首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular Src homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP-1) is a negative regulator of cell signaling and contributes to the establishment of TCR signaling thresholds in both developing and mature T lymphocytes. Although there is much functional data implicating SHP-1 as a regulator of TCR signaling, the molecular basis for SHP-1 activation in T lymphocytes is poorly defined. A modification of the yeast two-hybrid system was employed to identify in T cells phosphotyrosine-containing proteins capable of binding the SH2 domains of SHP-1. From this yeast tri-hybrid screen, the p85beta subunit of phosphatidylinositol 3-kinase and the immunoreceptor tyrosine-based inhibitory motif-containing receptors, leukocyte-associated Ig-like receptor-1 (LAIR-1) and programmed death-1 (PD-1), were identified. Coimmunoprecipitation studies demonstrated that the exclusive phosphotyrosine-containing protein associated with SHP-1 in Jurkat T cells under physiological conditions is LAIR-1. Significantly, this interaction is constitutive and was detected only in the membrane-enriched fraction of cell lysates. Ligand engagement of the SH2 domains of SHP-1 is a prerequisite to activation of the enzyme, and, consistent with an association with LAIR-1, SHP-1 was found to be constitutively active in unstimulated Jurkat T cells. Importantly, a constitutive interaction between LAIR-1 and SHP-1 was also detected in human primary T cells. These results illustrate the sustained recruitment and activation of SHP-1 at the plasma membrane of resting human T cells by an inhibitory receptor. We propose that this mechanism may exert a constitutive negative regulatory role upon T cell signaling.  相似文献   

2.
3.
The hemopoietic-specific Gads (Grb2-related adaptor downstream of Shc) adaptor protein possesses amino- and carboxyl-terminal Src homology 3 (SH3) domains flanking a central SH2 domain and a unique region rich in glutamine and proline residues. Gads functions to couple the activated TCR to distal signaling events through its interactions with the leukocyte-specific signaling proteins SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) and LAT (linker for activated T cells). Expression library screening for additional Gads-interacting molecules identified the hemopoietic progenitor kinase-1 (HPK1), and we investigated the HPK1-Gads interaction within the DO11.10 murine T cell hybridoma system. Our results demonstrate that HPK1 inducibly associates with Gads and becomes tyrosine phosphorylated following TCR activation. HPK1 kinase activity is up-regulated in response to activation of the TCR and requires the presence of its proline-rich motifs. Mapping experiments have revealed that the carboxyl-terminal SH3 domain of Gads and the fourth proline-rich region of HPK1 are essential for their interaction. Deletion of the fourth proline-rich region of HPK1 or expression of a Gads SH2 mutant in T cells inhibits TCR-induced HPK1 tyrosine phosphorylation. Together, these data suggest that HPK1 is involved in signaling downstream from the TCR, and that SH2/SH3 domain-containing adaptor proteins, such as Gads, may function to recruit HPK1 to the activated TCR complex.  相似文献   

4.
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2, also referred to SH3BP2) regulates immune receptor-mediated signal transduction. In this report we focused on the molecular mechanism of 3BP2 function in B cell receptor (BCR) signaling. Engagement of BCR induces tyrosine phosphorylation of 3BP2. Genetic analysis demonstrated that Syk is critical for BCR-mediated tyrosine phosphorylation of 3BP2. Mutational analysis of 3BP2 revealed that both Tyr183 and Src homology 2 (SH2) domain are necessary for 3BP2-mediated BCR-induced activation of nuclear factor of activated T cells (NFAT). Point mutation of Tyr183 or Arg486 in the SH2 domain of 3BP2 diminished BCR-mediated tyrosine phosphorylation of 3BP2. Endogenous 3BP2 forms a complex with tyrosine-phosphorylated cellular signaling molecules. Peptide binding experiments demonstrated that only phosphorylated Tyr183 in 3BP2 could form a complex with the SH2 domain(s) of phospholipase Cγ2 and Vav1 from B cell lysates. These interactions were represented by using bacterial glutathione S-transferase-phospholipase Cγ2 or -Vav1 SH2 domain. Furthermore, pulldown and Far Western experiments showed that the 3BP2-SH2 domain directly binds to B cell linker protein (BLNK) after BCR stimulation. These results demonstrated that 3BP2 induces the protein complex with cellular signaling molecules through phosphorylation of Tyr183 and SH2 domain leading to the activation of NFAT in B cells.  相似文献   

5.
6.
Adaptor proteins that do not contain intrinsic enzymatic activity play a critical role in cell biology by regulating the assembly of large multimolecular signaling complexes involved in extracellular signal transduction. The increasing number of diseases associated with aberrant function or expression of adaptor proteins further illustrate their key role in cellular regulation. The adaptor 3BP2 (or SH3BP2) was originally identified more than 10 years ago as an c-Abl binding protein, and next as a partner of Syk family kinases in 1998. 3BP2 displays the typical modular organization of an adapter protein with an amino-terminal PH domain, a central proline rich region and a carboxyl-terminal SH2 domain. Although its physiological function remains unknown, studies have implicated a role for 3BP2 in immunoreceptor signaling through its interaction with a number of signaling molecules including Src and Syk families of protein tyrosine kinases, the membrane adaptor LAT, Vav exchange factors, PLC-gamma, and 14-3-3 proteins. Recently, the 3bp2/sh3bp2 locus was shown to be mutated in a rare human disease involved in cranial-facial development called cherubism, suggesting a role for 3BP2 in regulating osteoclast and hematopoietic cell function.  相似文献   

7.
Adaptor molecules are essential in organizing signaling molecules and in coordinating and compartmentalizing their activity. SH3-binding protein 2 (3BP2) is a cytoplasmic adaptor protein mainly expressed by hematopoietic cells that has been shown to act as a positive regulator in T, B, and NK cell signal transduction. 3BP2 is an important regulator of cytotoxic granule release in NK cells. Mast cells (MCs) similarly degranulate following Ag-dependent aggregation of the FcεRI on the cell surface. Activation of these cells induces the release of preformed inflammatory mediators and the de novo synthesis and secretion of cytokines and chemokines. Thus, MCs participate in both innate and acquired responses. We observed that 3BP2 is expressed in human MCs (huMCs) from diverse origins. Moreover, 3BP2 coimmunoprecipitates with essential MC signaling mediators such as Lyn, Syk, and phospholipase C γ; thus, a role for this adaptor in MC function was postulated. In the present work, we used the short hairpin RNA lentiviral targeting approach to silence 3BP2 expression in huMCs. Our findings point to a requirement for 3BP2 in optimal immediate and late MCs responses such as degranulation and IL-8 or GM-CSF secretion. 3BP2 was determined to be necessary for optimal phosphorylation of Syk, linker for activation of T cells, and phospholipase C γ(1), critical signals for calcium release from intracellular stores. Taken together, our results show that by participating in FcεRI- mediated signal transduction 3BP2 is an important regulator of huMC activation. Thus, 3BP2 could be a potential therapeutic target for IgE-dependent MC-mediated inflammatory disease.  相似文献   

8.
The intracellular Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase (SHP-1) has been characterized as a negative regulator of T cell function, contributing to the definition of T cell receptor signaling thresholds in developing and peripheral mouse T lymphocytes. The activation of SHP-1 is achieved through the engagement of its tandem SH2 domains by tyrosine-phosphorylated proteins; however, the identity of the activating ligand(s) for SHP-1, within mouse primary T cells, is presently unresolved. The identification of SHP-1 ligand(s) in primary T cells would provide crucial insight into the molecular mechanisms by which SHP-1 contributes to in vivo thresholds for T cell activation. Here we present a combination of biochemical and yeast genetic analyses indicating CD22 to be a T cell ligand for the SHP-1 SH2 domains. Based on these observations we have confirmed that CD22 is indeed expressed on mouse primary T cells and capable of associating with SHP-1. Significantly, CD22-deficient T cells demonstrate enhanced proliferation in response to anti-CD3 or allogeneic stimulation. Furthermore, the co-engagement of CD3 and CD22 results in a raising of TCR signaling thresholds hence demonstrating a previously unsuspected functional role for CD22 in primary T cells.  相似文献   

9.
10.
Receptor-stimulated generation of intracellular reactive oxygen species (ROS) modulates signal transduction, although the mechanism(s) is unclear. One potential basis is the reversible oxidation of the active site cysteine of protein tyrosine phosphatases (PTPs). Here, we show that activation of the antigen receptor of T cells (TCR), which induces production of ROS, induces transient inactivation of the SH2 domain-containing PTP, SHP-2, but not the homologous SHP-1. SHP-2 is recruited to the LAT-Gads-SLP-76 complex and directly regulates the phosphorylation of key signaling proteins Vav1 and ADAP. Furthermore, the association of ADAP with the adapter SLP-76 is regulated by SHP-2 in a redox-dependent manner. The data indicate that TCR-mediated ROS generation leads to SHP-2 oxidation, which promotes T-cell adhesion through effects on an SLP-76-dependent signaling pathway to integrin activation.  相似文献   

11.
Ligation of the T cell antigen receptor (TCR) activates the Src family tyrosine kinase p56 Lck, which, in turn, phosphorylates a variety of intracellular substrates. The phosphatidylinositol 3-kinase (PI3K) and the tyrosine phosphatase SHP-1 are two Lck substrates that have been implicated in TCR signaling. In this study, we demonstrate that SHP-1 co-immunoprecipitates with the p85 regulatory subunit of PI3K in Jurkat T cells, and that this association is increased by ligation of the TCR complex. Co-expression of SHP-1 and PI3K with a constitutively activated form of Lck in COS7 cells demonstrated the carboxyl-terminal SH2 domain of PI3K to inducibly associate with the full-length SHP-1 protein. By contrast, a truncated SHP-1 mutant lacking the Lck phosphorylation site (Tyr(564)) failed to bind p85. Wild-type but not catalytically inactive SHP-1 induced dephosphorylation of p85. Furthermore, expression of SHP-1 decreased PI3K enzyme activity in anti-phosphotyrosine immunoprecipitates and phosphorylation of serine 473 in Akt, a process dependent on PI3K activity. These results indicate the presence of a functional interaction between PI3K and SHP-1 and suggest that PI3K signaling, which has been implicated in cell proliferation, apoptosis, cytoskeletal reorganization, and many other biological activities, can be regulated by SHP-1 in T lymphocytes.  相似文献   

12.
13.
The protein-tyrosine phosphatase SHP-2 modulates signaling events through receptor tyrosine kinases and cytokine receptors including the receptor for prolactin (PRLR). Here we investigated mechanisms of SHP-2 recruitment within the PRLR signaling complex. Using SHP-2 and PRLR immunoprecipitation studies in 293 cells and in the mouse mammary epithelial cell line HC11, we found that SHP-2 co-immunoprecipitates with the PRLR and that the C-terminal tyrosine of the PRLR plays a regulatory role in both the tyrosine phosphorylation and the recruitment of SHP-2. Our results further indicate that SHP-2 association to the PRLR occurs via the C-terminal SH2 domain of the phosphatase. In addition, we determined that the newly identified adaptor protein Gab2, but not Gab1, is specifically tyrosine phosphorylated and is able to recruit SHP-2 and phosphatidyinositol 3-kinase in response to PRLR activation. Together, these studies suggest the presence of dual recruitment sites for SHP-2; the first is to the C-terminal tyrosine of the PRLR and the second is to the adaptor protein Gab2.  相似文献   

14.
To maintain various T cell responses and immune equilibrium, activation signals triggered by T cell antigen receptor (TCR) must be regulated by inhibitory signals. Gab2, an adaptor protein of the insulin receptor substrate-1 family, has been shown to be involved in the downstream signaling from cytokine receptors. We investigated the functional role of Gab2 in TCR-mediated signal transduction. Gab2 was phosphorylated by ZAP-70 and co-precipitated with phosphoproteins, such as ZAP-70, LAT, and CD3zeta, upon TCR stimulation. Overexpression of Gab2 in Jurkat cells or antigen-specific T cell hybridomas resulted in the inhibition of NF-AT activation, interleukin-2 production, and tyrosine phosphorylation. The structure-function relationship of Gab2 was analyzed by mutants of Gab2. The Gab2 mutants lacking SHP-2-binding sites mostly abrogated the inhibitory activity of Gab2, but its inhibitory function was restored by fusing to active SHP-2 as a chimeric protein. A mutant with defective phosphatidylinositol 3-kinase binding capacity also impaired the inhibitory activity, and the pleckstrin homology domain-deletion mutant revealed a crucial function of the pleckstrin homology domain for localization to the plasma membrane. These results suggest that Gab2 is a substrate of ZAP-70 and functions as a switch molecule toward inhibition of TCR signal transduction by mediating the recruitment of inhibitory molecules to the TCR signaling complex.  相似文献   

15.
Adaptor proteins, molecules that mediate intermolecular interactions, are crucial for cellular activation. The adaptor 3BP2 has been shown to positively regulate NK cell-mediated cytotoxicity. In this study we present evidence for a physical interaction between 3BP2 and the CD244 receptor. CD244, a member of the CD150 family, is a cell surface protein expressed on NK, CD8+ T, and myeloid cells. CD244 interacts via its Src homology 2 domain with the X-linked lymphoproliferative disease gene product signaling lymphocytic activation molecule-associated protein (SAP)/SH2 domain protein 1A. 3BP2 interacts with human but not murine CD244. CD244-3BP2 interaction was direct and regulated by phosphorylation, as shown by a three-hybrid analysis in yeast and NK cells. Tyr337 on CD244, part of a consensus motif for SAP/SH2 domain protein 1A binding, was critical for the 3BP2 interaction. Although mutation of Tyr337 to phenylalanine abrogated human 3BP2 binding, we still observed SAP association, indicating that this motif is not essential for SAP recruitment. CD244 ligation induced 3BP2 phosphorylation and Vav-1 recruitment. Overexpression of 3BP2 led to an increase in the magnitude and duration of ERK activation, after CD244 triggering. This enhancement was concomitant with an increase in cytotoxicity due to CD244 ligation. However, no differences in IFN-gamma secretion were found when normal and 3BP2-transfected cells were compared. These results indicate that CD244-3BP2 association regulates cytolytic function but not IFN-gamma release, reinforcing the hypothesis that, in humans, CD244-mediated cytotoxicity and IFN-gamma release involve distinct NK pathways.  相似文献   

16.
Src homology region 2 domain-containing phosphatase 1 (SHP-1) is a key mediator in lymphocyte differentiation, proliferation, and activation. We previously showed that B cell linker protein (BLNK) is a physiological substrate of SHP-1 and that B cell receptor (BCR)-induced activation of c-Jun NH(2)-terminal kinase (JNK) is significantly enhanced in cells expressing a form of SHP-1 lacking phosphatase activity (SHP-1-C/S). In this study, we confirmed that SHP-1 also exerts negative regulatory effects on JNK activation in splenic B cells. To further clarify the role of SHP-1 in B cells, we examined how dephosphorylation of BLNK by SHP-1 affects downstream signaling events. When a BLNK mutant (BLNK Delta N) lacking the NH(2)-terminal region, which contains four tyrosine residues, was introduced in SHP-1-C/S-expressing WEHI-231 cells, the enhanced JNK activation was inhibited. Among candidate proteins likely to regulate JNK activation through BLNK, Nck adaptor protein was found to associate with tyrosine-phosphorylated BLNK and this association was more pronounced in SHP-1-C/S-expressing cells. Furthermore, expression of dominant-negative forms of Nck inhibited BCR-induced JNK activation. Finally, BCR-induced apoptosis was suppressed in SHP-1-C/S-expressing cells and coexpression of Nck SH2 mutants or a dominant-negative form of SEK1 reversed this phenotype. Collectively, these results suggest that SHP-1 acts on BLNK, modulating its association with Nck, which in turn negatively regulates JNK activation but exerts a positive effect on apoptosis.  相似文献   

17.
While studies of the adaptor SH3BP2 have implicated a role in receptor-mediated signaling in mast cells and lymphocytes, they have failed to identify its function or explain why SH3BP2 missense mutations cause bone loss and inflammation in patients with cherubism. We demonstrate that Sh3bp2 "cherubism" mice exhibit trabecular bone loss, TNF-alpha-dependent systemic inflammation, and cortical bone erosion. The mutant phenotype is lymphocyte independent and can be transferred to mice carrying wild-type Sh3bp2 alleles through mutant fetal liver cells. Mutant myeloid cells show increased responses to M-CSF and RANKL stimulation, and, through mechanisms of increased ERK 1/2 and SYK phosphorylation/activation, they form macrophages that express high levels of TNF-alpha and osteoclasts that are unusually large. M-CSF and RANKL stimulation of myeloid cells that overexpress wild-type SH3BP2 results in similar large osteoclasts. This indicates that the mutant phenotype reflects gain of SH3BP2 function and suggests that SH3BP2 is a critical regulator of myeloid cell responses to M-CSF and RANKL stimulation.  相似文献   

18.
SHP-2 is an Src homology 2 (SH2) domain-containing tyrosine phosphatase with crucial functions in cell signaling and major pathological implications. It stays inactive in the cytosol and is activated by binding through its SH2 domains to tyrosine-phosphorylated receptors on the cell surface. One such cell surface protein is PZR, which contains two tyrosine-based inhibition motifs responsible for binding of SHP-2. We have generated a glutathione S-transferase fusion protein carrying the tandem tyrosine-based inhibition motifs of PZR, and the protein was tyrosine-phosphorylated by co-expressing c-Src in Escherichia coli cells. The purified phosphoprotein displays a strong binding to SHP-2 and causes its activation in vitro. However, when introduced into NIH 3T3 cells by using a protein delivery reagent, it effectively inhibited the activation of ERK1/2 induced by growth factors and serum but not by phorbol ester, in reminiscence of the effects caused by expression of dominant negative SHP-2 mutants and deletion of functional SHP-2. The data suggest that the exogenously introduced PZR protein specifically binds SHP-2, blocks its translocation, and renders it functionally incompetent. This is further supported by the fact that the phosphorylated PZR protein had no inhibitory effects on fibroblasts derived from mice expressing only a mutant SHP-2 protein lacking most of the N-terminal SH2 domain. This study thus provides a novel and highly specific method to interrupt the function of SHP-2 in cells.  相似文献   

19.
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10% of Src homology 2 domain-containing tyrosine phosphatase (SHP-1) is constitutively associated with plasma membrane, and nearly 50% of SHP-2 is translocated to plasma membrane after vanadate treatment. Similar to transmembrane PTP, CD45, the membrane-associated populations of SHP-1 and SHP-2 are essentially excluded from lipid rafts, where other signaling molecules such as Lck, linker for activation of T cells, and CD3 zeta are enriched. We further demonstrated that CD3-induced tyrosine phosphorylation of these substrates is largely restricted to lipid rafts, unless PTPs are inhibited. It suggests that a restricted partition of PTPs among membrane subdomains may regulate protein tyrosine phosphorylation in T cell membrane. To test this hypothesis, we targeted SHP-1 into lipid rafts by using the N-terminal region of Lck (residues 1--14). The results indicate that the expression of Lck/SHP-1 chimera inside lipid rafts profoundly inhibits CD3-induced tyrosine phosphorylation of CD3 zeta/epsilon, IL-2 generation, and nuclear mobilization of NF-AT. Collectively, these results suggest that the exclusion of PTPs from lipid rafts may be a mechanism that potentiates TCR/CD3 activation.  相似文献   

20.
Heterozygous activating mutations in exon 9 of SH3BP2 have been found in most patients with cherubism, an unusual genetic syndrome characterized by excessive remodeling of the mandible and maxilla due to spontaneous and excessive osteoclastic bone resorption. Osteoclasts differentiate after binding of sRANKL to RANK induces a number of downstream signaling effects, including activation of the calcineurin/NFAT (nuclear factor of activated T cells) pathway. Here, we have investigated the functional significance of SH3BP2 protein on osteoclastogenesis in the presence of sRANKL. Our results indicate that SH3BP2 both increases nuclear NFATc1 in sRANKL treated RAW 264.7 preosteoclast cells and enhances expression of tartrate resistant acid phosphatase (TRAP), a specific marker of osteoclast differentiation. Moreover, overexpression of SH3BP2 in RAW 264.7 cells potentiates sRANKL-stimulated phosphorylation of PLCγ1 and 2, thus providing a mechanistic pathway for the rapid translocation of NFATc1 into the nucleus and increased osteoclastogenesis in cherubism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号