首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we developed an electrotransformation method for use with the Gram-positive bacterium Paenibacillus larvae-a deadly pathogen of honey bees. Combining multiple Bacillus electrotransformation methods to generate an initial protocol, we then optimized the following parameters for use with P. larvae: cell density of culture at harvest time, contents of the washing/electroporation solution, field strength of the electrical pulse, recovery growth medium, and recovery time period. With the optimized method, we achieved an average transformation efficiency of 1.9x10(5) transformants/mug DNA. The method is substantially different from the only other electrotransformation method for a Paenibacillus species found in the literature. This work should facilitate the study of the several previously discovered natural plasmids of P. larvae, and is a step toward developing a genetic system for this species.  相似文献   

2.
Electrical fields and current can permeabilize bacterial membranes, allowing for the penetration of naked DNA. Given that the environment is subjected to regular thunderstorms and lightning discharges that induce enormous electrical perturbations, the possibility of natural electrotransformation of bacteria was investigated. We demonstrated with soil microcosm experiments that the transformation of added bacteria could be increased locally via lightning-mediated current injection. The incorporation of three genes coding for antibiotic resistance (plasmid pBR328) into the Escherichia coli strain DH10B recipient previously added to soil was observed only after the soil had been subjected to laboratory-scale lightning. Laboratory-scale lightning had an electrical field gradient (700 versus 600 kV m(-1)) and current density (2.5 versus 12.6 kA m(-2)) similar to those of full-scale lightning. Controls handled identically except for not being subjected to lightning produced no detectable antibiotic-resistant clones. In addition, simulated storm cloud electrical fields (in the absence of current) did not produce detectable clones (transformation detection limit, 10(-9)). Natural electrotransformation might be a mechanism involved in bacterial evolution.  相似文献   

3.
Electrical fields and current can permeabilize bacterial membranes, allowing for the penetration of naked DNA. Given that the environment is subjected to regular thunderstorms and lightning discharges that induce enormous electrical perturbations, the possibility of natural electrotransformation of bacteria was investigated. We demonstrated with soil microcosm experiments that the transformation of added bacteria could be increased locally via lightning-mediated current injection. The incorporation of three genes coding for antibiotic resistance (plasmid pBR328) into the Escherichia coli strain DH10B recipient previously added to soil was observed only after the soil had been subjected to laboratory-scale lightning. Laboratory-scale lightning had an electrical field gradient (700 versus 600 kV m−1) and current density (2.5 versus 12.6 kA m−2) similar to those of full-scale lightning. Controls handled identically except for not being subjected to lightning produced no detectable antibiotic-resistant clones. In addition, simulated storm cloud electrical fields (in the absence of current) did not produce detectable clones (transformation detection limit, 10−9). Natural electrotransformation might be a mechanism involved in bacterial evolution.  相似文献   

4.
The passive electrical properties of synthetic strands of cardiac muscle, grown in tissue culture, were studied using two intracellular microelectrodes: one to inject a rectangular pulse of current and the other to record the resultant displacement of membrane potential at various distances from the current source. In all preparations, the potential displacement, instead of approaching a steady value as would be expected for a cell with constant electrical properties, increased slowly with time throughout the current step. In such circumstances, the specific electrical constants for the membrane and cytoplasm must not be obtained by applying the usual methods, which are based on the analytical solution of the partial differential equation describing a one-dimensional cell with constant electrical properties. A satisfactory fit of the potential waveforms was, however, obtained with numerical solutions of a modified form of this equation in which the membrane resistance increased linearly with time. Best fits of the waveforms from 12 preparations gave the following values for the membrane resistance times unit length, membrane capacitance per unit length, and for the myoplasmic resistance: 1.22 plus or minus 0.13 x 10-5 omegacm, 0.224 plus or minus 0.023 uF with cm-minus 1, and 1.37 plus or minus 0.13 x 10-7 omegacm-minus 1, respectively. The value of membrane capacitance per unit length was close to that obtained from the time constant of the foot of the action potential and was in keeping with the generally satisfactory fit of the recorded waveforms with solutions of the cable equation in which the membrane impedance is that of a single capacitor and resistor in parallel. The area of membrane per unit length and the cross-sectional area of myoplasm at any given length of the preparation were determined from light and composite electron micrographs, and these were used to calculate the following values for the specific electrical membrane resistance, membrane capacitance, and the resistivity of the cytoplasm: 20.5 plus or minus 3.0 x 10-3 omegacm-2, l.54 plus or minus 0.24 uFWITHcm-minus 2, and 180 plus or minus 34 omegacm, respectively.  相似文献   

5.
G.A. MONTEIRO, A.M. FIALHO, S.J. RIPLEY AND I.SÁ -CORREIA. 1992. The electrotransformation of gellan-gum producing or non-producing strains of Pseudomonas elodea (Gel+ or Gel-) was optimized with respect to growth stage, cell and DNA concentrations and pulse parameters. This technique proved to be a valuable alternative to conjugal mating to search for complementation of gellan mutations for cloning the gellan genes. The electrotransformation efficiency of Gel+ or Gel- strains was similar. The transformation of smaller plasmids was more efficient than that of larger plasmids, and recombinant plasmids with sizes larger than 35 kb, when extracted from Escherichia coli DH1, were not transformable at detectable frequency. This was partially related to the modification/restriction system active in the recipient cells.  相似文献   

6.
Current oscillations at about 24 MHz were observed during electrotransformation (ET) of the thermophilic anaerobes Clostridium thermocellum ATCC 27405, C. thermocellum DSM 1313, and Thermoanaerobacterium saccharolyticum YS 485, using a pulse gated by a square signal generated by a custom generator. In experiments in which only the field strength was varied, all three of these strains resulted in a one-to-one correspondence between the appearance of current oscillations and successful ET. Oscillations accompanied ET of both C. thermocellum strains only at field strengths of > or =12 kV/cm, and ET was only observed above the same threshold. Similarly, for T. saccharolyticum, oscillations were only observed at field strengths of > or =10 kV/cm, and ET was only observed above the same threshold. When a passive electrical filter consisting of an inductor and resistor in parallel was added to the system to prevent the development of oscillations, ET efficiencies were reduced dramatically for all three strains at all field strengths tested. The maximum tested field strength, 25 kV/cm, resulted in the maximum measured transformation efficiency for all three strains. At this field strength, the efficiency of ET in the absence of oscillations was decreased compared to that observed in the presence of oscillations by 500-fold for C. thermocellum ATCC 27405, 2,500-fold for C. thermocellum DSM 1313, and 280-fold for T. saccharolyticum. Controls using the same apparatus with Escherichia coli cells or a resistor with a value representative of the direct current resistance of typical cell samples did not develop oscillations, and ET efficiencies obtained with E. coli were the same with or without the electrical filter included in the pulse generator circuit. The results are interpreted to indicate that spontaneously arising oscillations have a large beneficial effect on transformation efficiency in the system employed here and that the development of oscillations in this system is affected by the cell species present.  相似文献   

7.
We studied the temporal variability and resistance to perturbation of the biomass production of grassland communities from an experimental diversity gradient (the Portuguese BIODEPTH project site). With increasing species richness relative temporal variability (CV) of plant populations increased but that of communities decreased, supporting the insurance hypothesis and related theory. Species‐rich communities were more productive than species‐poor communities in all three years although a natural climatic perturbation in the third year (frequent frost and low precipitation) caused an overall decrease in biomass production. Resistance to this perturbation was constant across the experimental species richness gradient in relative terms, supporting a similar response from the Swiss BIODEPTH experiment. The positive biomass response was generated by different combinations of the complementarity and selection effects in different years. Complementarity effects were positive across mixtures on average in all three years and positively related to diversity in one season. The complementarity effect declined following perturbation in line with total biomass but, counter to predictions, in relative terms overyielding was maintained in all years. Selection effects were positively related to diversity in one year and negative overall in the other two years. The response to perturbation varied among species and for the same species growing in monoculture and mixture, but following the frost communities were more strongly dominated by species with lower monoculture biomass and the selection effect was more negative. In total, our results support previous findings of a positive relationship between diversity and productivity and between diversity and the temporal stability of production, but of no effect of diversity on the resistance to perturbation. We demonstrate for the first time that the relative strength of overyielding remained constant during an exceptional natural environmental perturbation.  相似文献   

8.
One of the main objectives of genetic breeding programs in turbot industry is to reduce disease-related mortality. In the present study, a genome scan to detect quantitative trait loci (QTL) affecting resistance and survival to viral haemorrhagic septicaemia (VHS) was carried out. Three full-sib families with approximately 90 individuals each were genotyped and evaluated by linear regression and maximum likelihood approaches. In addition, a comparison between QTL detected for resistance and survival time to other important bacterial and parasite diseases affecting turbot (furunculosis and scuticociliatosis) was also carried out. Finally, the relationship between QTL affecting resistance/survival time to the virus and growth-related QTL was also evaluated. Several genomic regions controlling resistance and survival time to VHS were detected. Also significant associations between the evaluated traits and genotypes at particular markers were identified, explaining up to 14 % of the phenotypic variance. Several genomic regions controlling general and specific resistance to different diseases in turbot were detected. A preliminary gene mining approach identified candidate genes related to general or specific immunity. This information will be valuable to develop marker-assisted selection programs and to discover candidate genes related to disease resistance to improve turbot production.  相似文献   

9.
Abstract When two common bacterial fish pathogens were cocultured with a ciliated protozoan, enhancement of each bacterial species was observed over time. Enhancement was hypothesized to be related to the uptake of intracellular nutrients by bacteria which survived protozoan ingestion. To test this ingestion/survival phenomenon, we developed a technique of chlorination and sonication of cocultures which showed that viable cells of both bacteria were contained within the protozoa. This implicated the importance of ingestion and survival from digestive processes for the increased growth of each bacterium.  相似文献   

10.
Energy dissipation (ε) during electroporation was theoretically determined to be ε=0.5CV 0 2 for the various combinations of capacitance (C) and initial voltage (V 0). Experiments on asparagus protoplasts established that electroporation efficiency (EE) and survival rate were directly proportional to energy dissipation during electroporation. A positive linear relationship exists between energy dissipation per unit volume and EE, whereas energy dissipation per unit volume and survival rate of protoplasts are related in a negative linear manner. At the same energy level, longer time constants were more effective at increasing EE. This suggest that energy dissipation approximating rectangular waveforms is more important than that dissipated as sharply decaying exponential waveforms. With energy as the key parameter, the optimization of electrical parameters for efficient electroporation is greatly simplified, is not machine-dependent, and generally applies to all species.  相似文献   

11.
The electrical power of triboelectric nanogenerators (TENGs) is increased by surface modifications, and they can successfully power portable devices alone. However, modifying the material and its surface may limit the device lifetime, and most of the portable applications demonstrated in previous studies have excessive input conditions. In this study, a capacitor‐integrated TENG (CI‐TENG) that uses the fundamental mechanisms of the Leyden jar is developed. In this device, a long sheet metal (capacitor electrode)–polymer–metal composite (TENG electrode) is rolled inside the casing cylinder, and a capacitor unit is fabricated at the end of the sheet composite. This new operating mechanism of the CI‐TENG is analyzed in terms of the dielectric constant of the capacitor unit and the metal‐to‐metal contact between electrodes. By instantaneous charging and discharging of the capacitor unit inside the CI‐TENG, it can generate a peak open‐circuit voltage of 156 V and a peak closed‐circuit current of 4.3 mA under manual input. It charges a capacitor more than three times faster than a conventional TENG does. Furthermore, the internal impedance of the CI‐TENG is decreased to 200 kΩ without any external circuit.  相似文献   

12.
The early receptor potential (ERP), membrane potential, membrane resistance, and sensitivity were measured during light and/or dark adaptation in the ventral eye of Limulus. After a bright flash, the ERP amplitude recovered with a time constant of 100 ms, whereas the sensitivity recovered with an initial time constant of 20 s. When a strong adapting light was turned off, the recovery of membrane potential and of membrane resistance had time-courses similar to each other, and both recovered more rapidly than the sensitivity. The receptor depolarization was compared during dark adaptation after strong illumination and during light adaptation with weaker illumination; at equal sensitivities the cell was more depolarized during light adaptation than during dark adaptation. Finally, the waveforms of responses to flashes were compared during dark adaptation after strong illumination and during light adaptation with weaker illumination. At equal sensitivities (equal amplitude responses for identical flashes), the responses during light adaptation had faster time-courses than the responses during dark adaptation. Thus neither the photochemical cycle nor the membrane potential nor the membrane resistance is related to sensitivity changes during dark adaptation in the photoreceptors of the ventral eye. By elimination, these results imply that there are (unknown) intermediate process(es) responsible for adaptation interposed between the photochemical cycle and the electrical properties of the photoreceptor.  相似文献   

13.
We measured the transient and long-term changes of permeability of full-thickness porcine skin after the application of a single or a train of electric pulses, as the basis for optimization of the electrical parameters for enhancing transdermal drug or gene delivery by electroporation. Two electrodes were attached to the stratum corneum of excised skin for transdermal electric pulse delivery and impedance measurement. Both transient and long-term permeabilization were found to be dependent on the electrical exposure dose, i.e., the product of pulse voltage and cumulative pulsing (exposure) time. Skin resistance dropped to about 20% of its prepulsing value when pulsed beyond a critical dosage of 0.4 V-s (with 20-40 V across each skin path), but recovered rapidly within seconds after the pulse. Long-term permeabilization of the skin required repeated pulsing with a minimum potential of 160 V (80 V across each skin path). The maximum long-term resistance drop, to 35% of the initial value, required a dose greater than 200 V-s, recovering slowly and seldom completely in tens of minutes to hours. The decrease and recovery of the resistance were dependent on the frequency and pulse length only for low-dose electrical exposure.  相似文献   

14.
Current oscillations at about 24 MHz were observed during electrotransformation (ET) of the thermophilic anaerobes Clostridium thermocellum ATCC 27405, C. thermocellum DSM 1313, and Thermoanaerobacterium saccharolyticum YS 485, using a pulse gated by a square signal generated by a custom generator. In experiments in which only the field strength was varied, all three of these strains resulted in a one-to-one correspondence between the appearance of current oscillations and successful ET. Oscillations accompanied ET of both C. thermocellum strains only at field strengths of ≥12 kV/cm, and ET was only observed above the same threshold. Similarly, for T. saccharolyticum, oscillations were only observed at field strengths of ≥10 kV/cm, and ET was only observed above the same threshold. When a passive electrical filter consisting of an inductor and resistor in parallel was added to the system to prevent the development of oscillations, ET efficiencies were reduced dramatically for all three strains at all field strengths tested. The maximum tested field strength, 25 kV/cm, resulted in the maximum measured transformation efficiency for all three strains. At this field strength, the efficiency of ET in the absence of oscillations was decreased compared to that observed in the presence of oscillations by 500-fold for C. thermocellum ATCC 27405, 2,500-fold for C. thermocellum DSM 1313, and 280-fold for T. saccharolyticum. Controls using the same apparatus with Escherichia coli cells or a resistor with a value representative of the direct current resistance of typical cell samples did not develop oscillations, and ET efficiencies obtained with E. coli were the same with or without the electrical filter included in the pulse generator circuit. The results are interpreted to indicate that spontaneously arising oscillations have a large beneficial effect on transformation efficiency in the system employed here and that the development of oscillations in this system is affected by the cell species present.  相似文献   

15.
Charge-pulse relaxation studies were performed on cells of the giant marine alga Valonia utricularis with microelectrodes inserted into the vacuole. If the cell was charged by short pulses of 200 ns duration, the decay of the initial membrane voltage could be described by two relaxation processes at normal pH (8.2). The fast exponential relaxation had a time constant of approximately 100 microseconds whereas the the time constant of the slow relaxation ranged between 2 and 15 ms. The ratio of the two amplitudes varied between 10 and 20 and was found to be independent of the initial voltage, up to 400 mV. In contrast to the time constants, the amplitude ratio was a function of the duration of the charge pulse. As the pulse length was increased to 10 ms, the fast relaxation disappeared. A change in pH of the natural sea water from 8.2 to 4 resulted in the disappearance of both exponential processes and the appearance of one single exponential with a 1-ms time constant over the whole pulse-length range. The analysis of the data in terms of a two-membrane model leads to unusual values and a pH-dependence of the specific capacitances (0.6 and 6 microF cm-2) of the two membranes, which can be treated as two serial circuits of a capacitor and a resistor in parallel. The charge-pulse and the current-clamp data are consistent with the assumption that the cell membrane of V. utricularis contains mobile charges with a total surface concentration of approximately 4 pmol cm-2. These charges cross the membrane barrier with a translocation rate constant around 500 s-1 and become neutralized at low pH. From our experimental results it cannot be completely excluded that the tonoplast has also a high specific resistance. But in this case it has to be assumed that the tonoplast and plasmalemma have very similar electrical properties and contain both mobile charges, so that the two membranes appear as a single membrane. Experiments on artificial lipid bilayer membranes in the presence of the lipophilic ion dipicrylamine, support our mobile charge concept for the cell membrane of V. utricularis.  相似文献   

16.
The mechanism of high-voltage pulse-induced permeabilization of the stratum corneum, the outer layer of the skin, is still not completely understood. It has been suggested that joule heating resulting from the applied pulse may play a major role in disrupting the stratum corneum. In this study, electrical and ultrastructural measurements were conducted to examine the temperature dependence of the pulse-induced permeabilization of the stratum corneum. The stratum corneum resistance was measured using a vertical diffusion holder, with the stratum corneum placed between two electrode-containing chambers. The stratum corneum resistance was reduced manyfold during the applied pulse. The extent of resistance reduction increased with pulse voltage until reaching a threshold value, above which the resistance reduction was less dependent on the pulse voltage. The stratum corneum was more susceptible to permeabilization at high temperature, the threshold voltage being lower. The stratum corneum resistance recovered within milliseconds after a single 0.3-ms pulse. High-temperature samples had a more prolonged recovery time. Using time-resolved freeze fracture electron microscopy, aggregates of lipid vesicles were observed in all samples pulsed above the threshold voltage. The sizes and fractional areas occupied by aggregates of lipid vesicles at 4°C and at 25°C were measured at different time points after the applied pulse. Aggregates of vesicles persisted long after the electric resistance was recovered. After pulsing at the same voltage of 80 V, samples at 4°C were found to have slightly more extensive aggregate formation initially, but recovered more rapidly than those at 25°C. The more rapid recovery of the 4°C samples was likely due to a lower supra-threshold voltage. Viscoelastic instability propagation created by the pulse may also play a role in the recovery of the aggregates.  相似文献   

17.
18.
Multilocus sequence typing reveals that many bacterial species have a clonal structure and that some clones are widespread. This underlying phylogeny was not revealed by pulsed-field gel electrophoresis, a method better suited to short-term outbreak investigation. Some global clones are multiresistant and it is easy to assume that these have disseminated from single foci. Such conclusions need caution, however, unless there is a clear epidemiological trail, as with KPC carbapenemase-positive Klebsiella pneumoniae ST258 from Greece to northwest Europe. Elsewhere, established clones may have repeatedly and independently acquired resistance. Thus, the global ST131 Escherichia coli clone most often has CTX-M-15 extended-spectrum β-lactamase (ESBL), but also occurs without ESBLs and as a host of many other ESBL types. We explore this interaction of clone and resistance for E. coli, K. pneumoniae, Acinetobacter baumannii- a species where three global lineages dominate--and Pseudomonas aeruginosa, which shows clonal diversity, but includes the relatively 'tight' serotype O12/Burst Group 4 cluster that has proved adept at acquiring resistances--from PSE-1 to VIM-1 β-lactamases--for over 20 years. In summary, 'high-risk clones' play a major role in the spread of resistance, with the risk lying in their tenacity--deriving from poorly understood survival traits--and a flexible ability to accumulate and switch resistance, rather than to constant resistance batteries.  相似文献   

19.
Myers  Anna K.  Tisa  Louis S. 《Plant and Soil》2003,254(1):83-88
The feasibility of electrotransformation of Frankia strain EuI1c was investigated. Cell viability decreased as the capacitance of the electrical pulse increased. The addition of 10% glycerol to the electroporation buffer increased cell viability rates. At a fixed capacitance, cell viability was voltage-dependent and resistance-dependent. Electroporation with a high capacitance was mutagenic and produced antibiotic-resistant cells. Electroporation of Frankia strain EAN1pec chromosomal DNA into strain EuI1c generated several colonies that were resistant to lincomycin or kasugamycin.  相似文献   

20.
Abstract To improve the transformability of stable protoplast type L-forms of Proteus mirabilis for recombinant plasmid DNA, conditions for efficient electrotransformation were explored. Exposing cells from the exponential phase of growth at a density of 6−8 × 109/ml in electrotransformation buffer having a conductivity of 1.4 mS/cm to a field strength of 6.5 kV/cm for a mean pulse duration time of 1.2 ms reproducibly yielded transformation efficiencies in the order of 5 × 104 transformants per μg of DNA. Compared to the polyethylene glycol method for transformation, electrotransformation appeared to be the method of choice for introduction of plasmid DNA into L-form cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号