首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using gametes from the sea urchins Arbacia punctulata and Strongylocentrotus purpuratus, we have evaluated the role of the acrosome reaction and the sperm-egg binding process in the block to interspecific fertilization among echinoids. The results indicate that sperm preinduced to undergo the acrosomal reaction by two different methods still bind to homologous eggs in a species specific manner. These results, taken in conjunction with an earlier study on species specificity of jelly coat induction of the acrosomal reaction (SeGall and Lennarz 1978), indicate that both the acrosome reaction and the sperm binding process contribute to the species specificity of fertilization in S. purpuratus and A. punctulata.  相似文献   

2.
Jelly coat, a multicomponent extracellular matrix surrounding the sea urchin egg, induces the acrosome reaction in sperm. The jelly coats of the four species studied, Arbacia punctulata, Strongylocentrotus purpuratus, Strongylocentrotus drobachiensis, and Lytechinus variegatus, were found to be very similar in chemical composition. A sialoprotein (approximately 20% of the mass of the jelly coat) and a fucose sulfate polysaccharide (approximately 80%) are the major macromolecular components of the jelly coat. The acrosome reaction inducing capacity resides solely in the fucose sulfate polysaccharide. Induction of the acrosome reaction ranges from highly species specific to nonspecific. Thus, A. punctulata and S. drobachiensis sperm are induced to undergo the acrosome reaction only with their homologous jelly coat, while S. purpuratus sperm react equally well with homologous or L. variegatus jelly coat, but not with A. punctulata jelly coat. L. variegatus sperm seem to be relatively nonspecific in response. Species-specific induction of the acrosome reaction resides solely in the fucose sulfate polysaccharide, suggesting that there must be structural differences in this polysaccharide in the various species. Therefore, in some species, fertilization appears to involve sperm-egg recognition at the level of the jelly coat as well as at the level of sperm-egg receptors.  相似文献   

3.
Evidence for sperm-borne proteolytic enzymes exposed during the acrosome reaction in sea urchin sperm has been accumulating. To investigate the possible role(s) such enzymes have in fertilization, we studied the effects of several protease inhibitors on sperm-related events. Soybean trypsin inhibitor, Nα-p-tosyl-l-lysine, chloromethyl ketone, phenylmethylsulfonyl fluoride, and chymostatin neither reduced the number of acrosome reactions nor interfered with gamete binding. p-Nitrophenyl-p′-guanidinobenzoate caused sperm to fuse into irregular clumps, rendering them unable to fertilize eggs. However, l-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK), an inhibitor of chymotrypsin, prevented the acrosome reaction in Strongylocentrotus purpuratus, S. droebachiensis, and Lytechinus pictus. The effects of TPCK on sperm in subsequent steps of fertilization were also investigated. First, gamete binding assays were performed on fixed eggs. This precluded any effects TPCK might have had on egg-derived secretions (e.g., proteases). Binding of prereacted sperm occurred with both fixed and living eggs. However, fertilization of living eggs in the presence of TPCK was greatly reduced, even though sperm had been prereacted with egg jelly. Vitelline coats were then removed from eggs by trypsin treatment. Eggs in TPCK fertilized and developed normally after the above treatment. These observations are consistent with the hypothesis of a sperm protease participating in the acrosome reaction and the penetration of the egg vitelline coat in the sea urchin.  相似文献   

4.
Acid-dejellied Lytechinus pictus eggs bind few sperm and show decreased fertilizability. Addition of solubilized egg jelly increases sperm binding and fertilizability, presumably by increasing the frequency of the acrosome reaction. However, dejellied Strongylocentrotus purpuratus bind more sperm and show increased fertilizability in the complete absence of soluble egg jelly. Addition of soluble egg jelly greatly decreases fertilizability in S. purpuratus. Such species differences may be the basis for the controversy between Lillie and Tyler on the one hand, who believed that egg jelly increased egg fertilizability; while Loeb and Hagström on the other hand, believed jelly had no effect on, or actually decreased egg fertilizability. 125I-labeling of dejellied S. purpuratus egg surfaces and immunofluorescent studies show that egg jelly persists on the surfaces of acid-dejellied eggs. Egg jelly appears to be a non-removable component of the vitelline layer of this species.  相似文献   

5.
Extracts of the jelly coat of eggs of several marine invertebrates are known to induce in homologous sperm morphological changes known as the acrosome reaction. When sperm of the sea urchin Strongylocentrotus purpuratus are treated with low concentrations (0.2 μg fucose/ml) of egg jelly coat or 30 mM CaCl2 in artificial seawater the acrosome reaction does not occur. However, either of these treatments causes the exposure of an acrosin-like enzyme to exogenous substrate and inhibitors. Subsequent addition of jelly coat to 3.7 μg fucose/ml to sperm in this “initial stage” induces the acrosome reaction (as judged by the appearance of an acrosomal filament). This concentration is also effective for untreated sperm. If inhibitors of the enzyme (diisopropylphosphofluoridate or phenylmethanesulfonyl fluoride) are added to sperm in the initial stage, no acrosomal filaments are observed when the high concentration of jelly coat is added. Whether other morphological changes occur in these sperm has not been examined. If phenylmethanesulfonyl fluoride is added 4 sec after the jelly coat, the acrosomal filaments are observed, but the sperm still fail to fertilize eggs. These results suggest a dual role for the acrosin-like enzyme(s), first in the mechanism of the acrosomal filament formation and then in a subsequent event in the fertilization process.  相似文献   

6.
We have examined the relationship between the acrosome reaction, sperm respiration, and fertilization using gametes of the sea urchin Strongylocentrotus purpuratus. The results indicate that when sperm are exposed to jelly coat isolated from homologous eggs, the following sequence of events occurs: (1) Sperm undergo the acrosome reaction within 30 sec with little or no loss in their capacity to fertilize eggs; (2) by 60 sec there is a dramatic decrease in fertilizing capacity which stabilizes after 4 or 5 min at a greatly reduced level; (3) by 1.5 to 2 min a progressive decrease in the rate of mitochondrial respiration becomes detectable and continues for 8 to 10 min, finally stabilizing at a greatly reduced rate. This decrease in respiration rate is paralleled by a decline in sperm motility. The effects of jelly coat on the acrosome reaction, sperm respiration, and motility are species specific. From these results we conclude that sperm which have undergone the acrosome reaction retain full fertilizing capacity for a very short time. The rapid decline in fertilizing capacity is followed by a decrease in respiration rate and motility.  相似文献   

7.
Jelly coats of the sea urchin, Pseudocentrotus depressus, were stripped off the eggs, and the eggs were “inseminated.” After penetration through the isolated jelly hull, sperm swarmed in the cavity previously occupied by the egg. Electron microscopic examination could not detect any sperm with reacted acrosome. Observation was also made of the sperm penetrating through the intact jelly coat-egg complex. Although a number of sperm were examined in ultrathin sections, only those attached to the vitelline layer had undergone the acrosome reaction; those sperm embedded in jelly but not attached to the vitelline layer had not undergone the acrosome reaction. The sequence of events in fertilization of this species and of other echinoids is discussed.  相似文献   

8.
When immotile, flagella-less sperm were added to acid-dejellied eggs of Strongylocentrotus purpuratus 11% of the eggs fertilized. Addition of soluble egg jelly increased the percentage fertilization to 90.5. Over 50% of the sperm exposed to egg jelly had undergone the acrosome reaction compared to only 3–5% in the absence of jelly. Egg jelly was added to flagella-less sperm to induce the acrosome reaction and dejellied eggs added at various times thereafter. The fertilizing capacity of the sperm decreased with first order kinetics with 50% loss by 23 sec after induction of the acrosome reaction. Intact, motile sperm bind to formaldehyde-fixed eggs with maximum binding occurring 40 sec after sperm addition. After 40 sec the sperm begin to detach from the fixed eggs and by 240 sec none remain attached. Sperm detachment from fixed eggs and loss of fertilizing capacity after the acrosome reaction show a close temporal correlation.  相似文献   

9.
Synopsis Sturgeon gametes differ from those of most fish in that the sperm possess acrosomes that undergo exocytosis and filament formation while the eggs possess numerous micropyles. Acipenser transmontanus eggs are encased by multilayered envelopes that consist of outer adhesive jelly coats and three structured layers interior to the jelly. The glycoprotein jelly layer only becomes adhesive upon exposure to freshwater. The layer interior to the jelly, layer 3, is the other carbohydrate-containing component of the egg envelope. This layer consists of a water-insoluble glycoprotein that, upon freshwater exposure, is hydrolyzed by a trypsinlike protease to yield a water-soluble, lower molecular weight carbohydrate-containing component. This component can be identified in the surrounding medium when unfertilized eggs are incubated in freshwater. This egg water component elicits acrosome reactions only in homologous sperm. The A. transmontanus sperm acrosome reaction is a Ca++ and/or Mg++ dependent event that includes the formation of a 10 μ long fertilization filament. A. transmontanus fertilization can occur at low sperm per egg ratios; however, crossfertilization of A. transmontanus eggs with lake sturgeon, A. fluvescens, sperm results in a very low number of fertilized eggs, even at high sperm per egg ratios. The morphological, physiological, and biochemical phenomenon reviewed in this paper are related to the environment in which they occur. Also, the possible role of the acrosome and the presence of numerous micropyles are discussed.  相似文献   

10.
A procedure is described for the complete removal of the vitelline layer of the eggs of the sea urchin, Strongylocentrotus purpuratus. The method involves treatment of unfertilized eggs with an S. purpuratus cortical granule protease preparation followed by incubation in an alkaline dithiothreitol seawater solution. Eggs denuded of their vitelline layers react metabolically to parthenogenetic agents and sperm like unfertilized eggs, whereas the fertilizability of denuded eggs and receptivity to sperm is much less than controls. The present method is superior to previous methods using mercaptans in that all of the vitelline layer is removed and to procedures using other proteolytic enzymes in that no 125I-labelled plasma membrane proteins are extensively modified. Thus the cortical granule protease dithiothreitol procedure is ideal for studies of the plasma membrane of the unfertilized egg and for studies on the role of the vitelline layer in normal fertilization and development.  相似文献   

11.
Direct isolation of the sea urchin egg vitelline envelope with intact sperm receptors is difficult because the envelope is firmly attached to the egg plasma membrane. We now report a method for producing an inseminated egg preparation in Strongylocentrotus purpuratus (using soybean trypsin inhibitor [STI] and Ca2+, Mg2+-free seawater) that contains an elevated vitelline envelope (VE*-STI). The VE*-STI is devoid of cortical granule material, and supernumerary sperm do not detach postinsemination, suggesting that the VE*-STI contains active sperm receptors. VE*-STIs contain a 305-kD polypeptide and additional components that range from 225 to 31 kD, whereas the 305-kD polypeptide was considerably reduced in VE*s. Electrophoresis of sperm receptor hydrolase digests of VE*-STIs showed that the 305-kD polypeptide and several other envelope polypeptides are protease substrates. Univalent Fab fragments against VE*s, VE*-STIs, and 305 and 225-kD polypeptides blocked sperm binding and fertilization in an Fab concentration-dependent manner. The 305 and 225-kD polypeptides were localized in the VE*-STI using indirect immunofluorescence. Enzyme-linked immunosorbent assays showed that the 305 and 225-kD polypeptides share determinants, suggesting that the 225-kD polypeptide may be derived from the 305-kD polypeptide by the proteolysis that occurs at the cell surface during fertilization. Fab fragments against S purpuratus VE*-STI antigens neither bound to nor blocked homologous sperm binding and fertilization of Lytechinus variegatus eggs. Cross fertilizability occurred to the extent of 5% or less between L variegatus and S purpuratus, therefore, we conclude that the 305 kD-polypeptide isolated from S purpuratus is a species-specific vitelline envelope sperm receptor.  相似文献   

12.
The eggs of Xenopus laevis are surrounded by investment layers of egg jelly that interact with the sperm immediately prior to fertilization. Components of these egg jelly layers are necessary for the fertilization of the egg by incoming sperm. Eggs which are stripped of their jelly layers are refractile to fertilization by sperm, but the addition of solubilized jelly promotes fertilization. We have shown previously that the egg jelly layers are composed of a fibrous network of glycoconjugates which loosely hold smaller diffusible components. Extracts of these diffusible components were prepared by incubation of freshly ovulated eggs in high-salt buffers for 12 h at 4°C. This diffusible component extract, when incubated with sperm, promoted the sperm's ability to fertilize dejellied eggs in a dose-dependent manner. In contrast, the high-molecular-weight “structural” glycoconjugates of jelly that remain after extraction of the diffusible components did not increase fertilization efficiency of dejellied eggs nor did nonspecific proteins, carbohydrate polymers, or organic polymers. The diffusible components, analyzed by SDS–PAGE, consisted of a mixture of proteins from 4 to 180 kDa. The protein responsible for fertilization rescue appeared to be <50 kDa and appeared to self-aggregate or to bind to larger proteins. This protein component was required during sperm binding to the egg, its action required an intact egg vitelline envelope, and its action was independent of large soluble polymers such as Ficoll.  相似文献   

13.
The eggs of Xenopus laevis are surrounded by investment layers of egg jelly that interact with the sperm immediately prior to fertilization. Components of these egg jelly layers are necessary for the fertilization of the egg by incoming sperm. Eggs which are stripped of their jelly layers are refractile to fertilization by sperm, but the addition of solubilized jelly promotes fertilization. We have shown previously that the egg jelly layers are composed of a fibrous network of glycoconjugates which loosely hold smaller diffusible components. Extracts of these diffusible components were prepared by incubation of freshly ovulated eggs in high-salt buffers for 12 h at 4 degrees C. This diffusible component extract, when incubated with sperm, promoted the sperm's ability to fertilize dejellied eggs in a dose-dependent manner. In contrast, the high-molecular-weight "structural" glycoconjugates of jelly that remain after extraction of the diffusible components did not increase fertilization efficiency of dejellied eggs nor did nonspecific proteins, carbohydrate polymers, or organic polymers. The diffusible components, analyzed by SDS-PAGE, consisted of a mixture of proteins from 4 to 180 kDa. The protein responsible for fertilization rescue appeared to be <50 kDa and appeared to self-aggregate or to bind to larger proteins. This protein component was required during sperm binding to the egg, its action required an intact egg vitelline envelope, and its action was independent of large soluble polymers such as Ficoll.  相似文献   

14.
Sperm of Hemicentrotus pulcherrimus undergo the acrosome reaction in the jelly coat or on the surface of the vitelline layer of Pseudocentrotus depressus eggs and can fertilize the latter, whereas those of P depressus do not undergo the acrosome reaction even after they strike the vitelline layer of H pulcherrimus eggs and cannot cross-fertilize. In the latter combination, however, if cross-insemination is performed in the presence of homologous egg water, cross-fertilization becomes less difficult than in normal seawater, and percentage cross-fertilization rises as does percentage acrosome reaction. It is suggested that the cross-fertilizability of this combination depends highly on the inductivity of the acrosome reaction. The reason why such a causal relation is observed is discussed.  相似文献   

15.
Eggs of the sea urchins Strongylocentrotus purpuratus and Arbacia punctulata bind sperm with a high degree of species specificity. By use of an in vitro assay that utilizes bindin (the protein from sperm that mediates sperm-egg binding) egg surface-derived glycoconjugates that function as receptors in this adhesion process have been identified and purified. These glycoconjugates are of extraordinarily high molecular weight and exhibit some properties expected for a proteoglycan. The isolated receptors from both species bind to sperm and inhibit fertilization species specifically. Both receptors contain active carbohydrate-rich fragments that can be liberated by proteolytic digestion. The carbohydrate-rich receptor fragment from S. purpuratus is a very high-molecular-weight (>106), negatively charged glycosaminoglycan-like polymer containing fucose, galactosamine, iduronic acid, and sulfate esters. By contrast, the carbohydrate-rich fragment derived from the A. punctulata receptor is of defined molecular weight (6000) and has no net charge. Incubation of acrosome-reacted sperm with nanomolar amounts of the carbohydrate-rich fragments from either species results in inhibition of fertilization, indicating that these receptor fragments retain sperm binding activity. However, studies utilizing heterologous gametes show that the carbohydrate-rich receptor fragments are not species specific in binding. Thus, it appears that although the carbohydrate chains of the receptor are an adhesive element of the receptor, the intact glycoconjugate is required for species-specific binding.  相似文献   

16.
Mammalian sperm acquire fertilizing capacity after residing in the female tract, where physiological changes named capacitation take place. In animals with external fertilization as amphibians, gamete interactions are first established between sperm and molecules of the egg jelly coat released into the medium. Since dejellied oocytes are not normally fertilized, the aim of this study was to determine if the jelly coat of the toad Bufo arenarum promotes a “capacitating” activity on homologous sperm. We found that sperm incubation in diffusible substances of the jelly coat (egg water) for 90-180 s is sufficient to render sperm transiently capable of fertilizing dejellied oocytes. The fertilizing state was correlated with an increase of protein tyrosine phosphorylation and a decrease of sperm cholesterol content. Inhibition of either the increase in tyrosine phosphorylation or cholesterol efflux affected the acquisition of fertilizing capacity. Phosphorylation and fertilization could be promoted with NaHCO3 and also by addition of beta cyclodextrin. Moreover, sperm could gain the ability to fertilize dejellied oocytes in the presence of these compounds. These data indicate that sperm should undergo a series of molecular changes to gain fertilizing capacity; these changes are reminiscent of mammalian sperm capacitation and take place before the acrosome reaction.  相似文献   

17.
The acrosome reaction of newt sperm is induced at the surface of egg jelly and the acrosome-reacted sperm acquire the ability to bind to the vitelline envelope. However, because the substance that induces the acrosome reaction has not been identified, the mechanism by which the acrosome-reacted sperm bind to the vitelline envelope remains unclear. We found here that a Dolichos biforus agglutinin (DBA) specifically mimicked the acrosome reaction immediately upon its addition in the presence of milimolar level Ca(2+). Fluorescein isothiocyanate-labeled DBA bound specifically to the acrosomal cap of the intact sperm in the presence of a Ca(2+)-chelating agent, EDTA, suggesting that binding of DBA to the native receptor for the egg jelly substance on the acrosomal region took the place of the egg jelly substance-induced acrosome reaction. In contrast, the sperm that had been acrosome reacted by DBA treatment did not bind to the vitelline envelope of the egg whose jelly layers were removed. Subsequent addition of jelly extract caused the sperm binding to vitelline envelope, indicating that the egg jelly of the newt contains substances that are involved in not only inducing the acrosome reaction but also binding to the vitelline envelope. This is the first demonstration of the involvement of egg jelly substance in the binding of acrosome-reacted sperm to the vitelline envelope.  相似文献   

18.
When the surface of sea urchin (Strongylocentrotus purpuratus) sperm is radioiodinated, 75% of the protein-incorporated radioactivity is associated with two glycoproteins of Mr 84,000 (84K) 64,000 (64K) (Lopo and Vacquier 1980). Antibodies were prepared against these two components by separating a Triton X-100 extract of sperm on SDS-polyacrylamide gels, cutting out the band containing the glycoprotein and injecting the homogenized gel into rabbits. Both anti-84K and anti-64K sera agglutinate sperm. Light and EM immunoperoxidase localization show both antigens are distributed over the entire sperm surface. By the immunoperoxidase technique there is some degree of cross-reactivity of both antisera with sperm of other Strongylocentrotus species, but not with those of other genera. Living sperm incubated with anti-84K Fab fragments are completely inhibited from undergoing the egg jelly-induced acrosome reaction and fertilizing eggs. Anti-64K Fab fragments have no effect on the ability of the sperm to undergo the acrosome reaction or fertilize eggs. Sperm incubated in anti-84K or anti-64K Fab fragments undergo the acrosome reaction in response to the Ca2+ ionophore A23187, or when the extracellular pH is increased to 9.2 with NH4OH, indicating that the inhibition of the egg jelly-induced acrosome reaction results from the binding of the anti-84K Fab to an external molecule involved in the initiation or propagation of the acrosome reaction. The 84K glycoprotein is the first sperm surface component identified that might have a role in the induction of the acrosome reaction.  相似文献   

19.
The roles of sperm proteasomes in fertilization were investigated in the sea urchin Pseudocentrotus depressus. Two proteasome inhibitors, MG-132 and MG-115, inhibited fertilization at 100 microM, whereas chymostatin and leupeptin showed no inhibition. Among three proteasome substrates, Z-Leu-Leu-Glu-MCA showed the strongest inhibition toward fertilization. MG-132 inhibited the egg-jelly-induced, but not ionomycin-induced, acrosome reaction. In addition, MG-132, but not E-64-d, inhibited fertilization of dejellied eggs by acrosome-reacted sperm. MG-132 showed no significant inhibition toward the binding of reacted sperm to the vitelline layer. Proteasomes were detected by Western blotting in the acrosomal contents, which are partially released upon exocytosis. We also found that the inhibition pattern of the caspase-like activity of the proteasome in the acrosomal contents by chymostatin and proteasome inhibitors coincided well with their inhibitory abilities toward fertilization. Furthermore, the vitelline layer of unfertilized eggs appears to be ubiquitinated as revealed by immunocytochemistry and Western blotting. Extracellular ATP, required for the degradation of ubiquitinated proteins by the proteasome, was also necessary for fertilization. These results indicate that the sperm proteasome plays a key role not only in the acrosome reaction but also in sperm penetration through the vitelline envelope, most probably as a lysin, during sea urchin fertilization.  相似文献   

20.
Abalone eggs are surrounded by a complex extracellular coat that contains three distinct elements: the jelly layer, the vitelline envelope, and the egg surface coat. In this study we used light and electron microscopy to describe these three elements in the red abalone (Haliotis rufescens) and ascribe function to each based on their interactions with sperm. The jelly coat is a spongy matrix that lies at the outermost margin of the egg and consists of variably sized fibers. Sperm pass through this layer with their acrosomes intact and then go on to bind to the vitelline envelope. The vitelline envelope is a multilamellar fibrous layer that appears to trigger the acrosome reaction after sperm binding. Next, sperm release lysin from their acrosomal granules, a nonenzymatic protein that dissolves a hole in the vitelline envelope through which the sperm swims. Sperm then contact the egg surface coat, a network of uniformly sized filaments lying directly above the egg plasma membrane. This layer mediates attachment of sperm, via their acrosomal process, to the egg surface. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号