首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The effects of selenium (Se) on ruminant microbial fermentation were investigated in vitro using rumen microflora collected from a rumen-fistulated dairy cow. First, the effects ofl-selenomethionine (SeMet; at 0.2 or 2 ppm Se) in the presence or absence of wheat bran (WB, 500 mg per incubation flask) were evaluated. Second, the effects of several forms of Se (elemental Se: 50 ppm Se; sodium selenite: 2 ppm Se; SeMet: 2 ppm Se) were compared. Results showed that the amounts of short-chain fatty acids (SCFAs) tended to be increased by SeMet treatment, whereas SeMet in the presence of WB transiently suppressed fermentation. The addition of SeMet tended to increase the production of acetate while reducing the production of butyrate with and without WB supplementation. Among the different Se compounds tested, the amounts of SCFAs were greater with SeMet treatment, which yielded a higher proportion of acetate compared to other treatments. Selenite did not influence the total SCFAs concentrations; however, it increased the relative proportion of butyrate at the expense of acetate. Elemental Se did not significantly affect fermentation. Higher bacterial Se concentrations were observed for selenite than for SeMet. It was concluded that Se supplementation can influence rumen microbial fermentation and that Se compounds differ in this regard.  相似文献   

2.
To study the fermentation characteristics of different non-conventional dietary fibre (DF) sources with varying levels of indigestible CP content and their effects on the production of fermentation metabolites and on faecal nitrogen (N) excretion, an experiment was conducted with 40 growing pigs (initial BW 23 kg) using wheat bran (WB), pea hulls (PH), pea inner fibres (PIF), sugar beet pulp (SBP) or corn distillers dried grains with solubles (DDGS). The diets also contained soya protein isolate, pea starch and sucrose, and were supplemented with vitamin-mineral premix. Faecal samples were collected for 3 consecutive days from day 10, fed with added indigestible marker (chromic oxide) for 3 days from day 13 and pigs were slaughtered on day 16 from the beginning of the experiment. Digesta from the ileum and colon were collected and analysed for short-chain fatty acids (SCFA) and ammonia (NH3) content. The apparent total tract N digestibility was the lowest (P < 0.001) in diets based on DDGS (74%), medium in diets with WB and SBP (76% each) and highest in those with PIF and PH (79% and 81%, respectively). Expressed per kg fermented non-starch polysaccharides (NSP), faecal N excretion was higher with DDGS and WB diets (130 and 113 g/kg NSP fermented, respectively) and lower with PIF, PH and SBP diets (42, 52 and 55 g/kg NSP fermented, respectively). The PH-based diets had the highest (P < 0.05) SCFA concentrations, both in the ileum and the colon (27 and 122 mMol/kg digesta, respectively). The highest NH3 concentration was also found in the colon of pigs fed with PH (132 mMol/kg digesta). Loading plot of principle component analysis revealed that the CP : NSP ratio was positively related with faecal N excretion and NH3 concentration in colon contents, whereas negatively related with SCFA concentration in colon contents. In conclusion, pea fibres and SBP increased SCFA and reduced NH3 concentration in the pig's intestine and reduced faecal N excretion, which makes pea fibres and SBP an interesting ingredient to use in pig diet to improve the positive effect of DF fermentation on the gastrointestinal tract and reduce faecal N excretion.  相似文献   

3.
Glutathione peroxidase (GPx) activity and deposition of selenium (Se) were examined in tissues of rats given dietary Se for 7 wk as either selenite or selenomethionine (SeMet) with 75Se radiotracer of the same chemical form. On the basis of Se:75Se ratio, all tissues of the rats fed selenite were equilibrated with the dietary source, but tissues of the SeMet fed animals maintained a ratio of Se:75Se greater than the dietary ratio. Deposition of dietary Se and 75Se was higher in most tissues of rats fed SeMet. Muscle 75Se was the largest single tissue pool of 75Se in both groups accounting for one-third of recovered 75Se in the rats fed selenite, and one-half of recovered 75Se in the rats fed SeMet. Tissue GPx activities were not different between the two dietary groups. The proportion of Se as GPx in tissues was highest in erythrocytes of the rats fed selenite (.81) and lowest in testes and epididymides of the rats fed SeMet (.009). The proportion of Se present in cytosolic GPx was consistently higher in tissues of rats fed selenite. Erythrocytes of the rats fed SeMet had more 75Se associated with hemoglobin, and muscle cytosols of the rats fed selenite had more 75Se associated with the G-protein. The proportion of 75Se as SeMet determined by ion exchange chromatography of tissue hydrolysates was higher in tissues of rats fed SeMet (highest in muscle and hemoglobin, 70%, and lowest in testes, 16%). In contrast, selenocysteine was the predominant form of Se present in tissues of rats given selenite. These results indicate that the form of Se administered will influence the form in the tissues, the percentage of Se with GPx and the body burden of Se.  相似文献   

4.
Selenium (Se) is an essential micronutrient and is circulated to the food chain through crops. Brassica species are efficient in Se accumulation and thus, good species for Se biofortification purposes. The residual fraction obtained after oil processing of Brassica seeds, the meal, is an important protein source in animal diets and used in feed concentrates. The accumulation of soil or foliar applied Se in the seeds and meal of Brassica napus and B. rapa as well as its effects on growth and yield formation was studied in two field experiments. Also, a HPLC-ICP-MS based method for the identification and quantification of Se species in Brassica seeds and meal was developed. Selenium application did not affect the yield or oil content. High accumulation of Se in the seeds and meal (1.92–1.96 μg Se g?1) was detected. Biotransformation of inorganic Se was evaluated by using HPLC-ICP-MS previous enzymatic hydrolysis for species extraction. The Se speciation studies showed that up to 85% of the total Se was SeMet whereas other Se-species were not detected. We conclude that the agronomic biofortification of Brassica species can improve the nutritive quality of the protein rich meal fraction as it contains significant amount of SeMet.  相似文献   

5.
Alternative feeds comprising only brewer's spent grain (BSG) or distillers dried grain (DDG), both agricultural byproducts, and 50% BSG or 50% DDG mixed with 50% wheat bran (WB) were compared to the standard 100% WB feed provided to Tenebrio molitor larvae to evaluate their effects on the nutritional quality and economic viability of mass‐producing this insect. Crude protein content was highest in larvae fed on 100% WB and 100% DDG, and the latter had 2.32 and 1.88 times more essential and non‐essential amino acids than the 100% WB group, respectively. Larvae fed on 50% DDG + 50% WB had 1.30 times more saturated fatty acids but 1.08 times less unsaturated fatty acids and 1.03–1.23 times less potassium, phosphorus, and magnesium than larvae fed on 100% WB. Traces of mercury were detected in larvae fed on 100% WB and 50% DDG + 50% WB, although at levels below the General Food and Feed Standard (Ministry of Food and Drug Safety, Republic of Korea), but neither Escherichia coli or Salmonella spp. were detected in the feeds. Larval and pupal weight, larval development and survival, and pupation rate were higher in larvae fed on 50% BSG or 50% DDG mixed with 50% WB groups than in larvae fed on 100% WB. Therefore, using 50% BSG or 50% DDG mixed with 50% WB as an alternative feed in the mass production of T. molitor provides higher quality larvae at a lower cost than does using the conventional 100% WB feed.  相似文献   

6.
Wheat bran (WB) is an important side product of the milling industry and can serve as dietary fiber compound for monogastric animals. The aim of this study was to evaluate the influence of native or fermented WB on the gut physiology and microbiology of laying hens. To accomplish this, 24 laying hens were fed the following diets: conventional diet without WB; 15% native WB in the diet; 15% WB fermented with Pleurotus eryngii; and 15% WB fermented with P. eryngii and a lactic acid bacterial culture. Immediately after slaughtering, digesta samples were taken from the jejunum, ileum and cecum, respectively. Total DNA was extracted and subsequently investigated with 16S DNA amplicon sequencing. Neither native nor fermented WB supplementations negatively affected the feed conversion ratio, laying performance or the relative abundances and alpha-diversity of microbiota in the intestine. Effects of WB-based diets on gut morphology were only recognized in the jejunum (reduced villum height and mucosa thickness). Likewise, WB supplementation decreased the digestibility of DM and starch. Based on these findings, it was demonstrated that different WB variants are applicable without exerting practically negative consequences on performance or on gut microbiota. Fermentation improved the digestibility/retention of dietary fat and phosphorus. However, no further beneficial effects were observed. This study also allowed a more in-depth view on the laying hens’ gut microbiome and its variation within the gut segments.  相似文献   

7.
The uptake of selenite, selenate and selenomethionine (SeMet) was performed with brush border membrane vesicles (BBMV) prepared from rats fed selenium-deficient and supplemented diets. At equilibrium (60 min), the uptake of 75Se from [75Se]selenite ranged from 16.5 to 18.9 nmol mg-1 protein. There was a curvilinear relationship in the uptake of selenite over a concentration range of 10–1000 m. About 2 nmol mg-1 protein was obtained with selenomethionine (SeMet) which occurred between 90 and 180 s. In contrast to selenite, there was a linear relationship in the initial uptake of SeMet over a concentration range of 10–1000 m. The uptake of selenate was approximately 50-fold lower than selenite, reaching 350 pmol mg-1 protein. Dietary selenium level had no effect on the rate of 75Se accumulation by BBMV. Dramatic differences are found in the uptake and binding of selenium by BBMV incubated with different selenocompounds.  相似文献   

8.
Selenium (Se) is an essential trace element for humans and other animals, yet approximately one billion people worldwide suffer from Se deficiency. Rice is a staple food for over half of the world's population that is a major dietary source of Se. In paddy soils, rice roots mainly take up selenite. Se speciation analysis indicated that most of the selenite absorbed by rice is predominantly transformed into selenomethinone (SeMet) and retained in roots. However, the mechanism by which SeMet is transported in plants remains largely unknown. In this study, SeMet uptake was found to be an energy‐dependent symport process involving H+ transport, with neutral amino acids strongly inhibiting SeMet uptake. We further revealed that NRT1.1B, a member of rice peptide transporter (PTR) family which plays an important role in nitrate uptake and transport in rice, displays SeMet transport activity in yeast and Xenopus oocyte. The uptake rate of SeMet in the roots and its accumulation rate in the shoots of nrt1.1b mutant were significantly repressed. Conversely, the overexpression of NRT1.1B in rice significantly promoted SeMet translocation from roots to shoots, resulting in increased Se concentrations in shoots and rice grains. With vascular‐specific expression of NRT1.1B, the grain Se concentration was 1.83‐fold higher than that of wild type. These results strongly demonstrate that NRT1.1B holds great potential for the improvement of Se concentrations in grains by facilitating SeMet translocation, and the findings provide novel insight into breeding of Se‐enriched rice varieties.  相似文献   

9.
Compared to the many studies on the physiological and toxicological effects of selenium (Se) in mammals, avian Se metabolism is still an unexplored topic. Some birds are useful as poultry for human nutrition. Moreover, birds belong to higher trophic levels in the biosphere and thus may play an important role in Se circulation in the ecosystem in the same way as mammals do. In this study, we analyzed the distribution and metabolism of Se in an experimental bird, the Japanese quail, which was fed drinking water containing sodium selenite or selenomethionine (SeMet). The highest concentration of Se was detected in the pancreas, followed by down feathers, liver, and kidneys. SeMet was more efficiently incorporated into the quail than selenite. The specific and preferable distribution of Se to the high molecular weight fraction in the serum of the quail was observed only in the SeMet-ingestion group. As in mammals, selenosugar and trimethylselenonium were the major metabolites in quail excreta. Three unknown Se metabolites were detected by HPLC-ICP-MS. Although part of the metabolic pathway of Se in the Japanese quail fed selenite and SeMet was the same as that observed in mammals, the bird also showed certain avian-specific metabolic process for Se.  相似文献   

10.
Wheat bran protects against mutations and cancer, but contains different plant cell types that are likely to have different protective effects. We previously described the production and chemical characterisation of an aleurone-rich fraction (ARF) and a pericarp-rich fraction (PRF) from wheat grain. We compared these with whole bran (WB), fed to rats as 10% of a high fat AIN-76 diet. All bran-supplemented diets increased faecal bulk, in the order PRF>WB>ARF. PRF increased the activity of NAD(P)H:quinone acceptor oxidoreductase only in the forestomach, whereas ARF and WB enhanced levels of glutathione S-transferase in the duodenum. ARF but not PRF was digested and fermented, and also encouraged bacterial growth. Rats were gavaged with the radioactive mutagen (14)C-labelled IQ (2-amino-3-methylimidazo[4,5-f]quinoline), and effects of the brans on plasma radioactivity measured. Compared with the control diet, all bran-supplemented diets reduced the concentration of radioactivity in plasma, in the order ARF>PRF>WB. All brans increased faecal elimination of radioactivity, but only ARF and PRF enhanced urinary radioactivity. These data suggest that wheat bran may reduce mutation and cancers through direct adsorption and enhanced elimination of a dietary mutagen and/or its metabolites, and that wheat bran enriched in pericarp or aleurone cell walls may exert protective effects through different mechanisms.  相似文献   

11.
Since differences have been found in animals, the efficacies of selenomethionine (SeMet), selenite, and selenocystine (SeCys) for glutathione peroxidase (GPx) induction and cellular incorporation were compared and some effects of interacting nutrients on SeMet utilization were examined in tissue cultures. In three cell lines, Chang liver cells, mouse myoblasts and human fibroblasts, selenite was more effective than SeMet for GPx induction. However, radiotracer studies showed that SeMet was more rapidly incorporated into all cells than either selenite or SeCys. Chromatography of acid hydrolysates of Chang liver cells grown with 75Se-labeled SeMet indicated that approximately 90% of incorporated 75Se remained as SeMet, and less than 10% was as SeCys, the form of Se in GPx. Selenite supplementation slightly reduced both the incorporation of 75SeMet and the proportion of cellular 75Se recoverable as SeCys in Chang liver cells. Supplementation with L-methionine, however, significantly reduced 75SeMet incorporation, but significantly increased the proportion of cellular 75Se recovered as SeCys. L-cystine supplementation had no effect on either the cellular incorporation of 75SeMet or the proportion of cellular 75Se recovered as SeCys. These studies of SeMet utilization and effects of interacting nutrients are reflective of observations on SeMet metabolism in whole animals and humans.  相似文献   

12.
Selenium (Se)-containing proteins have important roles in protecting cells from oxidative damage. This work investigated the effects of Se-depletion on the expression of the genes encoding selenoproteins in colonic mucosa from rats fed diets of different Se content and in human intestinal Caco-2 cells grown in Se-adequate or Se-depleted culture medium. Se-depletion produced statistically significant (P<0.05) falls in glutathione peroxidase (GPX) 1 mRNA (60-83%) and selenoprotein W mRNA (73%) levels, a small but significant fall in GPX4 mRNA (17-25%) but no significant change in GPX2. The data show that SelW expression in the colon is highly sensitive to Se-depletion.  相似文献   

13.
l-Selenomethionine (SeMet) and sodium selenite are widely used selenium nutritional supplements with potential benefit in preventing cancer. However, supplementation is not without risks of toxicity if intake is too high. The aim of the present study was to investigate SeMet and selenite metabolism in the gastrointestinal tract with particular focus on the formation of the volatile selenium excretion products, dimethylselenide (DMSe) and dimethyldiselenide (DMDSe). Adult male Wistar rats (n = 5) were euthanized, their intestinal tracts removed and the contents of jejunum, ileum, caecum and colon used to prepare 10% suspensions in saline. SeMet and selenite (0.5–0.6 mM) were then incubated with these suspensions at 37°C for 3 h. Caecum and colon contents were the most metabolically active towards SeMet with 30% and 15% metabolized over 3 h. DMDSe was the only volatile selenium metabolite detected accounting for 8.7 ± 1.3% of the selenium lost in caecum contents. Selenite was completely metabolized by caecum contents and 73% by colon contents under the same conditions forming DMSe (5.7 ± 0.9% of the selenium lost in caecum) and a precipitate of red amorphous elemental selenium. Based on previous literature and these results, we conclude that the gut microbiota contributes to the excretion of excess selenium through the production of methylated selenium compounds and elemental selenium.  相似文献   

14.
We assessed the bioavailability of selenium (Se) from a protein isolate and tofu (bean curd) prepared from naturally produced high-Se soybeans. The Se concentrations of the soybeans, the protein isolate and tofu were 5.2 ± 0.2, 11.4 ± 0.1 and 7.4 ± 0.1 mg/kg, respectively. Male weanling Sprague–Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1 μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet containing 14, 24 or 30 μg Se/kg from the protein isolate or 13, 23 or 31 μg Se/kg from tofu, respectively. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for the protein isolate and tofu to those for SeMet by using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Furthermore, supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in the Se concentrations of plasma, liver, muscle and kidneys. These results indicated an overall bioavailability of approximately 101% for Se from the protein isolate and 94% from tofu, relative to SeMet. We conclude that Se from naturally produced high-Se soybeans is highly bioavailable in this model and that high-Se soybeans may be a good dietary source of Se.  相似文献   

15.
In vivo and in vitro studies were conducted to investigate the chemical forms by ion-exchange chromatography of selenium (Se) present in rat and ovine spermatozoa. After injection with 75Se-selenite, the form of 75Se in rat sperm was selenocysteine, but selenocysteine and selenomethionine (SeMet) were present in ovine sperm. Presumably, synthesis of SeMet by rumen microbes are responsible for its presence in ovine sperm. In vitro incubation of ram sperm with selenocysteine or SeMet produced no changes, but incubation with selenite produced a compound that eluted one fraction before SeMet from the ion-exchange column. After treatment of this fraction with mercaptoethanol, it eluted in a later fraction upon rechromatography, suggesting it to be selenodicysteine. This compound is apparently formed because of high levels of cysteine in semen. Cysteine, reduced glutathione, and oxidized glutathione were also found in semen. The significance of the results is discussed.  相似文献   

16.
BackgroundStudies in mammals proved dietary organic selenium (Se) being superior to inorganic Se regarding effects on growth performance, antioxidative status, immune response, and Se homeostasis. However, the picture of possible effects of different Se sources and – levels can be expanded. The present field study evaluated the effects on weight gain, hematological and selected biochemical variables as well as plasma concentrations of vitamin E (vitE), total Se and selenobiomolecules in piglets throughout the suckling period.MethodsPiglets were monitored from birth to 38 days of age (d). The mother sows’ diets were enriched with l-selenomethionine (SeMet-0.26 and -0.43 mg Se/kg feed) or sodium selenite (NaSe-0.40 and -0.60 mg Se/kg feed) from 1 month prior to farrowing until the end of lactation period. Piglets received pelleted feed supplemented with Se similarly to the sows’ diets from one week of age. Selenite at 0.40 mg Se/kg (NaSe-0.40) represents a common Se source and -level in pig feed and served as control diet.ResultsFrom 24d, piglets in SeMet-groups had higher mean body weight (BW) compared with piglets from sows fed NaSe-0.40. Furthermore, from five-d and above, piglets from sows fed NaSe-0.60 had significantly higher BW than offspring from sows fed NaSe-0.40. Neonatal piglets in group SeMet-0.43 had significantly lower red blood cell counts (RBC), hemoglobin (Hgb) and hematocrit (Hct) concentrations compared with piglets from sows fed with NaSe-0.40. Neonatal and 5d-old piglets in group SeMet-0.26 showed higher gamma-glutamyl transferase activity than piglets in group NaSe-0.40. From five d and above, group NaSe-0.60 excelled with increased specific hematological variables culminating at age 38d with increased Hct, mean corpuscular volume (MCV), and MC hemoglobin (MCH) as well as increased activities of aspartate transaminase and lactate dehydrogenase compared with the other groups. Generally, offspring in the SeMet groups had higher total Se-concentrations in plasma than those from sows fed selenite, and showed a dose-response effect on plasma Se-concentrations. Furthermore, SeMet-fed piglets had higher plasma levels of the selenoproteins (Sel) glutathione peroxidase 3 (GPx3) and SelP as well as selenoalbumin. Plasma vitE levels were significantly negatively correlated with RBC throughout trial period.ConclusionsMaternal supplementation with SeMet during gestation influenced hematology and clinical biochemistry in neonatal piglets in a different way than in offspring from sows receiving selenite enriched diets. Growth performance was positively influenced by both dietary Se source and Se level. Higher plasma levels of GPx3 observed in piglets receiving SeMet probably improved the protection against birth or growth related oxidative stress. These might prime the piglets for demanding situations as indicated by higher weight gain in offspring from sows fed with SeMet-supplemented diets. Our results on some enzyme activities might indicate that piglets fed NaSe-0.60 had to cope with increased levels of oxidative stress compared with those originating from sows fed SeMet or lower dietary levels of selenite. We assume that combining inorganic and organic Se sources in complete feed for breeding sows might be beneficial fro reproduction and the offspring’s performance.  相似文献   

17.
The bioavailability of selenium (Se) from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine (SeMet), and sodium selenite was assessed in Se-deficient Fischer-344 rats. Se as veal, chicken, beef, pork, lamb, flounder, tuna, SeMet, and sodium selenite was added to torula yeast (TY) basal diets to comprise Se-inadequate (0.05 mg Se/kg) diets. Se as sodium selenite was added to a TY basal diet to comprise a Se-adequate (0.10 mg Se/kg), Se-control diet. The experimental diets were fed to weanling Fischer-344 rats that had been subjected to dietary Se depletion for 6 wk. After 9 wk of the dietary Se repletion, relative activity of liver glutathione peroxidase (GSHPx) from the different dietary groups compared with control rats (100%) was: flounder 106%, tuna 101%, pork 86%, sodium selenite 81%, SeMet 80%, beef 80%, chicken 77%, veal 77%, and lamb 58%. Se from flounder was the most efficient at restoring Se concentrations in the liver and skeletal muscle. Se from sodium selenite, SeMet, beef, veal, chicken, pork, lamb, and tuna was not dietarily sufficient to restore liver and muscle Se after 9 wk of recovery following a 6-wk period of Se depletion.  相似文献   

18.
We earlier found that seleno-l-methionine (L-SeMet) as a food source of selenium (Se) is directly converted to methylselenol (CH3SeH), α-ketobutyrate, and ammonia by the mouse hepatic cystathionine γ-lyase. The purpose of this study was to clarify the biological role of cystathionine γ-lyase in Se detoxification and cytosolic glutathione peroxidase (cGPx) biosynthesis because another metabolic pathway to CH3SeH via seleno-l-cystathionine and seleno-l-cysteine (l-SeCyH) from l-SeMet has been shown by several enzymatic reactions. When mice were treated with either toxic doses of l-SeMet or a Se-deficient diet, the cystathionine γ-lyase activity for l-SeMet was invariable, suggesting that this enzyme was effective in both detoxification and biotransformation of Se. Concerning Se biotransformation into cGPx, production of H2Se as the possible precursor was not observed by the in vitro reaction of the liver cytosol with CH3SeH. When l-SeMet was administered at the nutritional dose to mice fed a Se-deficient diet, levels of both cGPx mRNA and cGPx protein were significantly restored. This recovery was not comparatively suppressed by coadministration of periodate-oxidized adenosine, an inhibitor of S-adenosylhomo-cystenase, where the conversion of l-SeMet to l-SeCyH is inhibited. However, the recovery was strongly suppressed when propargylglycine, an inhibitor of cystathioine γ-lyase that catalyzes the α,γ-elimination reaction of both l-SeMet and seleno-l-cystathionine, was treated. These results suggest that cystathionine γ-lyase is a notable enzyme, in SeMet metabolism and that CH3SeH produced by the enzymatic reaction is utilized for cGPx biosynthesis.  相似文献   

19.
Diets containing wheat bran (WB) protect against cancers of the colon or breast in rats, and may be beneficial in humans. In a previous study of rats treated with the carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), inclusion of 10% wheat bran in the diet led to an apparent reduction in IQ metabolites but not of intact IQ in plasma. In the present study, male Wistar rats were fed diets containing 0, 10 or 20% wheat bran, and effects on xenobiotic metabolising enzymes compared. Wheat bran-supplementation showed differential effects on phase I enzymes, significantly increasing the activity of hepatic cytochrome P450 isozyme CYP3A2, but slightly reducing the activity of CYP1A1/2. The activities of both hepatic phase II detoxification enzymes glutathione-S-transferase and glucuronosyl transferase were also reduced. Western blotting revealed similar effects on expression of the proteins. Interestingly, the expression of xenobiotic metabolising enzymes (XME) in the colon appeared to be modulated independently of hepatic XME. Although the wheat bran-supplemented diet still led to an increased expression of CYP3A, it now slightly increased CYP1A in the colon. However, 20% wheat bran significantly increased the expression of both glutathione transferase isozymes, GST A1 & A2, in the colon. Natures Gold (NG) is a commercial wheat bran derivative which is lower than wheat bran in dietary fibre, but enriched in vitamins, minerals and various phytochemicals. Dietary supplementation with 20% Natures Gold led to similar trends as seen in wheat bran-fed rats, but more potent effects in both hepatic and colonic enzymes. The significance of these changes for activation of carcinogens to mutagenic metabolites was investigated using the Salmonella/mammalian microsome mutagenicity test. The activation of IQ and benzo[a]pyrene, but not cyclophosphamide, to a mutagen by hepatic S9 from wheat bran-fed or Natures Gold-fed rats was significantly reduced compared with S9 from animals on a diet lacking wheat bran. We suggest that modulation of xenobiotic metabolising enzymes may be an important component of cancer protection by wheat bran, and this effect may relate to micronutrients or cancer-protective non-nutrient phytochemicals rather more than to dietary fibre.  相似文献   

20.
The influence of several thiols (conc. 1 mmol/L) on mucosal uptake of75Se from75Se-labeled selenite (conc. 10 μmol/L) across the brush border of rat jejunum and cecum was investigated in vitro using a short-term uptake technique.l-Cysteine (l-Cys) stimulated75Se uptake in the mid- and distal jejunum and cecum, but not in the proximal jejunum. The effect was maximal in the distal jejunum.d-Cys was less effective in the jejunum and similarly effective in the cecum.l-Leucine (l-Leu) andl-glutamic acid significantly reduced the stimulatory effect ofl-Cys on Se uptake in the distal jejunum, whereas the respective effect ofd-Cys was not diminished byl-Leu. Cysteamine stimulated mucosal75Se uptake at all intestinal sites tested, whereas the effect of mercaptopyruvate was restricted to the distal jejunum. Thioglycolate also enhanced75Se uptake in the distal jejunum. The stimulatory effects ofl-Cys, mercaptopyruvate, and thiologlycolate were Na+-dependent, whereas the effect of cysteamine also occurred in the absence of Na+. Mercaptosuccinate,d-penicillamine, ergothioneine, and thiosulfate did not enhance mucosa75Se uptake. It is concluded from these findings that the reaction of some thiols with selenite results in Se compounds that are rapidly absorbed by the intestinal epithelium through various Na+-dependent and Na+-independent, mechanisms. The high bioavailability of Se from selenite found by others might thus be the result of the presence of thiols in the gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号