首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
Summary Four neurons in the brain of the migratory locust were immunohistologically identified with an anti-met-enkephalin antiserum. The perikarya of two of these cells are located in the center of each of the two groups of lateral protocerebral neurosecretory cells. The fibres coming from these perikarya terminate in numerous immunoreactive ramifications visible at the periphery of both tractus I to the corpora cardiaca, through which pass the neurosecretory products of the pars intercerebralis. The other two cell bodies are located at the bases of the two optic lobes; their fibres enter the posterior part of the protocerebrum and ramify around the root of the nervus corporis cardiaci II, another area through which neurosecretory products pass. The topographic distribution of these met-enkephalin arborizations suggests that these four neurons may act as neuromodulators of the acitivity of the major neurosecretory cells in the brain of this insect.  相似文献   

2.
Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s]-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunoreactive arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia. This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.  相似文献   

3.
The anatomy of the neurosecretory cells in the brain-subesophageal ganglion complex of female European corn borer moth Ostrinia nubilalis (Lepidoptera: Pyralidae) was studied using histological and cobalt backfilling techniques. Histological staining revealed the presence of 2 median and one lateral neurosecretory cell groups in the brain. These brain neurosecretory cells are made up of mainly type A cells with a few type B cells in the median group. Three type C neurosecretory cell clusters occupy the apparent mandibular, maxillary, and labial neuromeres at the ventral median aspect of the subesophageal ganglion. Axonal pathways of the neurosecretory cell groups were delineated by retrograde cobalt filling from the corpora cardiaca. Fibers of the 3 brain neurosecretory cell groups merged to form a distinct axonal tract that exits the brain via the fused nervi corporis cardiaci-1 + 2. Cobalt backfilling from the corpora cardiaca filled 4 groups of cell bodies in the subesophageal ganglion. The presence in the subesophageal ganglion of extensive dendritic arborizations derived from the brain suggests interactions between neurosecretory cell groups in the 2 head ganglia.  相似文献   

4.
Summary Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s))-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunore-active arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia.This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.  相似文献   

5.
Cobalt applied extracellularly to the cephalic aorta in Rhodnius prolixus filled neurosecretory cells (NSCs) located in the brain, the retrocerebral complex, and the suboesophageal ganglion (SOG). Axons of these cells converged over the corpora cardiaca and corpus allatum and merged into a large tract before travelling posteriorly along the ventral side of the aorta. Cobalt-filled cells in the posterior margins of the brain and the retrocerebral complex lacked extensive dendritic arborizations, suggesting that their cell bodies and/or axonal processes in the retrocerebral complex are directly involved with integrative processes determining hormone release. Cobalt-filled cell bodies in the anterior region of the brain were closely associated with the ocellar nerve, and the cobalt-filled cells in the SOG formed extensive dendritic arborizations in the neuropile, suggesting the involvement of sensory cells in regulation of their electrical activity. The ability to fill NSCs with cobalt applied to the aorta demonstrates that the cephalic aorta of R. prolixus is an important neurohaemal region.  相似文献   

6.
Unlike most other insects, mosquitoes do not possess discrete corpora cardiaca composed of neuropile, intrinsic neurosecretory cells and glial cells. Cells homologous with the intrinsic neurosecretory cells of other insects are located at the junction of the neck and thorax of mosquitoes, close to the corpora allata. These cells are named cardiacal neurosecretory cells. Axons run forwards from the cardiacal neurosecretory cells into the allatal nerves. Neurosecretory release sites occur over almost the whole of the nervi corporum cardiacorum, allatal nerves and oesophageal nerves, and these nerves constitute a very extensive neurohaemal organ for many of the cerebral neurosecretory cells. The neurosecretory release sites of the cardiacal neurosecretory cells appear to be in the allatal nerves and possibly also on the perikarya of these cells.  相似文献   

7.
8.
The neurosecretory system and retrocerebral endocrine glands of Nezara viridula Linn. have been described on the basis of in situ preparations and histological sections employing the paraldehyde fuchsin (PF) and performic acid-victoria blue (PAVB) techniques. In the brain of N. viridula, there are two medial groups–each consisting of five neurosecretory cells which belong to A-type. The lateral neurosecretory cells are absent. The axons of the two groups of medial neurosecretory cells (MNC) compose the two bundles of neurosecretory pathways (NSP) that decussate in the anterodorsal part of the protocerebrum. The two pathways, after the cross-over, run deep into the protocerebrum and deutocerebrum and emerge as NCC-I from the tritocerebrum. The nervi corporis cardiaci-I (NCC-I) of each side which are heavily loaded with NSM terminate in the aorta wall. Thus, the neurosecretory material (NSM), elaborated in the medial neurosecretory cells of the brain, is stored in the aortic wall and nervi corporis cardiaci-I (NCC-I). The NCC-II are very short nerves that originate from the tritocerebrum and terminate in the corpora cardiaca (CC) of their side. Below the aorta, but dorsal to the oesophagus, lie two oval or spherical corpora cardiaca. A corpus allatum (CA) lies posterior to the corpora cardiaca (CC). The corpora cardiaca do not contain NSM; only the intrinsic secretion of their cells has been occasionally observed which stains orange or green with PF staining method. The corpus allatum sometimes exhibits PF positive granules of cerebral origin. A new connection between the corpus allatum and aorta has been recorded. The suboesophageal ganglion contains two neurosecretory cells of A-type which, in structure and staining behaviour, are similar to the medial neurosecretory cells of the brain. The course and termination of axons of suboesophageal ganglion neurosecretory cells, and the storage organ for the secretion of these cells have been reported. It is suggested that the aortic wall and NCC-I axons function as neurohaemal organ for cerebral and suboesophageal secretions.  相似文献   

9.
Park CW  Kim JH  Kim KM  Hwang JS  Kang SW  Kang HS  Cho BP  Yu CH  Kim HR  Lee BH 《Peptides》2004,25(11):1891-1897
Brain-derived neurotrophic factor-like neuropeptide is produced in the brain of the silk moth, Bombyx mori. Immunocytochemical studies of brain and retrocerebral complex of larvae, prepupae, pupae and adults showed that four pairs of median neurosecretory cells and six pairs of lateral neurosecretory cells which had different immunoreactivities to BDNF peptide. Day-1 adult brains showed no evidence of neurons stained by anti-BDNF antibodies. Those reactivities, which were much stronger in median cells than in lateral cells, were the weakest in an earliest larval stage and a latest pupal stage but the strongest in late larval stage. Median neurosecretory cells projected their axons into the contralateral corpora allata by decussation in the median region, nerve corpora cardiaca (NCC) I, and nerve corpora allata (NCA) I, whereas lateral neurosecretory cells extended their axons to the ipsilateral corpora allata via NCC II and NCA I.  相似文献   

10.
In the brain of the adult worker bee (Apis mellifica) prolactin-like (PRL) immunoreactive cells were localized in the lateral neurosecretory cell region and the subesophageal ganglion by means of the PAP procedure. These cells emit nerve fibers which pass through the neuropile of the brain to the corpora cardiaca where a great number of immunoreactive axon terminals is present. Test with antisera against rat pituitary prolactin and human luteinizing hormone were negative. These results indicate that hPRL material is produced in neurosecretory cells of the bee brain and transferred via axons to the corpora cardiaca for storage and subsequent release into haemolymph.  相似文献   

11.
The corpora cardiaca of Schistocerca consist of a neurohaemal part containing mainly extrinsic neurosecretory axons coming from the brain, and of a glandular part consisting mainly of intrinsic neurosecretory cells. Some extrinsic axons penetrate into the glandular region, and innervate intrinsic corpus cardiacum neurosecretory cells. The fine structure of the latter has been examined and related to other neurosecretory cell types. Secretion occurs by exocytosis. Omega-profiles are more frequently observed in corpora cardiaca stimulated electrically or by acetylcholine than in the controls.  相似文献   

12.
The fine-structure of the median neurosecretory cells and corpora cardiaca of the Cecropia silkmoth during the first 7 days after transfer from cold conditions to room temperature was compared to that of similar animals whose development was arrested with aminophylline. The major difference observed was the failure of the intrinsic secretory cells of the corpus cardiacum to degenerate in the arrested animals. This failure to degenerate coincides with the expected period of brain hormone release. After long periods of arrest, the medial neurosecretory cells and their axons became distended with neurosecretory granules. The significance of these observations in the initiation of adult development is discussed.  相似文献   

13.
The neurosecretory system of Labedura riparia has been described from sections and whole mounts using a variety of techniques. The pars intercerebralis contains two clusters of medial neurosecretory cells (MNC), each cluster consisting of 8 to 10 A-cells and occasional B-cells. The lateral sides of the brain have a few B-cells. The axons of the median neurosecretory cells terminate in the cephalic aorta (AO), whereas the axons of the lateral neurosecretory cells (LNC) terminate in the corpora cardiaca (CC). It appears that the neurosecretory material (NSM) elaborated in the MNC is stored in the cephalic aorta and that elaborated in the LNC is stored in the corpora cardiaca, which are two oval or elongate bodies composed of large chromophobe and small chromophil cells. Posteriorly there is the oval or elongate corpus allatum (CA) attached to the CC by thick nerves. The CA consists of one cell type only. Both CC and CA contain no A-cell neurosecretory material. It has been suggested that the neurosecretory system of L. riparia is composed of two complexes. One is formed by the medial neurosecretory cells for which the aorta functions as a neurohaemal organ, and the other is formed by lateral neurosecretory cells-lateral neurosecretory pathways-nervi corporis cardiaci-II in which the corpora cardiaca function as a neurohaemal organ.  相似文献   

14.
The ultrastructure of the retrocerebral endocrine-aortal complex of the earwig, Euborellia annulipes has been studied. The space between the inner and outer stromal layers of the aorta is occupied by numerous axon terminals and pre-terminals containing large electron dense granules (NS-I) of approximately 100 to 220 nm and a few axon terminals having small granules (NS-II) of approximately 40 to 90 nm; the former appear to belong to medial neurosecretory A-cells, and the latter to the B-cells of the brain. The corpora cardiaca consist of intrinsic cells with mitochondria and multivesicular bodies. Granules of type NS-II and NS-III are observed in the axon terminals and pre-terminals in the corpora cardiaca. The NS-II are identical to those found in the aorta and are probably the secretions of the lateral B-cells. Granules of type NS-III are 40 to 120 nm and electron dense, and are intrinsic in origin. Similar granules occur in the intrinsic cells of the corpora cardiaca. E M studies have confirmed the rôle of the aorta as a neurohaemal organ for the medial neurosecretory cells, and the corpora cardiaca for the lateral neurosecretory cells of the brain. The corpora cardiaca also act as a reservoir for the intrinsic secretion. The corpus allatum is a solid body consisting of parenchymal cells with prominent nuclei, mitochondria, and endoplasmic reticulum. In between its cells are occasional glial cells and also neurosecretory as well as non-neurosecretory axons. The gland is devoid of A-cell NSM.  相似文献   

15.
Summary The corpora cardiaca of Leucophaea maderae contain two classes of intrinsic elements, parenchymal and interstitial cells. The parenchymal cells produce a secretory material first visible in the Golgi zones of the perikarya in the form of distinct electron-opaque granules. These undergo changes (gradual loss of electron-density, emergence of internal structure) as they accumulate in cellular processes.The parenchymal cells are best classified as neuroglandular elements since, in addition to secretory inclusions, they possess characteristics of ganglion cells such as axonlike processes, neurotubules, and sheaths. These covers are provided by branches of the second type of intrinsic elements, the interstitial cells. They are non-glandular structures of considerable morphological complexity. In the manner of glial elements, they permeate the entire organ and encapsulate not only the perikarya of parenchymal cells but cellular processes as well.The cytoplasmic processes include a) relatively short ones belonging to parenchymal cells, and b) long axons whose cell bodies lie within the central nervous system. Many of the latter contain electron-opaque granules of the kind found in electron-micrographs of typical neurosecretory cells. These extrinsic granules represent the second category of secretory products stored within the corpora cardiaca. By comparison with the product of the intrinsic gland cells, the neurosecretory granules seem to be fairly stable. Neither type seems to pass through the connective tissue sheath of the corpus cardiacum in the form of discrete granular entities.This sheath, which sends branches into the interior of the corpora cardiaca, has the properties of a basement membrane. It represents a pathway for the exchange of substances between the cellular components of the corpus cardiacum and the surrounding hemocoele.The dual character of the corpus cardiacum, namely that of a storage and release center for extrinsic neurosecretory substances and of an endocrine organ in its own right, is herewith established beyond doubt. The number of secretory products discernible on the basis of their morphology and localization (two size categories of extrinsic and one intrinsic type of granules) does not match the variety of physiologically active principles known at present. The assignment of specific functions to discrete morphological elements must await further studies.Supported by Research Grants A-3984 and B-2145 from the U.S.P.H.S.  相似文献   

16.
Summary In the brain of the adult worker bee (Apis mellifica) prolactin-like (PRL) immunoreactive cells were localized in the lateral neurosecretory cell region and the subesophageal ganglion by means of the PAP procedure. These cells emit nerve fibres which pass through the neuropile of the brain to the corpora cardiaca where a great number of immunoreactive axon terminals is present. Tests with antisera against rat pituitary prolactin and human luteinizing hormone were negative. These results indicate that hPRL material is produced in neurosecretory cells of the bee brain and transferred via axons to the corpora cardiaca for storage and subsequent release into haemolymph.This work is part of the Ph. D. thesis of K.P.S.  相似文献   

17.
Summary The amounts of adipokinetic and diuretic hormone in the separate storage and glandular lobes of the locust corpora cardiaca during the imaginal moult and up to the onset of sexual maturation have been measured. The levels of the hormones are high prior to the imaginal moult, fall at emergence and increase during the somatic growth period. The effects of surgical interference with the neuroendocrine system upon the hormonal content of the corpora cardiaca have been investigated. Cautery of the brain neurosecretory cells or allatectomy in mature locusts has no effect on the content of adipokinetic hormone. Diuretic hormone is absent from the storage lobes of locusts deprived of their cerebral neurosecretory cells but normal levels are present in the corpora cardiaca of allatectomised animals. Severance of the nervus corporis cardiacum I and II reduces the level of diuretic hormone in the storage lobes of the corpora cardiaca but is without effect on the levels of adipokinetic hormone in the glandular lobes. This work is supported by grants from the Science Research Council and the Royal Society.  相似文献   

18.
The brain of Glossina morsitans Westwood contains four groups of neurosecretory cells which are stainable with chrome haematozylin and phloxin. The axons of these cells form a pair of nervi corporis cardiaci which pass posteriorly from the brain and innervate the corpora cardiaca and corpus allatum before uniting with a small ganglion posterior to the corpora cardiaca. This ganglion is considered to represent the fusion of the fusion of the hypocerebral and ventricular ganglia which remain separate in other insects.
There is no frontal ganglion in the adult Glossina and the recurrent nerve fuses with one of the nervi corporis cardiaci immediately behind the brain. The oesophageal nerves arising from the fused hypocerebral and ventricular ganglia innervate the oesophagus in the anterior part of the thorax, the proventriculus and the posterior extension of the oesophagus close to the crop. These nerves possess both sensory and motor nerve endings. The differences which exist between Glossina and other cyclorrhaphous Diptera with respect to their neuroendocrine/stomatogastric system are noted and considered in terms of the control of neuroendocrine function.  相似文献   

19.
Summary Insulin, glucagon and adipokinetic hormone antisera were applied to the corpora cardiaca, perisympathetic organs, neurohemal areas and peripheral neurosecretory cells of three insect species, the locust Locusta migratoria, the cockroach Periplaneta americana, and the stick insect Carausius morosus. The neurohemal part of the corpora cardiaca was shown to be immunoreactive to both insulin and glucagon antisera while the glandular cells reacted to adipokinetic hormone antisera. The perisympathetic organs seem to be devoid of these three substances, but certain peripheral neurohemal areas contained AKH and glucagon immunoreactive products. The latter were found to originate in the peripheral neurosecretory cells.  相似文献   

20.
Immunoreactivity against peptides of the allatostatin family having a typical YXFGL-NH2 C-terminus has been localized in different areas of the central nervous system, stomatogastric nervous system and gut of the cockroach Blattella germanica. In the protocerebrum, the most characteristic immunoreactive perikarya are situated in the lateral and median neurosecretory cell groups. Immunoreactive median neurosecretory cells send their axons around the circumesophageal connectives to form arborizations in the anterior neuropil of the tritocerebrum. A group of cells in the lateral aspect of the tritocerebrum project to the antennal lobes in the deutocerebrum, where immunoreactive arborizations can be seen in the periphery of individual glomeruli. Nerve terminals were shown in the corpora allata. These terminals come from perikarya situated in the lateral neurosecretory cells in the pars lateralis and in the subesophageal ganglion. Immunoreactive axons from median neurosecretory cells and from cells positioned in the anteriormost part of the tritocerebrum enter together in the stomatogastric nervous system and innervate foregut and midgut, especially the crop and the valve between the crop and the midgut. The hindgut is innervated by neurons whose perikarya are located in the last abdominal ganglion. Besides immunoreactivity in neurons, allatostatin-immunoreactive material is present in endocrine cells distributed within the whole midgut epithelium. Possible functions for these peptides according to their localization are discussed. Arch. Insect Biochem. Physiol. 37:269–282, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号