首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gutless tube-dwelling worms of pogonophorans (also known as frenulates) and vestimentiferans depend on primary production of endosymbiotic bacteria. The endosymbionts include thiotrophs that oxidize sulfur for autotrophic production and methanotrophs that oxidize and assimilate methane. Although most of the pogonophoran and vestimentiferan tube worms possess single thiotrophic 16S rRNA genes (16S rDNA) related to γ-proteobacteria, some pogonohorans are known to bear single methanotroph species or even dual symbionts of thiotrophs and methanotrophs. The vestimentiferan Lamellibrachia sp. L1 shows symbiotic 16S rDNA sequences of α-, β-, γ-, and ε-proteobacteria, varying among specimens, with RuBisCO form II gene (cbbM) sequences related to β-proteobacteria. An unidentified pogonophoran from the world’s deepest cold seep, 7326-m deep in the Japan Trench, hosts a symbiotic thiotroph based on 16S rDNA with the RuBisCO form I gene (cbbL). In contrast, a shallow-water pogonophoran (Oligobrachia mashikoi) in coastal Japan Sea has a methanotrophic 16S rDNA and thiotrophic cbbL, which may suggest the feature of type X methanotrophs. These observations demonstrate that pogonophoran and vestimentiferan worms have higher plasticity in bacterial symbioses than previously suspected.  相似文献   

2.
In our previous investigation on the genes of 1,5-ribulose bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39) in deep-sea chemoautotrophic and methanotrophic endosymbioses, the gene encoding the large subunit of RuBisCO form I (cbbL) had been detected in the gill of a mussel belonging to the genus Bathymodiolus from a western Pacific back-arc hydrothermal vent. This study further examined the symbiont source of the RuBisCO cbbL gene along with the genes of 16S ribosomal RNA (16S rDNA) and particulate methane monooxygenase (EC 1.14.13.25; pmoA) and probed for the presence of the ATP sulfurylase gene (EC 2.7.7.4; sopT). The 16S rDNA sequence analysis indicated that the mussel harbors a monospecific methanotrophic Gammaproteobacterium. This was confirmed by amplification and sequencing of the methanotrophic pmoA, while thiotrophic sopT was not amplified from the same symbiotic genome DNA. Fluorescence in situ hybridization demonstrated simultaneous occurrence of the symbiont-specific 16S rDNA, cbbL and pmoA, but not sopT, in the mussel gill. This is the first molecular and visual evidence for a methanotrophic bacterial endosymbiont that bears the RuBisCO cbbL gene relevant to autotrophic CO2 fixation.  相似文献   

3.
Molecular methods were used to characterize the diversity of a methanotrophic population in an agricultural soil. For this purpose we have used DGGE analysis of functional and phylogenetic markers. Functional markers utilised comprised the pmoA-gene coding for the -subunit of the particulate methane monooxygenase (pMMO) present in all known methanotrophs and the mxaF-gene coding for the -subunit of methanol dehydrogenase (MDH) present in all Gram-negative methylotrophs. In addition, we have used 16S rDNA as a phylogenetic marker. DGGE patterns of an enrichment culture, and sequencing of major DGGE bands obtained with the bacterial specific primers showed that the community structure was dominated by methanotrophic populations related to Methylobacter sp. and Methylomicrobium sp. The PCR products amplified with the functional primer sets were related to both type I and type II methanotrophs. We also designed a new pmoA-targeting primer set which could be used in a nested protocol to amplify PCR-products from DNA extracted directly from the soil.  相似文献   

4.
Using a previously developed primer system, nifH gene fragments 450 nucleotides long were amplified, cloned, and sequenced for representatives of nitrogen-fixing methanotrophic bacteria of the genera Methylococcus, Methylocystis, and Methylosinus. Fragments of nifH genes were also detected and sequenced in representatives of the genera Methylomonas and Methylobacter, which were not considered diazotrophs until recently. Phylogenetic analysis revealed the remoteness of nifH gene sequences of methanotroph types I and II. At the same time, a close relationship was found between nifH of type I methanotrophs and representatives of -proteobacteria and between nifH genes of type II methanotrophs and representatives of -proteobacteria. The results obtained in this study are in good accordance with the data of phylogenetic analysis based on 16S rRNA sequence comparison with the only exception being Methylococcus capsulatus strains, whose nifH genes proved to be closely related to nifH genes of Methylocystis and Methylosinus representatives. Our findings extend the database of primary sequences of nifH genes and allow the contribution of methanotrophs to the process of nitrogen fixation to be estimated.  相似文献   

5.
Molecular diversity of deep-sea hydrothermal vent aerobic methanotrophs was studied using both 16S ribosomalDNA and pmoA encoding the subunit A of particulate methane monooxygenase (pMOA). Hydrothermal vent plume and chimney samples were collected from back-arc vent at Mid-Okinawa Trough (MOT), Japan, and the Trans-Atlantic Geotraverse (TAG) site along Mid-Atlantic Ridge, respectively. The target genes were amplified by polymerase chain reaction from the bulk DNA using specific primers and cloned. Fifty clones from each clone library were directly sequenced. The 16S rDNA sequences were grouped into 3 operational taxonomic units (OTUs), 2 from MOT and 1 from TAG. Two OTUs (1 MOT and 1 TAG) were located within the branch of type I methanotrophic ?-Proteobacteria. Another MOT OTU formed a unique phylogenetic lineage related to type I methanotrophs. Direct sequencing of 50 clones each from the MOT and TAG samples yielded 17 and 4 operational pmoA units (OPUs), respectively. The phylogenetic tree based on the pMOA amino acid sequences deduced from OPUs formed diverse phylogenetic lineages within the branch of type I methanotrophs, except for the OPU MOT-pmoA-8 related to type X methanotrophs. The deduced pMOA topologies were similar to those of all known pMOA, which may suggest that the pmoA gene is conserved through evolution. Neither the 16S rDNA nor pmoA molecular analysis could detect type II methanotrophs, which suggests the absence of type II methanotrophs in the collected vent samples.  相似文献   

6.
Bacterial diversity in an industrial wastewater bioreactor   总被引:2,自引:0,他引:2  
Industrial wastewater bioreactors are potentially important sources of novel biocatalysts. However, the microbial populations in these bioreactors are not well characterized. The microbial community in an industrial wastewater bioreactor was surveyed by extracting DNA from a sample of activated sludge, followed by PCR amplification and sequencing of cloned 16S rRNA genes. A total of 407 cloned 16S rRNA gene sequences were compared with 88 bacterial isolates cultured from the same sample of sludge using a variety of standard media. Most of the bacteria detected by the PCR-based approach were -subdivision Proteobacteria, whereas most of the cultured bacteria were -subdivision Proteobacteria. Only a few types of bacteria were detected by both approaches. These observations indicate that multiple techniques are necessary to characterize the microbial diversity in any complex ecosystem.  相似文献   

7.
The mxaF gene, coding for the large (α) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxaF gene’s usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of mxaF as a biomarker for methanotrophic proteobacteria.  相似文献   

8.
The PCR analysis of DNA extracted from soil samples taken in the Russian northern taiga and subarctic tundra showed that the DNA extracts contain genes specific to methanotrophic bacteria, i.e., the mmoX gene encoding the conserved -subunit of the hydroxylase component of soluble methane monooxygenase, the pmoA gene encoding the -subunit of particulate methane monooxygenase, and the mxaFgene encoding the -subunit of methanol dehydrogenase. PCR analysis with group-specific primers also showed that methanotrophic bacteria in the northern taiga and subarctic tundra soils are essentially represented by the type I genera Methylobacter, Methylomonas, Methylosphaera, and Methylomicrobium and that some soil samples contain type II methanotrophs close to members of the genera Methylosinus and Methylocystis. The electron microscopic examination of enrichment cultures obtained from the soil samples confirmed the presence of methanotrophic bacteria in the ecosystems studied and showed that the methanotrophs contain only small amounts of intracytoplasmic membranes.  相似文献   

9.
Whiteflies (superfamily Aleyrodoidea) contain eubacterial endosymbionts localized within host cells known as mycetocytes. Sequence analysis of the genes for the 16S rRNA of the endosymbionts ofBemisia tabaci, Siphoninus phillyreae, andTrialeurodes vaporariorum indicates that these organisms are closely related and constitute a distinct lineage within the -subdivision of theProteobacteria. The endosymbionts of whiteflies are unrelated to the endosymbionts of aphids and mealybugs, which are in two separate lineages.  相似文献   

10.
Two methanotrophic bacteria with optimum growth temperatures above 40° C were isolated. Thermotolerant strain LK6 was isolated from agricultural soil, and the moderately thermophilic strain OR2 was isolated from the effluent of an underground hot spring. When compared to the described thermophilic methanotrophs Methylococcus capsulatus and Methylococcus thermophilus, these strains are phenotypically similar to Methylococcus thermophilus. However, their 16S rRNA gene sequences are markedly different from the sequence of Methylococcus thermophilus (∼ 8% divergence) and, together with Methylomonas gracilis, they form a distinct, new genus within the γ-subgroup of the Proteobacteria related to extant Type I methanotrophs. Further phenotypic characterisation showed that the isolates possess particulate methane monooxygenase (pMMO) but do not contain soluble methane monooxygenase. The nucleotide sequence of a gene encoding pMMO (pmoA) was determined for both isolates and for Methylomonas gracilis. PmoA sequence comparisons confirmed the monophyletic nature of this newly recognised group of thermophilic methanotrophs and their relationship to previously described Type I methanotrophs. We propose that strains OR2 and LK6, together with the misclassified thermophilic strains Methylomonas gracilis VKM-14LT and Methylococcus thermophilus IMV-B3122, comprise a new genus of thermophilic methanotrophs, Methylocaldum gen. nov., containing three new species: Methylocaldum szegediense, Methylocaldum tepidum and Methylocaldum gracile. Received: 2 April 1997 / Accepted: 23 July 1997  相似文献   

11.
In order to assess the phylogenetic diversity of the endosymbiotic microbial community of the gills of marine bivalve Bathymodiolus azoricus, total DNA was extracted from the gills. The PCR fragments corresponding to the genes encoding 16S rRNA, ribulose-bisphosphate carboxylase (cbbL), and particulate methane monooxygenase (pmoA) were amplified, cloned, and sequenced. For the 16S rDNA genes, only one phylotype was revealed; it belonged to the cluster of thiotrophic mytilid’s symbionts within the Gammaproteobacteria. For the RuBisCO genes, two phylotypes were found, both belonging to Gammaproteobacteria. One of them was closely related to the previously known mytilid symbiont, the other, to a pogonophore symbiont, presumably a methanotrophic bacterium. One phylotype of particulate methane oxygenase genes was also revealed; this finding indicated the presence of a methanotrophic symbiont. Phylogenetic analysis of the pmoA placed this endosymbiont within the Gammaproteobacteria, in a cluster including the methanotrophic bacterial genus Methylobacter and other methanotrophic Bathymodiolus gill symbionts. These results provide evidence for the existence of two types of endosymbionts (thioautotrophic and methanotrophic) in the gills of B. azoricus and demonstrate that, apart from the phylogenetic analysis of 16S rRNA genes, parallel analysis of functional genes is essential.  相似文献   

12.
Cytochrome c oxidase (EC 1.9.3.1) is one of the components of the electron transport chain by which Nitrobacter, a facultative lithoautotrophic bacterium, recovers energy from nitrite oxidation. The genes encoding the two catalytic core subunits of the enzyme were isolated from a Nitrobacter winogradskyi gene library. Sequencing of one of the 14 cloned DNA segments revealed that the subunit genes are side by side in an operon-like cluster. Remarkably the cluster appears to be present in at least two copies per genome. It extends over a 5–6 kb length including, besides the catalytic core subunit genes, other cytochrome oxidase related genes, especially a heme O synthase gene. Noteworthy is the new kind of gene order identified within the cluster. Deduced sequences for the cytochrome oxidase subunits and for the heme O synthase look closest to their counterparts in other -subdivision Proteobacteria, particularly the Rhizobiaceae. This confirms the phylogenetic relationships established only upon 16S rRNA data. Furthermore, interesting similarities exist between N. winogradskyi and mitochondrial cytochrome oxidase subunits while the heme O synthase sequence gives some new insights about the other similar published -subdivision proteobacterial sequences.Abbreviations COI cytochrome oxidase subunit I - COII cytochrome oxidase subunit II - COIII cytochrome oxidase subunit III - HOS Heme O synthase - ORF open reading frame - SDS sodium dodecyl sulfate  相似文献   

13.
Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods   总被引:3,自引:0,他引:3  
DNA was extracted from water and sediment samples taken from soda lakes of the Kenyan-Tanzanian Rift Valley. DNA was also extracted from microbial enrichment cultures of sediment samples. 16S rRNA genes were amplified by the polymerase chain reaction and microbial diversity was studied using denaturing gradient gel electrophoresis (DGGE) of 16S rDNA amplicons. Cloning and sequencing of single DGGE bands showed that they usually contained mixed amplicons. Several of the amplicon sequences had high identities, up to 99%, with 16S rRNA genes of organisms previously isolated from soda lakes, while others were only distantly related, with identities as low as 82%. Phylogenetic analysis of the sequenced amplicons indicated that sequences were related to the haloarchaeal, Bacillus/Clostridium, Rhodobacterium/Thioalcalovibrio/ Methylobacter, and Cytophaga/Flavobacterium/Bacteroides (CFB) groups and the enterobacteria/Aeromonas/Vibrio part of the 3 subdivision of the Proteobacteria.Communicated by K. Horikoshi  相似文献   

14.
In order to assess the phylogenetic diversity of the endosymbiotic microbial community of the gills of marine shellfish Bathymodiolus azoricus, total DNA was extracted from the gills. The PCR fragments corresponding to the genes encoding 16S rRNA, ribulose-bisphosphate carboxylase (cbbL), and particulate methane monooxygenase (pmoA) were amplified, cloned, and sequenced. For the 16S rDNA genes, only one phylotype was revealed; it belonged to the cluster of Mytilidae thiotrophic symbionts within the Gammaproteobacteria. For the RuBisCO genes, two phylotypes were found, both belonging to Gammaproteobacteria. One of them was closely related to the previously known mytilid symbiont, the other, to a pogonophore symbiont, presumably a methanotrophic bacterium. One phylotype of particulate methane oxygenase genes was also revealed; this finding indicated the presence of a methanotrophic symbiont. Phylogenetic analysis of the pmoA placed this endosymbiont within the Gammaproteobacteria, in a cluster including the methanotrophic bacterial genus Methylobacter and other methanotrophic Bathymodiolus gill symbionts. These results provide evidence for the existence of two types of endosymbionts (thioautotrophic and methanotrophic) in the gills of B. azoricus and demonstrate that, apart from the phylogenetic analysis of 16S rRNA genes, parallel analysis of functional genes is essential.  相似文献   

15.
Currently, molecular biologic techniques achieve a great development in studies of soil samples. The objective of this research is to improve methods for microbial prospecting of oil and gas by applying culture-independent techniques to soil sampled from above a known oil and gas field. Firstly, the community structure of soil bacteria above the Ban 876 Gas and Oil Field was analyzed based on 16S rRNA gene clone libraries. The soil bacteria communities were consistently different along the depth; however, Chloroflexi and Gemmatimonadetes were predominant and methanotrophs were minor in both bacteria libraries (DGS1 and DGS2). Secondly, the numbers of methane-oxidizing bacteria, quantified using a culture-dependent procedure and culture-independent group-specific real-time PCR (RT-PCR), respectively, were inconsistent with a quantify variance of one or two orders of magnitude. Special emphasis was given to the counting advantages of RT-PCR based on the methanotrophic pmoA gene. Finally, the diversity and distribution of methanotrophic communities in the soil samples were analyzed by constructing clone libraries of functional gene. All 508-bp inserts in clones phylogenetically belonged to the methanotrophic pmoA gene with similarities from 83% to 100%. However, most of the similarities were below 96%. Five clone libraries of methanotrophs clearly showed that the anomalous methanotrophs (Methylosinus and Methylocystis) occupy the studied area.  相似文献   

16.
The midgut glands (hepatopancreas) of terrestrial isopods are densely colonized by hitherto uncultivated bacteria. In the case of the Common Woodlouse, Porcellio scaber (Crustacea: Isopoda), the symbionts represent a novel lineage in the -subdivision of Proteobacteria. Based on comparative sequence analysis of their 16S rRNA genes, their closest (albeit distant) relatives were among the Rickettsiales, which are intracellular symbionts or pathogens of many animals. Transmission electron microscopy and in situ hybridization with fluorescently labeled oligonucleotide probes revealed a homogeneous population of symbionts intimately associated with the endothelium of the hepatopancreas, which apparently interact with the microvilli of the brush border by means of a stalk-like cytoplasmic appendage. Based on isolated phylogenetic position and unique cytological properties, the provisional name Candidatus Hepatincola porcellionum is proposed to classify this new taxon of Rickettsiales colonizing the hepatopancreas of P. scaber.  相似文献   

17.
The melting of permafrost and its potential impact on CH4 emissions are major concerns in the context of global warming. Methanotrophic bacteria have the capacity to mitigate CH4 emissions from melting permafrost. Here, we used quantitative PCR (qPCR), stable isotope probing (SIP) of DNA, denaturing gradient gel electrophoresis (DGGE) fingerprinting, and sequencing of the 16S rRNA and pmoA genes to study the activity and diversity of methanotrophic bacteria in active-layer soils from Ellesmere Island in the Canadian high Arctic. Results showed that most of the soils had the capacity to oxidize CH4 at 4°C and at room temperature (RT), but the oxidation rates were greater at RT than at 4°C and were significantly enhanced by nutrient amendment. The DGGE banding patterns associated with active methanotrophic bacterial populations were also different depending on the temperature of incubation and the addition of nutrients. Sequencing of the 16S rRNA and pmoA genes indicated a low diversity of the active methanotrophic bacteria, with all methanotroph 16S rRNA and pmoA gene sequences being related to type I methanotrophs from Methylobacter and Methylosarcina. The dominance of type I methanotrophs over type II methanotrophs in the native soil samples was confirmed by qPCR of the 16S rRNA gene with primers specific for these two groups of bacteria. The 16S rRNA and pmoA gene sequences related to those of Methylobacter tundripaludum were found in all soils, regardless of the incubation conditions, and they might therefore play a role in CH4 degradation in situ. This work is providing new information supporting the potential importance of Methylobacter spp. in Arctic soils found in previous studies and contributes to the limited body of knowledge on methanotrophic activity and diversity in this extreme environment.Permafrost regions occupy approximately 22% of the exposed land area of the Northern Hemisphere (63). In the past 100 years, the average temperatures in the arctic regions have increased at almost twice the average global rate (25). The melting of permafrost is one of the most important impacts of global warming on these high-latitude environments, and theoretical modeling suggests that as much as 90% of the permafrost could thaw by the end of the 21st century (29). While it has been generally reported that 15% of the total soil organic carbon is stocked in permafrost (42), a recent estimate indicates that it contains as much as 50% of the global belowground organic carbon pool (53). Carbon stocked in permafrost is now regarded as one of the most important carbon-climate feedbacks because of the size of the carbon pool and the intensity of climate change at high latitudes (46, 47). The presence of these large amounts of carbon in permafrost is raising serious concerns whether melting permafrost, and the resulting increase in microbial activity, might be a source of extensive emissions of the greenhouse gases carbon dioxide and methane (CH4) to the atmosphere. The actual emissions of CH4 from soils of high latitudes have been estimated to represent about 25% of the emissions from natural sources (19). Methane, which is 25 times more potent than carbon dioxide as a greenhouse gas (25), is produced by methanogenic archaea under anaerobic conditions. These microorganisms are known to inhabit permafrost environments (44, 49), and their capacity to produce methane at cold temperatures has been reported (20, 35, 44, 56). Their methanogenic activity is expected to increase as permafrost soil temperature increases (20). Moreover, large amounts of methane are stocked as methane hydrates in permafrost at an average depth of several hundred meters (33). Methane is also found in permafrost layers near the surface and could potentially be liberated to the atmosphere as permafrost melts (44).Methane can be oxidized in aerobic zones by aerobic methanotrophic bacteria or in anaerobic zones by anaerobic methanotrophic archaea (for a recent review, see reference 27). Anaerobic methane oxidizers were not covered in the context of this study, which focused exclusively on aerobic methanotrophs. These bacteria utilize methane as the sole carbon and energy source through the activity of the enzyme methane monooxygenase (MMO). Most known aerobic methanotrophs are divided into two major groups (type I and type II) based on phylogeny and carbon assimilation pathways (5). Type I methanotrophs, also known as Gammaproteobacteria methanotrophs (6) belong to the family Methylococcaceae within the Gammaproteobacteria subdivision, while type II methanotrophs (Alphaproteobacteria methanotrophs) belong to the family Methylocystaceae in the Alphaproteobacteria subdivision (5). Because of their capacity to oxidize methane, aerobic methanotrophs can significantly reduce methane emissions to the atmosphere and play an important role in the global methane cycle (12, 22). Methanotrophic activity has been observed in cold environments, and methanotrophs might contribute to the reduction of methane emissions from melting permafrost. Aerobic methanotrophic bacteria from cold environments have been reviewed in detail elsewhere (54).Most studies addressing methanotrophs from cold environments were conducted on soils from very few sites located in Northern Europe and Siberia (14, 30, 31, 40, 56-58), while methanotrophic bacterial populations in soils from the Canadian high Arctic remain mostly unexplored (41). In addition, most of these studies were conducted at low latitudes, and the pool of knowledge concerning the activity and diversity of methanotrophic bacterial populations in high Arctic soils is limited. The question being addressed in this study is whether there are active methanotrophs in the active-layer soil in the high Arctic. Therefore, the present work had two objectives: (i) to evaluate the methane oxidation capacity of three active-layer soils from the Canadian high Arctic under various incubation conditions and (ii) to identify and characterize the diversity of the active methanotrophs in these soils using stable isotope probing (SIP) of DNA (DNA-SIP) and sequencing of the 16S rRNA and pmoA genes. With this work, we identify for the first time active methanotrophs in high Arctic soils through the use of DNA-SIP.  相似文献   

18.
Analysis of pmoA and 16S rRNA gene clone libraries of methanotrophic bacteria in Lake Constance revealed an overall dominance of type I methanotrophs in both littoral and profundal sediments. The sediments exhibited minor differences in their methanotrophic community structures. Type X methanotrophs made up a significant part of the clone libraries only in the profundal sediment and were also found only there as a prominent peak by T-RFLP analyses.  相似文献   

19.
A gene bank of the nutritionally versatile, nitrogen-fixing cyanobacterium Chlorogloeopsis fritschii was constructed in Charon 4A. 2,800 recombinants containing 10–20 kbp C. fritschii DNA fragments were screened by Southern hybridization using probes containing the genes for the large (LSU) and small (SSU) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) from Anacystis nidulans. A single recombinant plaque (CDG1) containing a 10.9 kbp EcoR1 fragment from C. fritschii hybridized to both the LSU and SSU probes, indicating a possible linkage of these RuBisCO genes in C. fritschii. RuBisCO activity and protein were detected in CDG1 lysates of Escherichia coli. Hybridization was also obtained between C. fritschii DNA and the LSU probe from Chlamydomonas reinhardtii, although no homology was detected using the LSU probe from maize or the SSU probe from pea.Abbreviations RuBisCO d-ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - LSU large subunit of RuBisCO - SSU small subunit of RuBisCO - SDS sodium dodecyl sulphate - DOC deoxycholate  相似文献   

20.
The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the α subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号