首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main mineral components of the isopod cuticle consists of crystalline magnesium calcite and amorphous calcium carbonate. During moulting isopods moult first the posterior and then the anterior half of the body. In terrestrial species calcium carbonate is subject to resorption, storage and recycling in order to retain significant fractions of the mineral during the moulting cycle. We used synchrotron X-ray powder diffraction, elemental analysis and Raman spectroscopy to quantify the ACC/calcite ratio, the mineral phase distribution and the composition within the anterior and posterior tergite cuticle during eight different stages of the moulting cycle of Porcellio scaber. The results show that most of the amorphous calcium carbonate (ACC) is resorbed from the cuticle, whereas calcite remains in the old cuticle and is shed during moulting. During premoult resorption of ACC from the posterior cuticle is accompanied by an increase within the anterior tergites, and mineralization of the new posterior cuticle by resorption of mineral from the anterior cuticle. This suggests that one reason for using ACC in cuticle mineralization is to facilitate resorption and recycling of cuticular calcium carbonate. Furthermore we show that ACC precedes the formation of calcite in distal layers of the tergite cuticle.  相似文献   

2.
Terrestrial isopods moult first the posterior and then the anterior half of the body, allowing for storage and recycling of CaCO3. We used synchrotron-radiation microtomography to estimate mineral content within skeletal segments in sequential moulting stages of Porcellio scaber. The results suggest that all examined cuticular segments contribute to storage and recycling, however, to varying extents. The mineral within the hepatopancreas after moult suggests an uptake of mineral from the ingested exuviae. The total maximum loss of mineral was 46% for the anterior and 43% for the posterior cuticle. The time course of resorption of mineral and mineralisation of the new cuticle suggests storage and recycling of mineral in the posterior and anterior cuticle. The mineral in the anterior pereiopods decreases by 25% only. P. scaber has long legs and can run fast; therefore, a less mineralised and thus lightweight cuticle in pereiopods likely serves to lower energy consumption during escape behaviour. Differential demineralisation occurs in the head cuticle, in which the cornea of the complex eyes remains completely mineralised. The partes incisivae of the mandibles are mineralised before the old cuticle is demineralised and shed. Probably, this enables the animal to ingest the old exuviae after each half moult.  相似文献   

3.
Precopulatory mate guarding is a characteristic feature in the mating behaviour of many Malacostraca, and a necessary prerequisite for those species in which female receptivity for males is restricted to a short period of time after the pubertal/reproductive moult. This study deals with the pre-mate guarding behaviour of the semi-terrestrial isopod Ligia dentipes living in the crevices of coral boulders and rocks in the supralittoral region of the Andaman Islands. As in other isopods, moulting in L. dentipes is biphasic, in which the posterior body part invariably moults first. The guarding male aids the female partner in the removal of the moulted exoskeleton. Mating occurs immediately after the posterior body exuviates. The male leaves the female after copulation and goes in search of another receptive female, demonstrating a polygamous mating system in these isopods. The mated females also re-mate with several other males without mate guarding. Females that had mated several times produced more young, compared to females mated only once in the laboratory. Female receptivity ceases following moulting of the anterior half. Intrasexual encounters among males lead to the large males acquiring receptive females. This study reveals interesting deviations from the general pattern of mate guarding already reported in other isopods and decapods. The evolutionary and ecological significances of mate guarding, intrasexual and intersexual conflicts, found in these semi-terrestrial isopods, are discussed.  相似文献   

4.
Before moulting, terrestrial isopods resorb calcium carbonate (CaCO3) from the posterior cuticle and store it in sternal deposits. These consist mainly of amorphous calcium carbonate (ACC) spherules that develop within the ecdysial space between the anterior sternal epithelium and the old cuticle. Ions that occur in the moulting fluid, including those required for mineral deposition, are transported from the hemolymph into the ecdysial space by the anterior sternal epithelial cells. The cationic composition of the moulting fluid probably affects mineral deposition and may provide information on the ion-transport activity of the sternal epithelial cells. This study presents the concentrations of inorganic cations within the moulting fluid of the anterior sternites during the late premoult and intramoult stages. The most abundant cation is Na+ followed by Mg2+, Ca2+ and K+. The concentrations of these ions do not change significantly between the stages whereas the mean pH changed from 8.2 to 6.9 units between mineral deposition in late premoult, and resorption in intramoult, respectively. Measurements of the transepithelial potential show that there is little driving force for passive movements of calcium across the anterior sternal epithelium. The results suggest a possible role of magnesium ions in ACC formation, and a contribution of pH changes to CaCO3 precipitation and dissolution.  相似文献   

5.
Summary As a deterrent against predators, larvae of Zygaena trifolii release droplets of fluid containing cyanoglucosides from segmentally arranged cuticular cavities. Histological examinations show that during the moulting period, the old cuticle, including the cavities and the secretion within them, is degraded, with the exception of a thin mesocuticular layer forming the exuviae. When the endocuticular layer of the new cuticle is deposited, the cuticle detaches from the underlying epidermis in specific areas, which leads to the formation of the cuticular cavities. During a moult-intermoult sequence the concentration of cyanoglucosides in both the haemolymph and the defensive secretion shows specific changes. These changes seem to be related to the formation and degradation of the cavities. We suggest that during the moult the cyanoglucosides are transported through the epidermis into the haemolymph to prevent them from being wasted with the exuviae and, after ecdysis, are retranslocated into the newly formed cavities.  相似文献   

6.
The insect tracheal system is an air-filled branching network of internal tubing that functions to exchange respiratory gases between the tissues and the environment. The light and electron-micrographs presented in this study show tracheae in the process of moulting, captured from the metathoracic hopping femur of a juvenile third instar locust (Locusta migratoria). The images provide evidence for the detachment of the cuticular intima from the tracheal epithelial cells, the presence of moulting fluid between the new and old cuticle layers, and the withdrawal of the shed cuticular lining through larger upstream regions of the tracheal system during moulting. The micrographs also reveal that the cuticular intima of the fine terminal branches of the tracheal system is cast at ecdysis. Therefore, the hypothesis that tracheoles retain their cuticle lining at each moult may not apply to all insect species or developmental stages.  相似文献   

7.
Ziegler A 《Tissue & cell》1997,29(1):63-76
The ultrastructure of the anterior (ASE) and posterior sternal epithelium (PSE) was investigated during the biphasic moult cycle. During early premoult the sternal epithelial cells increase in size, accumulate huge amounts of glycogen, and increase the abundance of cellular organelles. CaCO(3) deposit formation begins before the secretion of the epicuticle in the anterior sternal integument and continues through the secretion of the first exocuticular layers. The deposition of cuticle is delayed in the ASE until the CaCO(3) deposit is fully resorbed between the anterior and posterior moult. The development of the interstitial network (IN), which enormously increases the basolateral compartment of the plasma membrane, starts at the beginning of the exocuticle deposition. During CaCO(3) deposit formation and resorption the volume fraction of the mitochondria is much larger in the ASE than in the PSE, although the cuticle is secreted faster in the posterior integument. The results suggest that the exocuticular and epicuticular layers are permeable to calcium and probably also carbonate ions; that the IN is required during late premoult, when CaCO(3) deposition is accelerated, but not during early CaCO(3) deposition; and that active mechanisms contribute to transepithelial ion transport during CaCO(3) deposit formation and resorption.  相似文献   

8.
Summary The fluoride content of whole animals and different tissues of the euphausiid species Euphausia superba and Meganyctiphanes norvegica was analyzed by two different and improved methods of isolation and determination. In contrast to other authors our findings show that the internal organs (muscle, hepatopancreas and hemolymph) contain less than 6 ppm d.w. fluoride this being the same order of magnitude as for vertebrates. The high concentrations reported by other authors must be mainly due to contamination of the soft tissue during storage (post-mortem migration of fluoride from shell) and/or contamination caused by minute fractions of cuticle during dissection. Over 99% of the total fluoride content is located in the cuticle (i.e. integument) of the euphausiids (2600 ppm/d.w. in E. superba and 3300 ppm/d.w. in M. norvegica in pleon cuticle). Analysis of F- levels in relation to the moulting cycle showed that the uptake in both euphausiids occurs at a comparable and fast rate during the same physiological phase shortly after moult, parallel to the general construction of the cuticle. The internal organs show homeostasis in respect to fluoride. Accordingly, no internal deposition takes place, and F- is reaccumulated from the external medium at each moult.This work was supported by grants from the DFG No. Ad 24/9 and Bu 548/1  相似文献   

9.
From August to December, thousands of Black‐necked Grebes Podiceps nigricollis concentrate during the flightless moult period in salt ponds in the Odiel Marshes, southern Spain, where they feed on the brine shrimp Artemia parthenogenetica. We predicted that because Black‐necked Grebes moulted in a food‐rich, predator‐free environment, there would be no net loss of body mass caused by the use of fat stored to meet energy needs during remigial feather replacement (as is the case for some other diving waterbirds). However, because the food resource disappears in winter, we predicted that grebes moulting later in the season would put on more body mass prior to moult because of the increasing risk of an Artemia population crash before the moult period is completed. Body mass determinations of thousands of birds captured during 2000–2010 showed that grebes in active wing‐moult showed greater mass with date of capture. Early‐moulting grebes were significantly lighter at all stages than late‐moulting birds. Grebes captured with new feathers post‐moult were significantly lighter than those in moult. This is the first study to support the hypothesis that individual waterbirds adopt different strategies in body mass accumulation according to timing of moult: early‐season grebes were able to acquire an excess of energy over expenditure and accumulate fat stores while moulting. Delayed moulters acquired greater fat stores in advance of moult to contribute to energy expenditure for feather replacement and retained extra stores later, most likely as a bet hedge against the increasing probability of failing food supply and higher thermoregulatory demands late in the season. An alternative hypothesis, that mass change is affected by a trophically transmitted cestode using brine shrimps as an intermediate host and Black‐necked Grebes as final host, was not supported by the data.  相似文献   

10.
Calcium bodies are internal epithelial sacs found in terrestrial isopods of the family Trichoniscidae that contain a mineralized extracellular matrix that is deposited and resorbed in relation to the molt cycle. Calcium bodies in several trichoniscids are filled with bacteria, the function of which is currently unknown. The woodlouse Hyloniscus riparius differs from other trichoniscids in that it possesses two different pairs of calcium bodies, the posterior pair being filled with bacteria and the anterior pair being devoid of bacteria. We explored the development of these organs and bacterial colonization of their lumen during the postmarsupial development with the use of optical clearing and whole-body confocal imaging of larval and juvenile stages. Our results show that calcium bodies are formed as invaginations of the epidermis in the region of intersegmental membranes during the postmarsupial development. The anterior pair of calcium bodies is generated during the first postmarsupial manca stage, whereas the posterior calcium bodies first appear in juveniles and are immediately colonized by bacteria, likely through a connection between the calcium body lumen and the body surface. Mineral is deposited in calcium bodies as soon as they are present.  相似文献   

11.
Isopods shed first the posterior and then the anterior half of the body. Before molt, most terrestrial species resorb CaCO3 from the posterior mineralized cuticle. The mineral is stored in anterior sternal deposits, which are used to calcify the new posterior cuticle after molt. For Porcellio scaber it is known that the anterior sternal epithelium has specific structural differentiations for epithelial transport. These differentiations include the plasma membrane surface areas, and the volume fraction of the mitochondria. We analyzed the ultrastructure of the sternal epithelium and used a morphometric approach to study the variations of these parameters between species living in different terrestrial environments. In Ligidium hypnorum, which lives in moist environments, the plasma membrane surface area and volume fraction of mitochondria are much larger than in the semiterrestrial Ligia oceanica. This is in accordance with the relatively larger CaCO3 deposits and shorter time intervals for their formation and resorption in L. hypnorum. For P. scaber, which is adapted to mesic habitats, most values are between those of L. oceanica and L. hypnorum. However, P. scaber has even larger CaCO3 deposits which are formed and degraded within similar time intervals as in L. hypnorum. This unexpected result is considered from the standpoint of more effective mechanisms being present for epithelial ion transport.  相似文献   

12.
Under constant laboratory conditions, juvenile shore crabs moult at fixed intervals which depend upon their body size. During one moult every crab exhibits increases of the same relative amounts, independent of its absolute size. Basing on the predictable duration of the intermoult period, the morphological changes in the structure of the cuticle and the development of limb-buds, the intermoult period could be divided into 21 different stages. After studying the moulting rhythm in constant milieu, the influence of the following exogenous and endogenous factors upon the moulting rhythm and growth of normal and of eye-stalkless individuals was investigated: temperature, photoperiod, loss of pereiopods, feeding, and presence of larger specimens. From these investigations it became evident that the moulting rhythm is regulated by growth. The crabs are able to moult only after achieving a minimum of tissue growth. So long as this minimum growth is not achieved, a moult-inhibiting hormone is secreted and moulting is prevented. If the moult-inhibiting hormone is absent, moulting hormone is secreted and initiates a moult. Under dangerous conditions, the crabs are able to delay the next moult. Under unfavourable conditions they consume less food than normal. Therefore, the amount of tissue growth which is the necessary prerequisite for moulting is delayed, and continued release of moult-inhibiting hormone prevents the moult. Under conditions favourable for moulting, or demanding moult (e. g. after loss of many pereiopods) the crabs accelerate the moult. Temperature influences the moulting rhythm by indirect effects on the metabolic rate. During further investigations, the variation of the following parameters were determined quantitatively: content of moulting hormone in whole crabs; content of aminoacids, protein, glucose, Na+, K+, Mg++ and Ca++ in the hemolymph; pH and osmotic pressure in the hemolymph; and Ca++ content in skeleton and whole crabs. All parameters mentioned — excepting pH and K+ content of the hemolymph — vary characteristically during the intermoult period. The titre of moulting hormone has 4 different maxima. Of all parameters, only the content of animoacids and protein in the hemolymph vary in the same way as the titre of the hormone. From these results the following conclusions are drawn: The moulting hormone not only initiates the moulting process, but controls it at several stages. Only protein metabolism seems to be under direct control of the moulting hormone which stimulates protein-synthesis. Chitin formation, regeneration, apolysis and ecdysis are indirectly controlled by the moulting hormone through protein metabolism. As in most of the other processes mentioned, the calcification of the new cuticle is not under the direct influence of the moulting hormone. The conclusion ofDigby (1966) that calcification in crabs is an electrochemical process, is confirmed.  相似文献   

13.
Abstract The structure of the anterior end of three ontogenetically successive stages of Nectonema munidae (Nematomorpha) is investigated by light and transmission electron microscopy. During development, an adult cuticle is formed under a larval cuticle, which is subsequently moulted. Only one moult can be documented for Nectonema. The brain has a main subpharyngeal portion and a weak suprapharyngeal commissure. It is circumpharyngeal only in early developmental stages, the dorsal commissure is reduced in the adult stage. Four giant cells and a cerebral cavity are adult features. Although the morphology of the giant cells is elucidated, their function remains unclear, but a sensory function is probable. A septum marks the posterior border of the anterior end and divides a cerebral cavity from a body cavity. A precursor of the septum is present in the first stage observed, but it lies next to the epidermis and does not separate a cerebral cavity. Cuticular structures in the pre-pharyngeal region of the early stages are interpreted as remnants of the larval boring organ. They are moulted together with the larval cuticle. The morphology of the pharynx and the anterior part of the intestine is shown.  相似文献   

14.
A phenoloxidase has been extracted, purified, and characterized from cuticle of last-instar larvae of the red-humped oakworm, Symmerista cannicosta. It is a typical tyrosinase (EC 1.10.3.1., o-diphenol:O2 oxidoreductase), active toward o-diphenols but not p-diphenols, inhibited by thiourea and phenylthiourea, with a pH optimum between 6.0 and 7.2. In these respects it resembles enzyme A of C. vicina, one of the few species from which this presumed wound healing enzyme has been purified and characterized. Hydrolysis of either exuviae or intact cuticle from last instar larvae yielded a number of ketocatechols of which the most abundant, 2-hydroxy, 3′,4′-dihydroxyacetophenone, represented 2.9% of the dry weight of head capsule exuviae, 0.3% of exuviae from the remainder of the body, and 4.6% of the dry weight of head capsule cuticle from previously frozen intact larvae. Differences in the type and amount of ketocatechol recovered from these cuticles are described.  相似文献   

15.
The aeroterrestrial, unicellular green alga Spongiochrysis hawaiiensis had been included in the ulvophycean order Cladophorales based on small subunit (SSU) rDNA sequence data, and represents so far the only fully terrestrial member of this order. Other characteristics of S. hawaiiensis that are atypical for Cladophorales include the presence of large amounts of carotenoids and a budding‐like mode of cell division. As the position of this terrestrial, unicellular alga in an order of aquatic, multicellular green algae is unusual, we re‐evaluated the phylogenetic relationships of this enigmatic organism based on supplementary SSU rDNA sequences as well as novel large ribosomal subunit (LSU) rDNA and internal transcribed spacer (ITS rDNA) sequences. Additionally, we examined several morphological characters of S. hawaiiensis, as well as low molecular weight carbohydrate (LMWC) patterns of S. hawaiiensis and members of the Cladophorales and Trentepohliales as potential chemotaxonomic markers. We found S. hawaiiensis to be uninucleate. The analysis of the LMWC content detected the presence of the polyol erythritol in S. hawaiiensis and in the Trentepohliales, while this compound was missing in the Cladophorales. The phylogenetic analyses of the novel sequences placed S. hawaiiensis in the terrestrial Trentepohliales. This placement is supported by the aeroterrestrial habitat, the presence of large amounts of carotenoids, the uninucleate cells, and the presence of the polyol erythritol as a protective compound against water loss.  相似文献   

16.
CALCIUM BALANCE AND MOULTING IN THE CRUSTACEA   总被引:4,自引:0,他引:4  
1. Crustaceans have a high content of calcium, which is chiefly located in the skeleton as calcium carbonate. Calcium is generally the most abundant cation in the body. 2. During intermoult, the exoskeleton is usually fully calcified and the animal is in calcium equilibrium with its environment. 3. In the premoult stages calcium is resorbed from the skeleton and may be lost to the environment or stored within the body. Typically, losses are high and storage is small in aquatic species, whilst most terrestrial forms store much larger amounts of calcium and losses are reduced. Loss of calcium in soluble form by aquatic species must be by outward transport across the gills. 4. Calcium is stored in a variety of different ways, usually with a common taxonomic theme. The main forms are as calcium phosphate granules in cells of the midgut gland (Brachyura), gastroliths (Astacidea and some Brachyura), the haemocoel (some Brachyura) the posterior midgut caeca (Amphipoda) and the ventral portion of the body generally in the Isopoda. 5. At ecdysis, the skeleton is shed and the calcium remaining in it is lost from the body. 6. Recalcification begins immediately, or shortly after, ecdysis using calcium mobilized from the stores. Simultaneously, or when the stores are exhausted, other sources of calcium are utilized. These are calcium in the water (aquatic species), the food (aquatic and terrestrial species) and the exuviae (chiefly terrestrial species). 7. Marine species store little calcium and must obtain the bulk of their requirement (ca. 95%) from the water. Fresh-water species also store little calcium but have, seemingly, adapted to the lower availability of calcium by increasing the affinity of the calcium-absorbing mechanism. The rates of uptake of calcium are consequently similar in marine and fresh-water species. 8. A high degree of storage is essential for terrestrial crustaceans as they do not have access to a large aquatic reservoir of calcium. These large reserves enable the animals to reach an advanced stage of calcification, allowing the resumption of foraging and feeding necessary for completion of calcification. 9. The control of calcium metabolism during the intermoult cycle is poorly under stood. β Ecdysone appears to control the resorption of calcium and the formation of calcium stores during premoult, but the mechanism of control of calcium metabolism during postmoult and intermoult is unknown. 10. The concentration of calcium in the haemolymph of most species is high, but a large proportion of this is in non-ionized form. In premoult, total calcium levels rise as a result of calcium resorption but little change occurs in the concentration of ionized calcium. Postmoult generally sees a fall in blood calcium, sometimes below the intermoult value.  相似文献   

17.
Summary The integument of the woodlouse,Oniscus asellus, consists of a two-layered epicuticle, a largely lamellate procuticle — itself divided into two regions (pre-and postecdysial cuticles), and the epidermis. At the initiation of new cuticle production the epidermal cells become vacuolated and retract away from the cuticle. Apolysis occurs immediately after the cessation of postecdysial cuticle production. The formation of the epicuticle is unique among the arthropods since material aggregates along the distal epidermal membrane. By indenting, doubling back on itself, and incorporating septa, the epicuticle forms surface structures such as plaques and tricorns.The innervation, and so the receptive function of the tricorns is confirmed, but since there is no connection between the old and new receptors during premoult, sensory information from these exoreceptors must be severely curtailed. This may explain the biphasic moult in all isopods since it ensures that only half the body experiences this sensory deprivation at any one time. In terrestrial species there is the additional advantage of restricting the area of permeable new cuticle. The frequency of moulting may be due to the need to renew disrupted receptor surfaces.Tricorns do not appear to be the mechanoreceptors involved in the marked thigmotactic response of woodlice since they do not have the typical internal structure of such receptors; rather, the dendrite —which extends into the lumen of the tricorn —is protected from deformation by the previously unreported combination of a dendritic sheath and a cuticular tube. The modality of tricorns is possibly one of hygro-perception. One of the behavioural responses of woodlice to desiccation is aggregation. The numerical distribution of tricorns over the body surface is admirably suited to assist in the formation and maintenance of such aggregates during desiccation and to their observed dispersal when the relative humidity rises.  相似文献   

18.
Trilobites were notably flexible in the moulting behaviours they employed, producing a variety of moult configurations preserved in the fossil record. Investigations seeking to explain this moulting variability and its potential impacts are few, despite abundant material being available for study. We present the first quantitative study on moulting in a single trilobite species using a dataset of almost 500 moult specimens of Estaingia bilobata from the Cambrian (Series 2, Stage 4) Emu Bay Shale, South Australia. Specimens were categorized by moulting mode (Salter's or Sutural Gape) and their associated configurations, and their body proportions measured from both a museum collection (including a bycatch sample) and a randomly-collected field sample. This enabled analysis of the proportion of Ebilobata specimens displaying the Sutural Gape and Salter's modes of moulting and their different configurations, and tests for association between moulting behaviour and body proportions. The results show a wide range of Ebilobata moulting configurations in all samples, suggesting that configurations represent definable instances in a largely continuous spectrum of variation. Analyses comparing body proportions of specimens showing the two modes of moulting were non-significant, suggesting there is no true association between moulting behaviour and body proportion, except for a single significant result for body length. All results were relatively consistent between the museum and field samples. However, removing accessioned specimens from the museum sample brought results even further in line with the field sample, supporting the need for consideration of museum collection bias in palaeontological analyses.  相似文献   

19.
Ewa Olempska 《Hydrobiologia》2012,688(1):139-165
Ostracods are by far the most abundant living group of arthropods in the fossil record. Traditionally, eridostracines were classified as members of the Class Ostracoda. They have also been considered to represent extinct marine spinicaudatan (conchostracan) branchiopods. The ostracod affinity of the Eridostracina is evident in a number of features such as the muscle scars pattern, the hinge structure, the presence of an adductorial sulcus reflected as a ridge on the internal surface and the separation at the dorsal margin of successive valves. The eridostracines might be a polyphyletic group, containing aberrant representatives of ostracods, with ancestors probably among the conchoprimitid, leperditellid and beyrichioidean ostracod species. The Eridostracina represent an extinct group of small marine crustaceans with a multilayer structure of the calcified carapace, formed through the retention of unshed moults during the growth process. Details of the morphology of the eridostracine Cryptophyllus socialis from the Upper Devonian of Russia are reconstructed using the process of exfoliation of successive exuviae. ‘Double-sided’ hingement structures were found in the accumulated exuviae. It is suggested that the main function of these structures was the strengthening of the connection between the accumulated valves. The hingement of Cryptophyllus represents a vestigial structure, which has lost its original function as a pivot, a role documented in the ancestors of that genus. Tubular structures were found attached to the internal side of the calcite layer. It is suggested that they also represent vestigial pore canals, having lost their original function as sensory receptors. External surfaces of the attached exuviae bear imprints of the tubular structures of the overlying exuviae. These imprints originated probably due to the strong pressure of the new cuticle against the old one, during the very short moulting time. During this process, the freshly formed cuticle was at its final size, but still soft and non-calcified. A number of three-dimensionally preserved cell-like structures were recovered inside the interlayer chambers.  相似文献   

20.
Andrea Gehrold 《Ibis》2014,156(4):850-863
The choice of the moulting habitat is of paramount importance for wing‐moulting waterbirds that have to cope with a flightless period of several weeks. However, some species might have more restricted habitat requirements during moult than others, for example due to a highly specialized feeding ecology. The moult‐related habitat use of five species (Gadwall Anas strepera, Red‐crested Pochard Netta rufina, Common Pochard Aythya ferina, Tufted Duck Aythya fuligula, Coot Fulica atra) was compared at a European inland moulting site that offered a variety of water bodies characterized by different levels of nutrient concentration, water depth, shoreline vegetation density and disturbance. To determine location‐ and species‐specific densities, birds were regularly counted throughout the moulting seasons of 2010 and 2011. In 2011, additional data on Gadwalls were used to assess differences in requirements between the flightless phase of moult and the periods before and after. Furthermore, habitat choice of 38 tagged Gadwalls was compared among two to four successive years. During the moulting season, all species showed clear preferences for specific levels of nutrient content, suggesting an active choice of suitable food sources in both food specialists and generalists. Species showing the strongest attachment to shallow water (Gadwall and Coot) were most sensitive to human disturbance and increasing water depths, and species averse to diving (Gadwall) used ponds with dense shore vegetation while flightless. For Gadwalls, habitat conditions rather than nutrient supply became increasingly important during the flightless phase. Average return rates of 59 and 54% were recorded for male and female Gadwalls, respectively, and the repeated use of familiar locations could be demonstrated in the majority of returning birds (65%). Familiarity with the habitat apparently plays an important role and may enable individuals to compensate for suboptimal conditions at the moulting site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号