首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An azidoquinone derivative, 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyl[3H]octyl)-1,4-benzoquinone (azido-Q), was used to study the plastoquinone-protein interaction and to identify the plastoquinone-binding protein in the cytochrome b6-f complex from spinach chloroplasts. When the lipid- and plastoquinone-deficient cytochrome b6-f complex is incubated with varying concentrations of azido-Q and illuminated with long wavelength UV light for 7 min at 2 degrees C, the enzymatic activity, assayed after reconstitution with lipid, decreases as the concentration of azido-Q increases. Maximum inactivation (45%) is observed when 30 mol of azido-Q is used per mol of cytochrome f. The extent of the decrease in activity upon illumination correlates with the amount of azido-Q incorporated into the protein. The 50% inactivation is in good agreement with that expected based on the amount of plastoquinone deficiency of the isolated enzyme complex. When the photolyzed, [3H]azido-Q-treated sample is extracted with organic solvent and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, radioactivity is found primarily in the Mr = 17,000 subunit. When the enzyme is pretreated with the electron transfer inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone or 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole, significantly less radioactive label is observed in the Mr = 17,000 protein, suggesting that the action sites of these inhibitors are the same or near the plastoquinone-binding site. When the deficient complex is reconstituted with glycolipid prior to the addition of azido-Q, less than 5% inactivation is observed upon photolysis, and the amount of radioactive label on the Mr = 17,000 protein decreases greatly, suggesting that the plastoquinone-binding site is easily masked by glycolipid when endogenous plastoquinone is absent. Plastoquinol-2 apparently competes with azido-Q for the plastoquinone-binding site since it decreases the radioactive label on the Mr = 17,000 protein.  相似文献   

2.
S Usui  L Yu  C A Yu 《Biochemistry》1990,29(19):4618-4626
The small molecular mass ubiquinone-binding protein (QPc-9.5 kDa) was purified to homogeneity from 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyl[3H]octyl)-1,4-benzoquinol+ ++- labeled bovine heart mitochondrial ubiquinol-cytochrome c reductase. The N-terminal amino acid sequence of the isolated protein is Gly-Arg-Gln-Phe-Gly-His-Leu-Thr-Arg-Val-Arg-His-, which is identical with that of a Mr = 9500 protein in the reductase [Borchart et al. (1986) FEBS Lett. 200, 81-86]. A ubiquinone-binding peptide was prepared from [3H]azidoubiquinol-labeled QPc-9.5 kDa protein by trypsin digestion followed by HPLC separation. The partial N-terminal amino acid sequence of this peptide, Val-Ala-Pro-Pro-Phe-Val-Ala-Phe-Tyr-Leu-, corresponds to amino acid residues 48-57 in the reported Mr = 9500 protein. According to the proposed structural model for the Mr = 9500 protein, the azido-Q-labeled peptide is located in the membrane on the matrix side. These results confirm our previous assessment that the Mr = 13,400 subunit is not the small molecular weight Q-binding protein. Purified antibodies against QPc-9.5 kDa have a high titer with isolated QPc-9.5 kDa protein and complexes that contain it. Although antibodies against QPc-9.5 kDa do not inhibit intact succinate- and ubiquinol-cytochrome c reductases, a decrease of 85% and 20% in restoration of succinate- and ubiquinol-cytochrome c reductases, respectively, is observed when delipidated succinate- or ubiquinol-cytochrome reductases are incubated with antibodies prior to reconstitution with ubiquinone and phospholipid, indicating that epitopes at the catalytic site of QPc-9.5 kDa are buried in the phospholipid environment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
An azido-ubiquinone derivative, 3-azido-2-methyl-5-methoxy[3H]-6-decyl-1,4-benzoquinone ([3H]azido-Q), was used to study the ubiquinone/protein interaction and to identify the ubiquinone-binding site in Escherichia coli NADH:ubiquinone oxidoreductase (complex I). The purified complex I showed no loss of activity after incubation with a 20-fold molar excess of [3H]azido-Q in the dark. Illumination of the incubated sample with long wavelength UV light for 10 min at 0 degrees C caused a 40% decrease of NADH:ubiquinone oxidoreductase activity. SDS-PAGE of the complex labeled with [3H]azido-Q followed by analysis of the radioactivity distribution among the subunits revealed that subunit NuoM was heavily labeled, suggesting that this protein houses the Q-binding site. When the [3H]azido-Q-labeled NuoM was purified from the labeled reductase by means of preparative SDS-PAGE, a 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone-linked peptide, with a retention time of 41.4 min, was obtained by high performance liquid chromatography of the protease K digest of the labeled subunit. This peptide had a partial NH2-terminal amino acid sequence of NH2-VMLIAILALV-, which corresponds to amino acid residues 184-193 of NuoM. The secondary structure prediction of NuoM using the Toppred hydropathy analysis showed that the Q-binding peptide overlaps with a proposed Q-binding motif located in the middle of the transmembrane helix 5 toward the cytoplasmic side of the membrane. Using the PHDhtm hydropathy plot, the labeled peptide is located in the transmembrane helix 4 toward the periplasmic side of the membrane.  相似文献   

4.
A preparation containing the Mr 13,400 protein (subunit VI), phospholipid, and ubiquinone was isolated from bovine heart mitochondrial ubiquinol-cytochrome c reductase by a procedure involving Triton X-100 and urea solubilization, calcium phosphate-cellulose column chromatography at different pHs, acetone precipitation, and decanoyl-N-methylglucamide-sodium cholate extraction. The protein in this preparation corresponds to subunit VI of ubiquinol-cytochrome c reductase resolved in the sodium dodecyl sulfate-polyacrylamidce gel electrophoresis system of Sch?gger et al. (1987, FEBS Lett. 21, 161-168) and has the same amino acid sequence as that of the Mr 13,400 protein reported by Wakabayashi et al. (1985, J. Biol. Chem. 260, 337-343). The phospholipid and ubiquinone present in the preparation copurify with but are not intrinsic components of, the Mr 13,400 protein. This preparation has a potency and behavior identical to that of a free phospholipid preparation in restoring activity to delipidated ubiquinol-cytochrome c reductase. Antibodies against Mr 13,400 react only with Mr 13,400 protein and complexes which contain it. They do not inhibit intact, lipid-sufficient ubiquinol-cytochrome c reductase. However, when delipidated ubiquinol-cytochrome c reductase is incubated with antibodies prior to reconstitution with phospholipid, a 55% decrease in the restoration activity is observed, indicating that the catalytic site-related epitopes of the Mr 13,400 protein are buried in the phospholipid environment. Antibodies against Mr 13,400 cause an increase of apparent Km for ubiquinol-2 in ubiquinol-cytochrome c reductase. When mitoplasts or submitochondrial particles are exposed to a horseradish peroxidase conjugate of the Fab' fragment of anti-Mr 13,400 antibodies, peroxidase activity is found mainly in the submitochondrial particles preparation; little activity is detected in mitoplasts. This suggests that the Mr 13,400 protein is extruded toward the matrix side of the membrane.  相似文献   

5.
The functional role and topographical orientation in the inner membrane of subunit VII, the ubiquinone-binding protein, of the cytochrome b-c1 complex of yeast mitochondria has been investigated. The apparent molecular weight of this subunit on sodium dodecyl sulfate-urea gels was calculated to be 15,500, while its amino acid composition was similar to that of the Q-binding proteins present in the cytochrome b-c1 complexes isolated from both beef heart and yeast mitochondria. The specific antibody obtained against subunit VII inhibited 30-47% of the ubiquinol-cytochrome c reductase activity in the isolated cytochrome b-c1 complex and in submitochondrial particles but had no effect on cytochrome c reductase activity in mitoplasts, mitochondria from which the outer membrane has been removed. Furthermore, the antibody against subunit VII strongly inhibited (74%) the reduction of cytochrome b by succinate in the presence of antimycin, an inhibitor of center i, but had no effect on cytochrome b reduction in the presence of myxothiazol, an inhibitor of center o. These results suggest that subunit VII, the Q-binding protein, is involved in electron transport at center o of the cytochrome b-c1 complex of the respiratory chain and that subunit VII is localized facing the matrix side of the inner mitochondrial membrane.  相似文献   

6.
The smallest molecular weight subunit (subunit IV), which contains no redox prosthetic group, is the only supernumerary subunit in the four-subunit Rhodobacter sphaeroides bc1 complex. This subunit is involved in Q binding and the structural integrity of the complex. When the cytochrome bc1 complex is photoaffinity labeled with [3H]azido-Q derivative, radioactivity is found in subunits IV and I (cytochrome b), indicating that these two subunits are responsible for Q binding in the complex. When the subunit IV gene (fbcQ) is deleted from the R. sphaeroides chromosome, the resulting strain (RSdeltaIV) requires a period of adaptation before the start of photosynthetic growth. The cytochrome bc1 complex in adapted RSdeltaIV chromatophores is labile to detergent treatment (60-75% inactivation), and shows a four-fold increase in the Km for Q2H2. The first two changes indicate a structural role of subunit IV; the third change supports its Q-binding function. Tryptophan-79 is important for structural and Q-binding functions of subunit IV. Subunit IV is overexpressed in Escherichia coli as a GST fusion protein using the constructed expression vector, pGEX/IV. Purified recombinant subunit IV is functionally active as it can restore the bc1 complex activity from the three-subunit core complex to the same level as that of wild-type or complement complex. Three regions in the subunit IV sequence, residues 86-109, 77-85, and 41-55, are essential for interaction with the core complex because deleting one of these regions yields a subunit completely or partially unable to restore cytochrome bc1 from the core complex.  相似文献   

7.
The interaction between phospholipids, ubiquinone and highly purified ubiquinol-cytochrome c reductase was studied using differential scanning calorimetry. The enzyme complex and its delipidated forms undergo thermodenaturation at 337.3 and 322.7 K, respectively. The reduced reductase is more stable toward thermodenaturation than is the oxidized enzyme. While phospholipids restored enzymatic activity to the delipidated enzyme complex and stabilized the enzyme toward thermodenaturation, ubiquinone showed little effect on the thermostability of ubiquinol-cytochrome c reductase. The effect of phospholipids on the thermotropic properties of ubiquinol-cytochrome c reductase is dependent upon the molecular properties of the phospholipid. When ubiquinol-cytochrome c reductase was embedded in closed asolectin vesicles, an exothermic transition peak was observed upon thermodenaturation. When the asolectin concentration in the reconstituted preparation was less than 0.3 mg/mg protein, an amorphous structure was observed in the electron micrograph and the preparation showed an endothermic transition upon thermodenaturation. The thermotropic properties of the enzyme-phospholipid vesicles were affected by the phospholipid head groups as well as the fatty-acyl chains, with those phospholipids having the most highly unsaturated fatty-acyl chains having the greatest effect. The energy for the exothermic transition may be derived from the collapse, upon thermodenaturation, of a strained interaction between the unsaturated fatty-acyl groups of phospholipids and protein molecules resulting from vesicle formation. The exothermic transition of the enzyme-phospholipid vesicle was abolished when cholesterol was included in the vesicles and when reductase was treated with a proteolytic enzyme prior to incorporation into the phospholipid vesicles.  相似文献   

8.
C A Yu  L Yu 《Biochemistry》1982,21(17):4096-4101
Various 6-alkylubiquinone or 6-(omega-haloalkyl)ubiquinone derivatives were synthesized through a radical coupling reaction between alkanoyl or omega-haloalkanoyl peroxides and ubiquinone 0. The latter was synthesized from 2-methoxy-4-methylphenol via nitration, methylation, reduction, and oxidation by modifications of the reported methods. 6-(omega-Haloalkyl)ubiquinones were converted to 6-(omega-hydroxyalkyl)ubiquinones by a mercuric-assisted solvolysis technique. The 6-(omega-hydroxyalkyl)ubiquinones were then esterified with carboxylic acid anhydrides or carboxylic acid bearing reporting groups, such as a photoaffinity label, N-(4-azido-2-nitrophenyl)-beta-alanine, or a spin-label, 3-carboxy-2,2,5,5-tetramethyl-3-pyrrolinyl-1-oxy. The esterification was catalyzed by dicyclohexylcarbodiimide and pyridine, and the esters were purified by preparative silica gel thin-layer chromatography, developed by 3% ethanol in benzene. The spectral properties and biological functions of the synthesized ubiquinone derivatives were studied. The biological function of the synthesized compounds was followed by the ability to serve as an electron acceptor, donor, or mediator in the isolated mitochondrial electron transfer complexes of succinate-Q reductase, ubiquinol-cytochrome c reductase, and succinate-cytochrome c reductase, respectively. The concentration effect of these ubiquinone derivatives on the electron transfer reaction was compared with that of ubiquinone 10. The study of the inhibitory effect of synthesized arylazidoubiquinone on succinate-cytochrome c reductase after photolysis confirmed the existence of specific Q-binding proteins in this segment of the respiratory chain. The specific interaction between ubiquinone and protein has also gained support from the immobilization of the spin-label of a synthesized spin-labeled ubiquinone derivative.  相似文献   

9.
L Yu  C A Yu 《Biochemistry》1991,30(20):4934-4939
The cytochrome b-c1 complex from Rhodobacter sphaeroides was resolved into four protein subunits by a phenyl-Sepharose CL-4B column eluted with different detergents. Individual subunits were purified to homogeneity. Antibodies against subunit IV (Mr = 15,000) were raised and purified. These antibodies had a high titer with isolated subunit IV and with the b-c1 complex from R. sphaeroides. They inhibited 95% of the ubiquinol-cytochrome c reductase activity of the cytochrome b-c1 complex, indicating that subunit IV is essential for the catalytic function of this complex. When detergent-solubilized chromatopores were passed through an anti-subunit IV coupled Affi-Gel 10 column, no no ubiquinol-cytochrome c reductase activity was detected in the effluent, and four proteins, corresponding to the four subunits in the isolated complex, were adsorbed to the column. This indicated that subunit IV in an integral part of the cytochrome b-c1 complex. No change in the apparent Kms for Q2H2 and for cytochrome c was observed with anti-subunit IV treated complex. Antibodies against subunit IV had little effect on the stability of the ubisemiquinone radical in this complex, suggesting that they do not bind to the subunit near its ubiquinone-binding site.  相似文献   

10.
The radiolabeled, photoreactive azido-ubiquinone derivative (azido-Q), 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyl-[3H]octyl)- 1,4-benzoquinone, was used to investigate the active site of ubiquinol oxidase activity of the cytochrome d complex, a two-subunit terminal oxidase of Escherichia coli. The azido-Q, when reduced by dithioerythritol, was shown to support enzymatic oxygen consumption by the cytochrome d complex that was 8% of the rate observed with ubiquinol-1. This observation provided the rationale behind further studies of the possible photoinactivation and labeling of the active site by this azido-Q. Ten min of photolysis of the purified cytochrome d complex in the presence of the azido-Q resulted in a 60% loss of the ubiquinol-1 oxidase activity. Uptake of the radiolabeled azido-Q by the cytochrome d complex was correlated to the photoinactivation of the ubiquinol-1 oxidase activity. Both increased linearly during the first 4 min of photolysis and reached 90% of the maximum within 10 min. Photolysis times longer than 10 min resulted in no increase in the maximum of 2 mol of azido-Q incorporated per mol of enzyme. The rate of azido-Q uptake by subunit I, but not subunit II, correlated well with the rate of loss of ubiquinol oxidase activity. Use of ubiquinol-0, which is not oxidized by the enzyme, to competitively inhibit radiolabeling of nonspecific binding sites, resulted in a significant decrease (42%) of azido-Q labeling of subunit II while it did not affect the labeling of subunit I. After photolysis for 4 min, the ratio of radiolabeled azido-Q in subunits I to II of the complex was 4.3 to 1.0. These observations support the conclusion that the ubiquinol substrate binding site is located on subunit I of the cytochrome d complex.  相似文献   

11.
An azido-ubiquinone derivative, 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyloctyl)-1,4-benzoquinone, was used to study the ubiquinone-protein interaction and to identify the ubiquinone-binding proteins in yeast mitochondrial ubiquinone-cytochrome c reductase. The phospholipids and Q6 in purified reductase were removed by repeated ammonium sulfate precipitation in the presence of 0.5% sodium cholate. The resulting phospholipid- and ubiquinone-depleted reductase shows no enzymatic activity; activity can be completely restored by the addition of phospholipids and Q6 or Q2. The ubiquinone- and phospholipid-replenished ubiquinonol-cytochrome c reductase is also fully active upon reconstituting with bovine succinate-ubiquinone reductase to form succinate-cytochrome c reductase. When an azido-ubiquinone derivative was added to the ubiquinone and phospholipid-depleted reductase in the dark, followed by the addition of phospholipids, partial reconstitutive activity was restored, while full ubiquinol-cytochrome c reductase activity was observed when Q2H2 was used as substrate in the assay mixture. Apparently, the large amount of Q2H2 present in the assay mixture displaces the azido-ubiquinone in the system. Photolysis of the azido-Q-treated reductase with long-wavelength ultraviolet light abolishes about 70% of both the restored reconstitutive activity and Q2H2-cytochrome c reductase activity. The activity loss is directly proportional to the covalent binding of [3H]azido-ubiquinone to the reductase protein. When the photolyzed, [3H]azido-ubiquinone-treated sample was subjected to SDS-polyacrylamide gel electrophoresis followed by analysis of the distribution of radioactivity among the subunits, the cytochrome b protein and a protein with an apparent molecular weight of 14 000 were heavily labeled. The amount of radioactive labeling in both these proteins was affected by the presence of phospholipids.  相似文献   

12.
The catalytic role of subunit IV, the Mr 17,000 protein, in the chloroplast cytochrome b6-f complex was established through trypsinolysis of the complex under controlled conditions. When purified chloroplast cytochrome b6-f complex, 1 mg/ml, in 50 mM Tris-succinate buffer (pH 7.0) containing 1% sodium cholate and 10% glycerol is treated with 80 micrograms of trypsin at room temperature for various lengths of time, the activity of the cytochrome b6-f complex decreases as the incubation time increases. A maximal inactivation of 80% is reached at 7 min of incubation. The trypsin inactivation is accompanied by the destruction of the proton translocation activity of the complex. No alteration of absorption and EPR spectral properties was observed in the trypsin-inactivated complex. Subunit IV is the only subunit in the cytochrome b6-f complex that is digested by trypsin, and the degree of digestion correlates with the decrease of electron transfer activity. The binding of azido-Q to subunit IV of the complex decreases as the extent of inactivation of the cytochrome b6-f complex by trypsin increases. The residue molecular mass of trypsin cleaved subunit IV is about 14 kDa, suggesting that the cleavage site is at lysine 119 or arginine 125 or 126. When the thylakoid membrane was assayed for cytochrome b6-f complex activity, very little activity was observed; and the activity was not sensitive to trypsinolysis. Upon sonication, activity and sensitivity to trypsinolysis was greatly increased, suggesting that subunit IV protrudes from the lumen side of the membrane.  相似文献   

13.
S H Gwak  L Yu  C A Yu 《Biochemistry》1986,25(23):7675-7682
The interaction between succinate-ubiquinone and ubiquinol-cytochrome c reductases in the purified, dispersed state and in embedded phospholipid vesicles was studied by differential scanning calorimetry and by electron paramagnetic resonance (EPR). When the purified, detergent-dispersed succinate-ubiquinone reductase, ubiquinol-cytochrome c reductase, and cytochrome c oxidase undergo thermodenaturation, they show an endothermic transition. However, when these isolated electron-transfer complexes are embedded in phospholipid vesicles, they undergo exothermodenaturation. The energy released could result from the collapse of the strained interaction between unsaturated fatty acyl groups of phospholipids and an exposed area of the complex formed by removal of interacting proteins. The exothermic enthalpy change of thermodenaturation of a protein-phospholipid vesicle containing both succinate-ubiquinone and ubiquinol-cytochrome c reductases was smaller than that of a mixture of protein-phospholipid vesicles formed from the individual electron-transfer complexes. This suggests specific interaction between succinate-ubiquinone reductase and ubiquinol-cytochrome c reductase in the membrane. This idea is supported by saturation transfer EPR studies showing that the rotational correlation time of spin-labeled ubiquinol-cytochrome c reductase is increased when mixed with succinate-ubiquinone reductase prior to embedding in phospholipid vesicles. These results indicate that succinate-ubiquinone reductase and ubiquinol-cytochrome c reductase are indeed present in the membrane as a supermacromolecular complex. No such supermacromolecular complex is detected between NADH-ubiquinone and ubiquinol-cytochrome c reductases or between succinate-ubiquinone and NADH-uniquinone reductases.  相似文献   

14.
B Heiss  K Frunzke    W G Zumft 《Journal of bacteriology》1989,171(6):3288-3297
Nitric oxide (NO) reductase was solubilized by Triton X-100 from the membrane fraction of Pseudomonas stutzeri ZoBell and purified 100-fold to apparent electrophoretic homogeneity. The enzyme consisted of two polypeptides of Mr 38,000 and 17,000 associated with heme b and heme c, respectively. Absorption maxima of the reduced complex were at 420.5, 522.5, and 552.5 nm, with a shoulder at 560 nm. The electron paramagnetic resonance spectrum was characteristic of high- and low-spin ferric heme proteins; no signals typical for iron-sulfur proteins were found. Nitric oxide reductase stoichiometrically transformed NO to nitrous oxide in an ascorbate-phenazine methosulfate-dependent reaction with a specific activity of 11.8 mumols/min per mg of protein. The activity increased to 40 mumols upon the addition of soybean phospholipids, n-octyl-beta-D-glucopyranoside, or its thio derivative to the assay system. Apparent Km values for NO and phenazine methosulfate were 60 and 2 microM, respectively. The pH optimum of the reaction was at 4.8. Cytochrome co was purified from P. stutzeri to permit its distinction from NO reductase. Spectrophotometric binding assays and other criteria also differentiated NO reductase from the respiratory cytochrome bc1 complex.  相似文献   

15.
A cytochrome bc1 complex, essentially free of bacteriochlorophyll, has been purified from the photosynthetic purple non-sulfur bacterium Rhodospirillum rubrum. The complex catalyzes electron flow from quinol to cytochrome c (turnover number = 75 s-1) that is inhibited by low concentrations of antimycin A and myxothiazol. The complex contains only three peptide subunits: cytochrome b (Mr = 35,000); cytochrome c1 (Mr = 31,000) and the Rieske iron-sulfur protein (Mr = 22,400). Em values (pH 7.4) were measured for cytochrome c1 (+320 mV) and the two hemes of cytochrome b (-33 and -90 mV). Electron flow from quinol to cytochrome c is inhibited when the complex is pre-illuminated in the presence of a ubiquinone photoaffinity analog (azido-Q). During illumination, the azido-Q becomes covalently attached to the cytochrome b peptide and, to a lesser extent, to cytochrome c1.  相似文献   

16.
A P van Loon  A C Maarse  H Riezman  L A Grivell 《Gene》1983,26(2-3):261-272
Cloning and mapping of the yeast nuclear genes for the core II (Mr 40 000) and Rieske iron-sulphur proteins of the mitochondrial ubiquinol-cytochrome c reductase, and comparison with the genomic regions in nuclear DNA from which they are derived, show that the genes are likely to be present in single copies and that they are not closely linked. They have been reintroduced into yeast cells on multi-copy plasmids and, similar to results obtained for the Mr 11 000 subunit [Van Loon et al., EMBO J. 2 (1983) 1765-1770], increase in the dosage of either gene prompts discoordinate synthesis of the encoded protein. Quantitative analysis of transformants carrying extra copies of the gene for the iron-sulphur protein shows that messenger RNA level, rate of synthesis and steady-state concentration of the protein correlate well with each other. This indicates that its level, in contrast to that of the Mr 11 000 subunit, is only determined by the concentration of its messenger RNA. Over-production of these proteins does not interfere with mitochondrial function as judged from growth rates of transformed cells on non-fermentable media. The excess Mr 40 000 protein is imported into the mitochondrion, showing that import of this subunit is not obligatorily coupled to complex assembly.  相似文献   

17.
Dibromothymoquinone (DBMIB) inhibits antimycin A-sensitive ubiquinol-cytochrome c reductase activity; the maximal inhibition is 90%. DBMIB alters the EPR spectra of reduced iron-sulfur protein in intact ubiquinol-cytochrome c reductase. The maximal spectral change occurs with 60 mol inhibitor per mol cytochrome c1 in the reductase. DBMIB causes little alteration in the EPR characteristics of iron-sulfur protein when ubiquinol-cytochrome c reductase is delipidated. When delipidated ubiquinol-cytochrome c reductase is replenished with phospholipid, the effect of DBMIB reappears. However, when DBMIB is added to delipidated protein prior to replenishment with phospholipid, very little spectral alteration is observed. DBMIB does not alter the EPR spectra of purified iron-sulfur protein, with or without phospholipid in the preparation. Reduced DBMIB does not alter the EPR characteristics of iron-sulfur protein in intact or delipidated ubiquinol-cytochrome c reductase. Cysteine and other thiol compounds can reverse the spectral alternation caused by DBMIB. This reversal probably results from the reduction of DBMIB.  相似文献   

18.
Nitrous oxide reductase from Wolinella succinogenes was purified very nearly to homogeneity. The enzyme was found to be dimeric, with Mr = 162,000 and subunit Mr = 88,000, and to contain three copper atoms and one iron atom (as cytochrome c) per subunit. The oxidized enzyme exhibited absorption bands at 410 and 528 nm, and the dithionite-reduced enzyme, at 416, 520, and 550 nm. The isoelectric point was 8.6; specific activity was at 25 degrees C and pH 7.1, 160 mumol x min-1 x mg-1; and Km was 7.5 microM N2O under the same conditions. alpha-Chymotrypsin cleaved the enzyme into cytochrome c-depleted dimers with an average Mr = 134,000 and cytochrome c-enriched fragments with an average Mr = 13,000. The enzyme was stable at 4 degrees C for at least 100 h under air and 3 h in the presence of 5 mM EDTA. It exhibited a dithionite-N2O oxidoreductase as well as a BV+-N2O oxidoreductase activity. During turnover with BV+ at 25 mM N2O, the enzyme was observed to undergo an initial activation and a subsequent inactivation. The kinetics of inactivation were approximately first-order in remaining activity, and the first-order rate constant was essentially independent of the initial enzyme concentration. These characteristics are consistent with the occurrence of turnover-dependent inactivation. Acetylene was a relatively weak inhibitor, but cyanide and azide were rather strong inhibitors. The nitrous oxide reductase of W. succinogenes is quite different from that of denitrifying bacteria. The amount of activity in cell extracts and the absence of O2-labile nitrous oxide reductase suggested that the cytochrome c containing enzyme may be the only one produced by W. succinogenes.  相似文献   

19.
To investigate the inhibitory action and binding site of a quinone-like molecule, 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT), a series of 4,7-dioxobenzothiazole derivatives were synthesized and their inhibitory efficiencies studied. Replacing the 6-hydroxyl or 2-hydrogen of UHDBT with a bromo or a methoxy group causes only a slight decrease in inhibitory efficiency, indicating that the 6-hydroxyl or the 2-hydrogen of UHDBT is not a structural requirement for inhibition. 5-Undecyl-6-bromo (or methoxy)-4,7-dioxobenzothiazole shows a pH-dependent inhibition similar to that observed with UHDBT, suggesting that the pH dependence is due to the presence of a dissociable group in the protein complex and not to the deprotonation of the hydroxyl group of the inhibitor. Replacing the 6-hydroxyl group with an azido group causes changes similar to those observed with UHDBT; the inhibition is accompanied by alteration of the epr characteristics of reduced iron-sulfur protein in ubiquinol-cytochrome c reductase. The extent of inhibition is not changed upon illumination of the treated reductase. When the photolyzed, 6-azido-5-(1',2'-[3H] undecyl)-4,7-dioxobenzothiazole [( 3H]6-azido-UDBT)-treated reductase is subjected to organic solvent extraction, no radioactivity is found in the reductase protein. Rather, the radioactivity is located in the phospholipid fraction. A [3H]azido-UDBT-cardiolipin adduct, identified after separation of the phospholipid fraction by high performance liquid chromatography, has 6-azido-UDBT linked to an acyl group, not to the head group of the cardiolipin molecule. These results suggest that inhibition by UHDBT is due to perturbation of specific cardiolipin molecules in ubiquinol-cytochrome c reductase. Since UHDBT and 6-azido-UDBT also inhibit the ubiquinol-cytochrome c reductase activity of delipidated reductase (10% of the original lipid remaining) assayed after reconstitution with ubiquinone and phospholipid, and the [3H]azido-UDBT-cardiolipin adduct is also found in the delipidated reductase, the UHDBT-perturbed cardiolipin molecule is structurally indispensable to reductase and it tightly bound to the reductase protein, most likely the quinone binding proteins.  相似文献   

20.
A functionally active arylazido-1-[14C]-β-alanine ubiquinone derivative has been synthesized for the identification of the ubiquinone binding protein in ubiquinol-cytochrome c reductase. After photolysis, the 14C activity was found to be specifically associated to proteins with mobilities relative to cytochrome c of 0.841 and 0.475 in the sodium dodecylsulfate polyacrylamide gel electrophoresis of the Weber and Osborn system. These two proteins have previously been identified as b cytochromes. The 14C activity distribution pattern was observed to be identical in the presence or absence of phospholipids during the photolysis. Antimycin A also produces no change in the 14C activity distribution among the proteins of this enzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号