 and BC2 generations and analysed their yield (on the first three flower branches) as well as some of the yield components of tomato fruits (mean fruit weight, mean fruit weight on the first flower branch, fruit length, fruit width, and number of locules). In order to estimate the gene effects, we applied the additive-dominance mode with three and six parameters. Epistatic gene effects were estimated by applying the six-parameter mode (Mather and Jinks 1982). As for yield and yield components, there were significant differences between the mean values of parents and their progeny. On the basis of the investigated genetic parameters, the obtained results suggested that the additive and dominance gene effects prevailed in the yield and yield components (Danubius F1, Luna F1, Lido F1, Mi-10 F1), whereas epistatic gene effects were excluded. As for the hybrid Balkan F1, we recorded significant gene effects, both the additive and the dominance ones in the yield inheritance: additive x additive and dominance x dominance (with the negative sign). The estimated values of the epistatic gene effects were the most prominent in inheriting the feature average fruit weight on the first flower branch — additive x dominance gene effects. They represented the most frequent type of the interallele interaction recorded in the investigated hybrids.  相似文献   

16.
The effects of prolyl-leucyl-glycinamide (MIF-1, PLG), tyrosine-prolyl-leucyl-glycinamide (Tyr-MIF-1, YPLG) and naloxone on morphine and warm and cold stress-induced increases in the latency of the thermal (40 degrees C hot plate) avoidance behaviors of the terrestrial snail, Cepaea nemoralis, were examined. All three substances blocked the morphine- and warm stress-induced opioid analgesia, while having no effects on non-opioid cold stress-induced analgesia. Tyr-MIF-1 had a significantly greater inhibitory effect than MIF-1. These results indicate that MIF-1 and Tyr-MIF-1 antagonize the antinociceptive effects of exogenous opiates and opioid-mediated analgesia in snails in a manner analogous to that described for mammals. This raises the possibility of an evolutionary conservation of functional opioid antagonists.  相似文献   

17.
18.
The purpose of this study was to investigate the effects of [Nphe1]nociceptin(1-13)-NH2 on nociceptin-induced decreases in mean arterial pressure (MAP), heart rate (HR), and hindquarters vascular bed resistance (HVBR) of the anesthetized rat. The results showed that i.c.v. or i.v. [Nphe1]nociceptin(1-13)-NH2 (1.5-12 nmol/kg and 5-120 nmol/kg, respectively) could antagonize the depressor effects of i.c.v. or i.v. nociceptin (3 and 30 nmol/kg, respectively) on MAP and HR. Furthermore, [Nphe1]nociceptin(1-13)-NH2 (5-120 nmol/kg) could reverse nociceptin (30 nmol/kg)-induced decrease of HVBR. However, [Nphe1]nociceptin(1-13)-NH2 had no significant effects on similar effects induced by morphine. Our results suggest that [Nphe1]nociceptin(1-13)-NH2 acts as a selective antagonist of the nociceptin receptor in the cardiovascular system of the rat.  相似文献   

19.
R Mayer  D Raventos    N H Chua 《The Plant cell》1996,8(11):1951-1959
Genetic studies using Arabidopsis offer a promising approach to investigate the mechanisms of light signal transduction during seedling development. Several mutants, called det/cop, have been isolated based on their deetiolated/constitutive photomorphogenic phenotypes in the dark. This study examines the specificity of the det/cop mutations with respect to their effects on genes regulated by other signal transduction pathways. Steady state mRNA levels of a number of differently regulated gene sets were compared between mutants and the wild type. We found that det2, cop2, cop3, and cop4 mutants displayed a gene expression pattern similar to that of the wild type. By contrast, det1, cop1, and cop9 mutations exhibited pleiotropic effects. In addition to light-responsive genes, genes normally inducible by plant pathogens, hypoxia, and developmental programs were inappropriately expressed in these mutants. Our data provide evidence that DET1, COP1, and COP9 most likely act as negative regulators of several sets of genes, not just those involved in light-regulated seedling development.  相似文献   

20.
Metal toxicity often includes the generation of reactive oxygen species (ROS) and subsequent oxidative stress, but whether metals have different effects on the major thiol antioxidant systems is unknown. Here, we examine the effects of arsenic, cadmium, cesium, copper, iron, mercury, nickel, and zinc on glutathione (GSH), cytoplasmic thioredoxin-1 (Trx1), and mitochondrial thioredoxin-2 (Trx2) redox states. GSH/GSSG redox states were determined by HPLC, and Trx1 and Trx2 redox states were determined by Redox Western blot methods. Copper, iron, and nickel showed significant oxidation of GSH but relatively little oxidation of either Trx1 or Trx2. Arsenic, cadmium, and mercury showed little oxidation of GSH but significantly oxidized both Trx1 and Trx2. The magnitude of effects of arsenic, cadmium, and mercury was greater for the mitochondrial Trx2 (>60 mV) compared to the cytoplasmic Trx1 (20 to 40 mV). Apoptosis signal-regulating kinase 1 (ASK1) may be activated by two different pathways, one dependent upon GSH and glutaredoxin and the other independent of GSH and dependent upon thioredoxin. ASK1 activation and cell death were observed with metals that oxidized thioredoxins but not with metals that oxidized GSH. These findings show that metals have differential oxidative effects on the major thiol antioxidant systems and that activation of apoptosis may be associated with metal ions that oxidize thioredoxin and activate ASK1. The differential oxidation of the major thiol antioxidant systems by metal ions suggest that the distinct thiol/disulfide redox couples represented by GSH/GSSG and the thioredoxins may convey different levels of control in apoptotic and toxic signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号