首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RNA exosome is an essential ribonuclease complex involved in RNA processing and decay. It consists of a 9-subunit catalytically inert ring composed of six RNase PH-like proteins forming a central channel and three cap subunits with KH/S1 domains located at the top. The yeast exosome catalytic activity is supplied by the Dis3 (also known as Rrp44) protein, which has both endo- and exoribonucleolytic activities and the nucleus-specific exonuclease Rrp6. In vitro studies suggest that substrates reach the Dis3 exonucleolytic active site following passage through the ring channel, but in vivo support is lacking. Here, we constructed an Rrp41 ring subunit mutant with a partially blocked channel that led to thermosensitivity and synthetic lethality with Rrp6 deletion. Rrp41 mutation caused accumulation of nuclear and cytoplasmic exosome substrates including the non-stop decay reporter, for which degradation is dependent on either endonucleolytic or exonucleolytic Dis3 activities. This suggests that the central channel also controls endonucleolytic activity. In vitro experiments performed using Chaetomium thermophilum exosomes reconstituted from recombinant subunits confirmed this notion. Finally, we analysed the impact of a lethal mutation of conserved basic residues in Rrp4 cap subunit and found that it inhibits digestion of single-stranded and structured RNA substrates.  相似文献   

2.
Flap endonucleases (FENs) have essential roles in DNA processing. They catalyze exonucleolytic and structure-specific endonucleolytic DNA cleavage reactions. Divalent metal ions are essential cofactors in both reactions. The crystal structure of FEN shows that the protein has two conserved metal-binding sites. Mutations in site I caused complete loss of catalytic activity. Mutation of crucial aspartates in site II abolished exonuclease action, but caused enzymes to retain structure-specific (flap endonuclease) activity. Isothermal titration calorimetry revealed that site I has a 30-fold higher affinity for cofactor than site II. Structure-specific endonuclease activity requires binding of a single metal ion in the high-affinity site, whereas exonuclease activity requires that both the high- and low-affinity sites be occupied by divalent cofactor. The data suggest that a novel two-metal mechanism operates in the FEN-catalyzed exonucleolytic reaction. These results raise the possibility that local concentrations of free cofactor could influence the endo- or exonucleolytic pathway in vivo.  相似文献   

3.
Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in DNA base excision repair that cleaves the DNA phosphodiester backbone immediately 5′ to abasic sites. Recently, we identified APE1 as an endoribonuclease that cleaves a specific coding region of c-myc mRNA in vitro, regulating c-myc mRNA level and half-life in cells. Here, we further characterized the endoribonuclease activity of APE1, focusing on the active-site center of the enzyme previously defined for DNA nuclease activities. We found that most site-directed APE1 mutant proteins (N68A, D70A, Y171F, D210N, F266A, D308A, and H309S), which target amino acid residues constituting the abasic DNA endonuclease active-site pocket, showed significant decreases in endoribonuclease activity. Intriguingly, the D283N APE1 mutant protein retained endoribonuclease and abasic single-stranded RNA cleavage activities, with concurrent loss of apurinic/apyrimidinic (AP) site cleavage activities on double-stranded DNA and single-stranded DNA (ssDNA). The mutant proteins bound c-myc RNA equally well as wild-type (WT) APE1, with the exception of H309N, suggesting that most of these residues contributed primarily to RNA catalysis and not to RNA binding. Interestingly, both the endoribonuclease and the ssRNA AP site cleavage activities of WT APE1 were present in the absence of Mg2+, while ssDNA AP site cleavage required Mg2+ (optimally at 0.5-2.0 mM). We also found that a 2′-OH on the sugar moiety was absolutely required for RNA cleavage by WT APE1, consistent with APE1 leaving a 3′-PO42− group following cleavage of RNA. Altogether, our data support the notion that a common active site is shared for the endoribonuclease and other nuclease activities of APE1; however, we provide evidence that the mechanisms for cleaving RNA, abasic single-stranded RNA, and abasic DNA by APE1 are not identical, an observation that has implications for unraveling the endoribonuclease function of APE1 in vivo.  相似文献   

4.
Mature tRNA 3′ ends in the yeast Saccharomyces cerevisiae are generated by two pathways: endonucleolytic and exonucleolytic. Although two exonucleases, Rex1 and Rrp6, have been shown to be responsible for the exonucleolytic trimming, the identity of the endonuclease has been inferred from other systems but not confirmed in vivo. Here, we show that the yeast tRNA 3′ endonuclease tRNase Z, Trz1, is catalyzing endonucleolytic tRNA 3′ processing. The majority of analyzed tRNAs utilize both pathways, with a preference for the endonucleolytic one. However, 3′-end processing of precursors with long 3′ trailers depends to a greater extent on Trz1. In addition to its function in the nucleus, Trz1 processes the 3′ ends of mitochondrial tRNAs, contributing to the general RNA metabolism in this organelle.  相似文献   

5.
The addition of poly(A)-rich sequences to endonuclease cleavage products of chloroplast mRNA has recently been suggested to target the polyadenylated RNA for rapid exonucleolytic degradation. This study analyzed whether the addition of a poly(A)-rich tail to RNA molecules is required for degradation by chloroplast exonuclease(s). In lyzed chloroplasts from spinach, addition of the polyadenylation inhibitor, cordycepin triphosphate (3′-dATP), inhibited the degradation of psbA and rbcL mRNAs. Furthermore, degradation intermediates generated by endonucleolytic cleavages accumulated. Similar results were obtained when yeast tRNA was added to the mRNA degradation system as a non-specific exoribonuclease inhibitor. Nevertheless, the stabilization mechanisms differ: while tRNA directly affects the exonuclease activity, 3′dATP has an indirect effect by inhibiting polyadenylation. The results indicate that the addition of poly(A)-rich sequences to endonucleolytic cleavage products of chloroplast mRNA is required to target these RNAs for rapid exonucleolytic degradation. Together with previous work, the data reported here support a model for mRNA degradation in the chloroplast in which endonucleolytic cleavages are followed by the addition of poly(A)-rich sequences to the proximal cleavage products, targeting these RNAs for rapid exonucleolytic decay.  相似文献   

6.
A general acid-base catalytic mechanism is responsible for the cleavage of the phosphodiester bonds of the RNA by ribonuclease A (RNase A). The main active site is formed by the amino acid residues His12, His119, and Lys41, and the process follows an endonucleolytic pattern that depends on the existence of a noncatalytic phosphate-binding subsite adjacent, on the 3'-side, to the active site; in this region the phosphate group of the substrate establishes electrostatic interactions through the side chains of Lys7 and Arg10. We have obtained, by means of site-directed mutagenesis, RNase A variants with His residues both at positions 7 and 10. These mutations have been introduced with the aim of transforming a noncatalytic binding subsite into a putative new catalytic active site. The RNase activity of these variants was determined by the zymogram technique and steady-state kinetic parameters were obtained by spectrophotometric methods. The variants showed a catalytic efficiency in the same order of magnitude as the wild-type enzyme. However, we have demonstrated in these variants important effects on the substrate's cleavage pattern. The quadruple mutant K7H/R10H/H12K/H119Q shows a clear increase of the exonucleolytic activity; in this case the original native active site has been suppressed, and, as consequence, its activity can only be associated to the new active site. In addition, the mutant K7H/R10H, with two putative active sites, also shows an increase in the exonucleolytic preference with respect to the wild type, a fact that may be correlated with the contribution of the new active site.  相似文献   

7.
Jao SC  Huang LF  Hwang SM  Li WS 《Biochemistry》2006,45(6):1547-1553
Analysis of the pH-rate profile for catalysis of bradykinin cleavage by aminopeptidase P (AMPP), a manganese-containing hydrolase from Escherichia coli, was carried out to show that optimal catalytic function is obtained at neutral pH. On the basis of information derived from the crystal structure, peptidase sequence alignments, and the hydrolysis of organophosphate triesters, active site residues Arg153, Arg370, Trp88, Tyr387, and Arg404 were identified as potential catalytic residues. Site-directed mutagenesis was used to substitute these residues with Leu, Ala, Trp, Lys, or Phe. The kcat values for the Arg153, Arg370, and Trp88 mutants were nearly the same as that for the wild-type enzyme. The kcat values of the R404K, R404A, and Y387A mutants were lower by factors of 285, 400, and 16, respectively. Inductively coupled plasma mass spectrometry and circular dichroism spectroscopy showed that Arg404 is not required for metal chelation or stabilization of protein secondary structure. The hydrogen bond network observed between the side chains of conserved residues Asp260, Arg404, and Tyr387 indicated that Arg404 participates in proton relay. This was further evidenced by the return of activity in the R404A mutant by the addition of guanidine. Also, reduced catalytic efficiency in the R404K mutant, which conserves the positive charge at the bridge site, shows that only the arginine group of Arg404 (not the ammonium group of Lys404) can participate in the hydrogen bond network. The hydrogen bond interaction between the Arg404 and the Tyr387 ring hydroxyl group is suggested by the reduced catalytic efficiency of the Y387F mutant.  相似文献   

8.
9.
An endonuclease purified from Hemophilus influenzae made single strand breaks in DNA containing apurinic or apyrimidinic sites but had no detectable endonuclease activity on untreated native DNA. The new 5'-termini created at the cleavage sites were base-free deoxyribose 5-phosphate residues. The enzyme preparation also catalyzed the exonucleolytic release of 5'-mononucleotides from bihelical DNA and the hydrolysis of DNA 3'-terminal phosphomonoesters. The phosphatase-exonuclease activity was indistinguishable from that reported by Gunther and Goodgal (J. Biol. Chem. (1970) 245, 5341-5349) and resembled that of exonuclease III of Escherichia coli. The endonucleolytic and exonucleolytic activities could not be separated by electrophoresis, sedimentation, or gel filtration, and they were also affected simultaneously by mutation. The enzymatic activities appear to be functions of a single monomeric protein (M(r) = 30,000).  相似文献   

10.
EndoTT encoded by tte0829 of Thermoanaerobacter tengcongensis binds and cleaves single-stranded (ss) and damaged double-stranded (ds) DNA in vitro as well as binding dsDNA. In the presence of a low concentration of NaCl, EndoTT cleaved ss regions of damaged dsDNA efficiently but did not cleave DNA that was entirely ss or ds. At high concentrations of NaCl or MgCl2 or ATP, there was also specific cleavage of ssDNA. This suggested a preference for ss/ds junctions to stimulate cleavage of the DNA substrates. EndoTT has six specific sites (a–f) in the oriC region (1–70 nt) of T. tengcongensis. Substitutions of nucleotides around site c prevented cleavage by EndoTT of both sites c and d, implying that the cleavage specificity may depend on both the nucleotide sequence and the secondary structure of the ssDNA. A C-terminal sub-fragment of EndoTT (residues 107–216) had both endonucleolytic and DNA-binding activity, whereas an N-terminal sub-fragment (residues 1–110) displayed only ssDNA-binding activity. Site-directed mutations showed that G170, R172 and G177 are required for the endonuclease activity of EndoTT, but not for DNA-binding, whereas D171, R178 and G189 are partially required for the DNA-binding activity.  相似文献   

11.
Electrostatic interactions are important in protein folding, binding, flexibility, stability and function. The pH at which the enzyme is maximally active is determined by the pKas of the active site residues, which are modulated by several factors including the change in electrostatics in its vicinity. As the acidic xylanases are important in food and animal feed industries, electrostatic interactions are introduced in Bacillus circulans xylanase to shift their pH optima towards the acidic side. Arg substitutions are made to modulate the pKas of the active site residues. Neutral residues are substituted by Arg in such a way that the substituted residue can make direct interaction with the catalytic residues. However, the mutations with other titratable residues (Asp, Arg, Lys, His, Tyr, and Ser) present in between the catalytic sites and the substituted sites are avoided. Site directed mutagenesis was conducted to confirm the strategy. The results show the shift in pH optima of the mutants towards the acidic side by 0.5–1.5 unit. Molecular dynamics simulation of the mutant V37R reveals that the decrease in activity is due to the increase in distance between the substrate oxygen atoms and catalytic glutamates.  相似文献   

12.
13.
The major enzyme in eukaryotic cells that catalyzes the cleavage of apurinic/apyrimidinic (AP or abasic) sites is AP endonuclease 1 (APE1) that cleaves the phosphodiester bond on the 5′-side of AP sites. We found that the efficiency of AP site cleavage by APE1 was affected by the benzo[a]pyrenyl-DNA adduct (BPDE-dG) in the opposite strand. AP sites directly opposite of the modified dG or shifted toward the 5′ direction were hydrolyzed by APE1 with an efficiency moderately lower than the AP site in the control DNA duplex, whereas AP sites shifted toward the 3′ direction were hydrolyzed significantly less efficiently. For all DNA structures except DNA with the AP site shifted by 3 nucleotides in the 3′ direction (AP+3-BP-DNA), hydrolysis was more efficient in the case of (+)-trans-BPDE-dG. Using molecular dynamic simulation, we have shown that in the complex of APE1 with the AP+3-BP-DNA, the BP residue is located within the DNA bend induced by APE1 and contacts the amino acids in the enzyme catalytic center and the catalytic metal ion. The geometry of the APE1 active site is perturbed more significantly by the trans-isomer of BPDE-dG that intercalates into the APE1-DNA complex near the cleaved phosphodiester bond. The ability of DNA polymerases β (Polβ), λ and ι to catalyze gap-filling synthesis in cooperation with APE1 was also analyzed. Polβ was shown to inhibit the 3′  5′ exonuclease activity of APE1 when both enzymes were added simultaneously and to insert the correct nucleotide into the gap arising after AP site hydrolysis. Therefore, further evidence for the functional cooperation of APE1 and Polβ in base excision repair was obtained.  相似文献   

14.
Saporin-6 produced by the plant Saponaria officinalis belongs to the family of single chain ribosome-inactivating proteins. It potently inhibits protein synthesis in eukaryotic cells, by cleaving the N-glycosidic bond of a specific adenine in 28 S rRNA, which results in the cell death. Saporin-6 has also been shown to be active on DNA and induces apoptosis. In the current study, we have investigated the roles of rRNA depurination and the activity of saporin-6 on genomic DNA in its cytotoxic activity. The role of putative active site residues, Tyr(72), Tyr(120), Glu(176), Arg(179), and Trp(208), and two invariant residues, Tyr(16) and Arg(24), proposed to be important for structural stability of saporin-6, has been investigated in its catalytic and cytotoxic activity. These residues were mutated to alanine to generate seven mutants, Y16A, R24A, Y72A, Y120A, E176A, R179A, and W208A. We show that for the RNA N-glycosidase activity of saporin-6, residues Tyr(16), Tyr(72), and Arg(179) are absolutely critical; Tyr(120) and Glu(176) can be partially dispensed with, whereas Trp(208) and Arg(24) do not appear to be involved in this activity. The residues Tyr(72), Tyr(120), Glu(176), Arg(179), and Trp(208) were found to be essential for the genomic DNA fragmentation activity, whereas residues Tyr(16) and Arg(24) do not appear to be required for the DNA fragmentation. The study shows that saporin-6 possesses two catalytic activities, namely RNA N-glycosidase and genomic DNA fragmentation activity, and for its complete cytotoxic activity both activities are required.  相似文献   

15.
During turnover, the catalytic tyrosine residue (Tyr10) of the sigma class Schistosoma haematobium wild-type glutathione-S-transferase is expected to switch alternately in and out of the reduced glutathione-binding site (G-site). The Tyrout10 conformer forms a pi-cation interaction with the guanidinium group of Arg21. As in other similar glutathione-S-transferases, the catalytic Tyr has a low pKa of 7.2. In order to investigate the catalytic role of Tyr10, and the structural and functional roles of Arg21, we carried out structural studies on two Arg21 mutants (R21L and R21Q) and a Tyr10 mutant, Y10F. Our crystallographic data for the two Arg21 mutants indicate that only the Tyrout10 conformation is populated, thereby excluding a role of Arg21 in the stabilisation of the out conformation. However, Arg21 was confirmed to be catalytically important and essential for the low pKa of Tyr10. Upon comparison with structural data generated for reduced glutathione-bound and inhibitor-bound wild-type enzymes, it was observed that the orientations of Tyr10 and Arg35 are concerted and that, upon ligand binding, minor rearrangements occur within conserved residues in the active site loop. These rearrangements are coupled to quaternary rigid-body movements at the dimer interface and alterations in the localisation and structural order of the C-terminal domain.  相似文献   

16.
17.
X Wu  J Li  X Li  C L Hsieh  P M Burgers    M R Lieber 《Nucleic acids research》1996,24(11):2036-2043
In eukaryotic cells, a 5' flap DNA endonuclease activity and a ds DNA 5'-exonuclease activity exist within a single enzyme called FEN-1 [flap endo-nuclease and 5(five)'-exo-nuclease]. This 42 kDa endo-/exonuclease, FEN-1, is highly homologous to human XP-G, Saccharomyces cerevisiae RAD2 and S.cerevisiae RTH1. These structure-specific nucleases recognize and cleave a branched DNA structure called a DNA flap, and its derivative called a pseudo Y-structure. FEN-1 is essential for lagging strand DNA synthesis in Okazaki fragment joining. FEN-1 also appears to be important in mismatch repair. Here we find that human PCNA, the processivity factor for eukaryotic polymerases, physically associates with human FEN-1 and stimulates its endonucleolytic activity at branched DNA structures and its exonucleolytic activity at nick and gap structures. Structural requirements for FEN-1 and PCNA loading provide an interesting picture of this stimulation. PCNA loads on to substrates at double-stranded DNA ends. In contrast, FEN-1 requires a free single-stranded 5' terminus and appears to load by tracking along the single-stranded DNA branch. These physical constraints define the range of DNA replication, recombination and repair processes in which this family of structure-specific nucleases participate. A model explaining the exonucleolytic activity of FEN-1 in terms of its endonucleolytic activity is proposed based on these observations.  相似文献   

18.
Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is a multifunctional enzyme involved in base excision repair (BER). APE1 cleaves DNA 5′ of an AP site to produce a single-strand break with 5′-OH and 3′-deoxyribose phosphate. In addition to its AP-endonucleolytic function, APE1 possesses 3′-phosphodiesterase, 3′–5′ exonuclease, and 3′-phosphatase activities. Independently of its function as a repair protein, APE1 was identified as a redox factor (Ref-1). The review summarizes the published and original data on the role of the additional functions of APE1 in DNA repair and apoptosis and regulation of the BER system via APE1 interaction with DNA and other repair proteins.  相似文献   

19.
Apurinic/apyrimidinic endonuclease (AP endo, HAP1) recognizes abasic sites in ds DNA and makes a single nick in the backbone 5' to the abasic site. In this report we examine the roles of three conserved tyrosine residues in close proximity to the active site. We show that Tyr(128) and Tyr(269), which interact upstream and downstream of the abasic site, respectively, are involved in recognition and binding of abasic site-containing double stranded DNA. However, the two residues are not equivalent, as their effects are differentiated by changes in salt concentration. In sharp contrast, Tyr(171) is directly involved in catalysis as well as binding. Y171F, Y171H, and Y171A all show decreased catalytic efficiencies 25,000-50,000-fold from the WT enzyme. Both imidazole and basic pH markedly stimulate the WT enzyme. Imidazole stimulates Tyr(171) mutant enzymes when tyrosine is also present but basic pH eliminates remaining mutant activity. These results underscore the importance of tyrosines in AP endo catalysis. They render the current hypotheses regarding enzyme action unlikely and allow us to consider the possibility that the phenolate of Tyr(171) is the nucleophile that attacks the scissile phosphate.  相似文献   

20.
Apurinic/apyrimidinic endonuclease 1 (APE1 or Ref-1) is the major enzyme in mammals for processing abasic sites in DNA. These cytotoxic and mutagenic lesions arise via spontaneous rupture of the base-sugar bond or the removal of damaged bases by a DNA glycosylase. APE1 cleaves the DNA backbone 5′ to an abasic site, giving a 3′-OH primer for repair synthesis, and mediates other key repair activities. The DNA repair functions are essential for embryogenesis and cell viability. APE1-deficient cells are hypersensitive to DNA-damaging agents, and APE1 is considered an attractive target for inhibitors that could potentially enhance the efficacy of some anti-cancer agents. To enable an important new method for studying the structure, dynamics, catalytic mechanism, and inhibition of APE1, we assigned the chemical shifts (backbone and 13Cβ) of APE1 residues 39-318. We also report a protocol for refolding APE1, which was essential for achieving complete exchange of backbone amide sites for the perdeuterated protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号