首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Abstract. . 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and HMG-CoA reductase show coordinated regulation in the fat body of Blattella germanica females. Since the profile of activity is parallel to the cycle of vitellogenin production, we postulated a link between the mevalonate pathway and vitellogenesis. Here we have studied both enzymes in females of B.germanica modified by ovariectomy (which leads to a saturable accumulation of vitellogenin) and allatectomy (which supresses vitellogenesis). Protein levels and enzymatic activity for both enzymes in ovariectomized specimens rose early in the first days of imaginal life and remained high until the end of the period studied, whereas controls showed cyclic profiles. In allatectomized specimens the same parameters were measured on day 4 of adult life and values were much lower with respect to controls. The parallelism between the patterns of HMG-CoA synthase and reductase, and that of vitellogenin, suggests a functional relationship between the mevalonate pathway and the glycosylation of vitellogenin through dolichol intermediates.  相似文献   

3.
Many bacteria employ the nonmevalonate pathway for synthesis of isopentenyl diphosphate, the monomer unit for isoprenoid biosynthesis. However, gram-positive cocci exclusively use the mevalonate pathway, which is essential for their growth (E. I. Wilding et al., J. Bacteriol. 182:4319-4327, 2000). Enzymes of the mevalonate pathway are thus potential targets for drug intervention. Uniquely, the enterococci possess a single open reading frame, mvaE, that appears to encode two enzymes of the mevalonate pathway, acetoacetyl-coenzyme A thiolase and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Western blotting revealed that the mvaE gene product is a single polypeptide in Enterococcus faecalis, Enterococcus faecium, and Enterococcus hirae. The mvaE gene was cloned from E. faecalis and was expressed with an N-terminal His tag in Escherichia coli. The gene product was then purified by nickel affinity chromatography. As predicted, the 86.5-kDa mvaE gene product catalyzed both the acetoacetyl-CoA thiolase and HMG-CoA reductase reactions. Temperature optima, DeltaH(a) and K(m) values, and pH optima were determined for both activities. Kinetic studies of acetoacetyl-CoA thiolase implicated a ping-pong mechanism. CoA acted as an inhibitor competitive with acetyl-CoA. A millimolar K(i) for a statin drug confirmed that E. faecalis HMG-CoA reductase is a class II enzyme. The oxidoreductant was NADP(H). A role for an active-site histidine during the first redox step of the HMG-CoA, reductase reaction was suggested by the ability of diethylpyrocarbonate to block formation of mevalonate from HMG-CoA, but not from mevaldehyde. Sequence comparisons with other HMG-CoA reductases suggest that the essential active-site histidine is His756. The mvaE gene product represents the first example of an HMG-CoA reductase fused to another enzyme.  相似文献   

4.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a key enzyme in endogenous cholesterol biosynthesis in mammals and isoprenoid biosynthesis via the mevalonate pathway in other eukaryotes, archaea and some eubacteria. In most organisms that express this enzyme, it catalyzes the NAD(P)H-dependent reduction of HMG-CoA to mevalonate. We have cloned and characterized the 6x-His-tagged HMGR from the opportunistic lung pathogen Burkholderia cenocepacia. Kinetic characterization shows that the enzyme prefers NAD(H) over NADP(H) as a cofactor, suggesting an oxidative physiological role for the enzyme. This hypothesis is supported by the fact that the Burkholderia cenocepacia genome lacks the genes for the downstream enzymes of the mevalonate pathway. The enzyme exhibits positive cooperativity toward the substrates of the reductive reaction, but the oxidative reaction exhibits unusual double-saturation kinetics, distinctive among characterized HMG-CoA reductases. The unusual kinetics may arise from the presence of multiple active oligomeric states, each with different Vmax values.  相似文献   

5.
The mevalonate pathway accounts for conversion of acetyl-CoA to isopentenyl 5-diphosphate, the versatile precursor of polyisoprenoid metabolites and natural products. The pathway functions in most eukaryotes, archaea, and some eubacteria. Only recently has much of the functional and structural basis for this metabolism been reported. The biosynthetic acetoacetyl-CoA thiolase and HMG-CoA synthase reactions rely on key amino acids that are different but are situated in active sites that are similar throughout the family of initial condensation enzymes. Both bacterial and animal HMG-CoA reductases have been extensively studied and the contrasts between these proteins and their interactions with statin inhibitors defined. The conversion of mevalonic acid to isopentenyl 5-diphosphate involves three ATP-dependent phosphorylation reactions. While bacterial enzymes responsible for these three reactions share a common protein fold, animal enzymes differ in this respect as the recently reported structure of human phosphomevalonate kinase demonstrates. There are significant contrasts between observations on metabolite inhibition of mevalonate phosphorylation in bacteria and animals. The structural basis for these contrasts has also recently been reported. Alternatives to the phosphomevalonate kinase and mevalonate diphosphate decarboxylase reactions may exist in archaea. Thus, new details regarding isopentenyl diphosphate synthesis from acetyl-CoA continue to emerge.  相似文献   

6.
Supernatant protein factor (SPF) is a 46-kDa cytosolic protein that stimulates squalene monooxygenase in vitro and, unexpectedly, cholesterol synthesis in cell culture. Because squalene monooxygenase is not thought to be rate-limiting with regard to cholesterol synthesis, we investigated the possibility that SPF might stimulate other enzymes in the cholesterol biosynthetic pathway. Substitution of [(14)C]mevalonate for [(14)C]acetate in McARH7777 hepatoma cells expressing SPF reduced the 1.8-fold increase in cholesterol synthesis by half, suggesting that SPF acted on or prior to mevalonate synthesis. This conclusion was supported by the finding that substitution with [(14)C]mevalonate completely blocked an SPF-induced increase in squalene synthesis. Evaluation of 2,3-oxidosqualene synthesis from [(14)C]mevalonate demonstrated that SPF also stimulated squalene monooxygenase (1.3-fold) in hepatoma cells. Immunoblot analysis showed that SPF did not increase HMG-CoA reductase or squalene monooxygenase enzyme levels, indicating a direct effect on enzyme activity. Addition of purified recombinant SPF to rat liver microsomes stimulated HMG-CoA reductase by about 1.5-fold, and the SPF-concentration/activation curve paralleled that for the SPF-mediated stimulation of squalene monooxygenase. These results reveal that SPF directly stimulates HMG-CoA reductase, the rate-limiting step of the cholesterol biosynthetic pathway, as well as squalene monooxygenase, and suggest a new means by which cholesterol synthesis can be rapidly modulated in response to hormonal and environmental signals.  相似文献   

7.
In Nepeta cataria leaf tissue there are two separate activities of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and mevalonate (MVA) kinase respectively as determined by the use of a 20–45% discontinuous sucrose density gradient. Cell-free extracts of leaf and callus tissue were prepared and HMG-CoA reductase and MVA kinase activities were compared to activities in extracts from porcine livers and yeast autolysates. Callus tissue from N. cataria has only one peak of HMG-CoA reductase and MVA kinase activity located at the top of the sucrose density gradient. Isolated chloroplast from N. cataria leaves have one peak of HMG-CoA reductase and MVA kinase activity, located near the bottom of a sucrose density gradient. MVA kinase activities in porcine livers and yeast autolysate also showed only one activity profile, located at the top of the sucrose gradient. Partial purification of the leaf extract through the use of differential centrifugation, 30–70% ammonium sulfate precipitation and Bio-Gel P-100 column chromatography shows that MVA kinase, 5-phosphomevalonate (MVAP) kinase and 5-pyrophosphomevalonate (MVAPP) decarboxylase activities remain in the same fractions. The extra-chloroplastidic HMG-CoA reductase activity may be separated from MVA kinase activity by differential centrifugation. These results suggest the presence of two HMG-CoA reductase and MVA kinase enzymes in N. cataria leaf tissue—one located in the chloroplast and a second being extra-chloroplastidic.  相似文献   

8.
In the ovary of adult Blattella germanica, the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) is highly expressed in mid-late vitellogenesis, suggesting a functional link of the mevalonate pathway with choriogenesis. The inhibitor of HMG-CoA reductase, fluvastatin, applied in females in late vitellogenesis, inhibits the activity of the enzyme in the ovary and in the developing embryos within the ootheca. This does not affect choriogenesis or ootheca formation but reduces the number of larvae per ootheca. Our results suggest that fluvastatin is incorporated into the oocytes and has delayed inhibitory effects on the oviposited eggs. HMG-CoA reductase is essential for embryogenesis, but not for chorion formation.  相似文献   

9.
Bochar DA  Stauffacher CV  Rodwell VW 《Biochemistry》1999,38(48):15848-15852
Sequence analysis has revealed two classes of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Crystal structures of ternary complexes of the Class II enzyme from Pseudomonas mevalonii revealed lysine 267 critically positioned at the active site. This observation suggested a revised catalytic mechanism in which lysine 267 facilitates hydride transfer from reduced coenzyme by polarizing the carbonyl group of HMG-CoA and subsequently of bound mevaldehyde, an inference supported by mutagenesis of lysine 267 to aminoethylcysteine. For this mechanism to be general, Class I HMG-CoA reductases ought also to possess an active site lysine. Three lysines are conserved among all Class I HMG-CoA reductases. The three conserved lysines of Syrian hamster HMG-CoA reductase were mutated to alanine. All three mutant enzymes had reduced but detectable activity. Of the three conserved lysines, sequence alignments implicate lysine 734 of the hamster enzyme as the most likely cognate of P. mevalonii lysine 267. Low activity of enzyme K734A did not reflect an altered structure. Substrate recognition was essentially normal, and both circular dichroism spectroscopy and analytical ultracentrifugation implied a native structure. Enzyme K734A also formed an active heterodimer when coexpressed with inactive mutant enzyme D766N. We infer that a lysine is indeed essential for catalysis by the Class I HMG-CoA reductases and that the revised mechanism for catalysis is general for all HMG-CoA reductases.  相似文献   

10.
Endothelial dysfunction is associated with a reduction in nitric oxide (NO) bioavailability. Positive effects of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) on the improvement of endothelial dysfunction have been shown. We investigated the effects of rosuvastatin and isoprenoid metabolites on endothelial NO synthase (eNOS) mRNA and protein expression in human umbilical venous endothelial cells after exposure to 10(-8)-10(-5) mol/l rosuvastatin for 8 and 12 h. Cell viability was not significantly altered after exposure to the statin for 12h. In a concentration-dependent manner, rosuvastatin upregulated eNOS mRNA and protein expression. The effects on eNOS expression mediated through rosuvastatin could be reversed by treatment with mevalonate indicating inhibition of HMG-CoA reductase as the underlying mechanism. Treatment with geranylgeranylpyrophosphate, but not farnesylpyrophosphate, reversed the increase of eNOS expression induced by rosuvastatin. Rosuvastatin may have beneficial effects on endothelial dysfunction associated with cardiovascular diseases beyond its effects on lowering cholesterol.  相似文献   

11.
Instructions for authors   总被引:5,自引:0,他引:5  
The aim of the present study was to examine hypothesis that the enhanced cholesterologenesis, found in rats with experimental chronic renal failure (CRF) resulted from the increased gene expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase – the rate limiting enzyme in the cholesterologenesis pathway, responsible for mevalonate synthesis. Wistar rats were used and experimental CRF was achieved by 5/6 nephrectomy model. We examined: (a) the changes in the rat liver microsomal HMG-CoA reductase activity, (b) the rat liver HMG-CoA reductase mRNA abundance in various times of day. Obtained data indicates that the increased activity of HMG-CoA reductase in the liver of rats with experimental CRF parallel enhanced mRNA level and suggests that enhanced cholesterol biosynthesis, observed in experimental CRF is at least in part due to the increased HMG-CoA reductase gene expression. The results also indicate that the physiological diurnal rhythm of HMG-CoA reductase activity is preserved in the course of experimental CRF.  相似文献   

12.
Sequence comparisons have implied the presence of genes encoding enzymes of the mevalonate pathway for isopentenyl diphosphate biosynthesis in the gram-positive pathogen Staphylococcus aureus. In this study we showed through genetic disruption experiments that mvaA, which encodes a putative class II 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, is essential for in vitro growth of S. aureus. Supplementation of media with mevalonate permitted isolation of an auxotrophic mvaA null mutant that was attenuated for virulence in a murine hematogenous pyelonephritis infection model. The mvaA gene was cloned from S. aureus DNA and expressed with an N-terminal His tag in Escherichia coli. The encoded protein was affinity purified to apparent homogeneity and was shown to be a class II HMG-CoA reductase, the first class II eubacterial biosynthetic enzyme isolated. Unlike most other HMG-CoA reductases, the S. aureus enzyme exhibits dual coenzyme specificity for NADP(H) and NAD(H), but NADP(H) was the preferred coenzyme. Kinetic parameters were determined for all substrates for all four catalyzed reactions using either NADP(H) or NAD(H). In all instances optimal activity using NAD(H) occurred at a pH one to two units more acidic than that using NADP(H). pH profiles suggested that His378 and Lys263, the apparent cognates of the active-site histidine and lysine of Pseudomonas mevalonii HMG-CoA reductase, function in catalysis and that the general catalytic mechanism is valid for the S. aureus enzyme. Fluvastatin inhibited competitively with HMG-CoA, with a K(i) of 320 microM, over 10(4) higher than that for a class I HMG-CoA reductase. Bacterial class II HMG-CoA reductases thus are potential targets for antibacterial agents directed against multidrug-resistant gram-positive cocci.  相似文献   

13.
Aims:  Statins – inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase – are known to reduce blood cholesterol levels. In this paper, we present a Saccharomyces cerevisiae expression system, which enables quick evaluation of the sensitivity of the wild-type and/or mutant forms of human HMG-CoA reductase towards statins or other drugs.
Methods and results:  We analysed the sequence of the HMG-CoA reductase gene in DNA extracted from blood samples of 16 patients with cardiovascular disorders. We applied the yeast system to examine the sensitivity of the wild-type and mutated versions of the hHMG-CoA reductase to different types of statins.
Conclusion:  The yeast and mammalian HMG-CoA reductases demonstrate structural and functional conservation, and expression of human HMG-CoA reductase in yeast complements the lethal phenotype of strains lacking the HMG1 and HMG2 genes.
Significance and Impact of the Study:  These data indicate that a yeast expression system can serve to study the influence of selected mutations in human HMG-CoA reductase on the sensitivity of the enzyme to commonly prescribed statins. Our results suggest that this model system is suitable for the development and selection of lipid-lowering drugs as well as for the examination of DNA sequence variations in the context of statin therapy.  相似文献   

14.
Comparison of the inferred amino acid sequence of orf AF1736 of Archaeoglobus fulgidus to that of Pseudomonas mevalonii HMG-CoA reductase suggested that AF1736 might encode a Class II HMG-CoA reductase. Following polymerase chain reaction-based cloning of AF1736 from A. fulgidus genomic DNA and expression in Escherichia coli, the encoded enzyme was purified to apparent homogeneity and its enzymic properties were determined. Activity was optimal at 85 degrees C, deltaHa was 54 kJ/mol, and the statin drug mevinolin inhibited competitively with HMG-CoA (Ki 180 microM). Protonated forms of His390 and Lys277, the apparent cognates of the active site histidine and lysine of the P. mevalonii enzyme, appear essential for activity. The mechanism proposed for catalysis of P. mevalonii HMG-CoA reductase thus appears valid for A. fulgidus HMG-CoA reductase. Unlike any other HMG-CoA reductase, the A. fulgidus enzyme exhibits dual coenzyme specificity. pH-activity profiles for all four reactions revealed that optimal activity using NADP(H) occurred at a pH from 1 to 3 units more acidic than that observed using NAD(H). Kinetic parameters were therefore determined for all substrates for all four catalyzed reactions using either NAD(H) or NADP(H). NADPH and NADH compete for occupancy of a common site. k(cat)[NAD(H)]/k(cat)[NADP(H)] varied from unity to under 70 for the four reactions, indicative of slight preference for NAD(H). The results indicate the importance of the protonated status of active site residues His390 and Lys277, shown by altered K(M) and k(cat) values, and indicate that NAD(H) and NADP(H) have comparable affinity for the same site.  相似文献   

15.
We have isolated a mutant lacking 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity from a terpenoid antibiotic (terpentecin) producer, Streptomyces griseolosporeus MF730-N6, which uses both the mevalonate and nonmevalonate pathways for the formation of isopentenyl diphosphate, by screening terpentecin non-producing mutants. Terpentecin is known to be synthesized via the mevalonate pathway. The gene encoding HMG-CoA reductase (hmgg) was cloned and identified by complementation of the mutant, using a self-cloning system developed in this study for strain MF730-N6. The corresponding hmgs gene for HMG-CoA reductase was also cloned from Streptomyces sp. KO-3988, which produces the terpenoid antibiotic furaquinocin. Sequence analysis of hmgg and hmgs showed that both genes encode polypeptides of 353 amino acids which are 84% identical to each other. A search of protein sequence databases revealed that both gene products were also similar to HMG-CoA reductases from a variety of other organisms, including Streptomyces sp. CL190 (hmgg is 89% and hmgs 85% identical to its CL190 homolog), sea urchin (40.3 and 40.5%), German cockroach (37.6 and 38.4%), and Camptotheca acuminata (39.7 and 40.8%). Received: 17 May 1999 / Accepted: 10 September 1999  相似文献   

16.
HMG-CoA reductase inhibitors (statins) have been shown to inhibit angiogenesis. The molecular mechanism mediating the anti-endothelial activities of statins remains unclear. The present study demonstrated that the antiangiogenic effect of atorvastatin (ATV) was associated with endothelial death. Molecular profiling data identified a 29-fold upregulation of beta4 integrin mRNA. Western blot and flow cytometry confirmed robust increases of total and cell-surface beta4 integrin. Blockage of beta4 integrin activity by antagonizing antibody abrogated ATV-induced endothelial death. The endothelial death and beta4 integrin upregulation by ATV could be reversed by intermediate metabilites of the HMG-CoA reductase pathway mevalonate or GGPP, but not by FPP, suggesting that these effects were results of specific inhibition of the pathway. These data indicate that the HMG-CoA reductase might represent an important survival pathway in angiogenic endothelial cells and thus, a potential target for antiangiogenic therapy.  相似文献   

17.
Our group and others have recently demonstrated that peroxisomes contain a number of enzymes involved in cholesterol biosynthesis that previously were considered to be cytosolic or located in the endoplasmic reticulum (ER). Peroxisomes have been shown to contain HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, phosphomevalonate decarboxylase, isopentenyl diphosphate isomerase, and FPP synthase. Four of the five enzymes required for the conversion of mevalonate to FPP contain a conserved putative PTS1 or PTS2, supporting the concept of targeted transport into peroxisomes. To date, no information is available regarding the function of the peroxisomal HMG-CoA reductase in cholesterol/isoprenoid metabolism, and the structure of the peroxisomal HMG-CoA reductase has yet to be determined. We have identified a mammalian cell line that expresses only one HMG-CoA reductase protein, and which is localized exclusively to peroxisomes, to facilitate our studies on the function, regulation, and structure of the peroxisomal HMG-CoA reductase. This cell line was obtained by growing UT2 cells (which lack the ER HMG-CoA reductase) in the absence of mevalonate. The surviving cells exhibited a marked increase in a 90-kD HMG-CoA reductase that was localized exclusively to peroxisomes. The wild-type CHO cells contain two HMG-CoA reductase proteins, the well-characterized 97-kD protein localized in the ER, and a 90-kD protein localized in peroxisomes. We have also identified the mutations in the UT2 cells responsible for the lack of the 97-kD protein. In addition, peroxisomal-deficient Pex2 CHO cell mutants display reduced HMG-CoA reductase levels and have reduced rates of sterol and nonsterol biosynthesis. These data further support the proposal that peroxisomes play an essential role in isoprenoid biosynthesis.  相似文献   

18.
细胞分裂素、赤霉素、脱落酸、叶绿素、萜类等类异戊二烯物质,是植物中广泛存在的一类代谢产物,在植物生长发育过程中起着非常重要的作用。一些萜类化合物作为药物的合成前体或有效的药用成分在工农业及医药生产上具有重要的经济价值。类异戊二烯物质主要通过甲羟戊酸代谢途径中的一系列酶催化合成,其中,3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase, HMGR)是该代谢途径中的第一个关键限速酶,能够将3-羟基-3-甲基戊二酰辅酶A转化成中间代谢产物甲羟戊酸。对植物HMGR基因的克隆、酶结构和功能分析、基因组织表达及调控等方面进行了综述,旨在为其在重要农作物的遗传改良、代谢产物工程植物创制以及植物亲缘关系分析中的应用等研究提供理论依据。  相似文献   

19.
Vaupotic T  Plemenitas A 《FEBS letters》2007,581(18):3391-3395
We have investigated regulation of HMG-CoA reductase (HMGR) in one of the most salt-tolerant fungi, Hortaea werneckii, under different salinities and at the level of protein degradation. Two different HwHMGR isoenzymes were identified, specific to mitochondria and endoplasmic reticulum: HwHmg1 and HwHmg2, respectively. The activity of microsomal HwHmg2 is highest under hypo-saline and extremely hyper-saline conditions, and down-regulated under optimal growth conditions. We show that this is due to intense ubiquitination and proteasomal degradation of HwHmg2. The activity of the truncated mitochondrial HwHmg1 is constant under different growth conditions, suggesting an osmoadaptation-directed fate for mevalonate utilization in H. werneckii.  相似文献   

20.
Statins are widely used for lowering cholesterol levels through their action on 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase. Yeasts use HMG-CoA reductase for the same enzymatic step as humans, but in yeasts the main end-product of the pathway is ergosterol rather than cholesterol. We considered that insights into the effects of statins in humans could be gained by examination of the effects of simvastatin on the petite-positive yeast Candida glabrata. Simvastatin was found to inhibit growth, and this was associated with lower ergosterol levels. As simvastatin-treated cultures of yeast were passaged, the frequencies of petite cells (respiratory-deficient yeast mutants with deletions in the mitochondrial genome) increased with time and with simvastatin concentration. DNA staining of the petite mutants showed that they were devoid of mtDNA, suggesting a defect in the maintenance of mtDNA. These observations in C. glabrata may provide further insights into the molecular effects of statins in humans undergoing treatment for hypercholesterolemia. In addition, if C. glabrata is a valid model for studying statin treatments, it would be very useful for the preliminary screening of agents to reduce statin side-effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号