首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The human malaria parasite Plasmodium falciparum utilises a mechanism of antigenic variation to avoid the antibody response of its human host and thereby generates a long-term, persistent infection. This process predominantly results from systematic changes in expression of the primary erythrocyte surface antigen, a parasite-produced protein called PfEMP1 that is encoded by a repertoire of over 60 var genes in the P. falciparum genome. var genes exhibit extensive sequence diversity, both within a single parasite's genome as well as between different parasite isolates, and thus provide a large repertoire of antigenic determinants to be alternately displayed over the course of an infection. Whilst significant work has recently been published documenting the extreme level of diversity displayed by var genes found in natural parasite populations, little work has been done regarding the mechanisms that lead to sequence diversification and heterogeneity within var genes. In the course of producing transgenic lines from the original NF54 parasite isolate, we cloned and characterised a parasite line, termed E5, which is closely related to but distinct from 3D7, the parasite used for the P. falciparum genome nucleotide sequencing project. Analysis of the E5 var gene repertoire, as well as that of the surrounding rif and stevor multi-copy gene families, identified examples of frequent recombination events within these gene families, including an example of a duplicative transposition which indicates that recombination events play a significant role in the generation of diversity within the antigen encoding genes of P. falciparum.  相似文献   

3.
The malaria parasite Plasmodium falciparum is characterized by high levels of genetic diversity at antigenic loci involved in virulence and immune evasion. Knowledge of the population structure and dynamics of these genes is important for designing control programmes and understanding the acquisition of immunity to malaria; however, high rates of homologous and non-homologous recombination as well as complex patterns of expression within hosts have hindered attempts to elucidate these structures experimentally. Here, we analyse serological data from Kenya using a novel network technique to deconstruct the relationships between patients' immune responses to different parasite isolates. We show that particular population structures and expression patterns produce distinctive signatures within serological networks of parasite recognition, which can be used to discriminate between competing hypotheses regarding the organization of these genes. Our analysis suggests that different levels of immune selection occur within different groups of the same multigene family leading to mixed population structures.  相似文献   

4.
In this paper, we developed a novel deterministic coupled model tying together the effects of within-host and population level dynamics on malaria transmission dynamics. We develop within-host and within-vector dynamic models, population level between-hosts models, and a nested coupled model combining these levels. The unique feature of this work is the way the coupling and feedback for the model use the various life stages of the malaria parasite both in the human host and the mosquito vector. Analysis of the coupled and the within-human host models indicate the existence of locally asymptotically stable infection- and parasite-free equilibria when the associated reproduction numbers are less than one. The population-level model, on the other hand, exhibits backward bifurcation, where the stable disease-free equilibrium co-exists with a stable endemic equilibrium. A global sensitivity analysis was carried out to measure the effects of the sensitivity and uncertainty in the various model parameters estimates. The results indicate that the most important parameters driving the pathogen level within an infected human are the production rate of the red blood cells from the bone marrow, the infection rate, the immunogenicity of the infected red blood cells, merozoites and gametocytes, and the immunosensitivity of the merozoites and gametocytes. The key parameters identified at the population level are the human recovery rate, the death rate of the mosquitoes, the recruitment rate of susceptible humans into the population, the mosquito biting rate, the transmission probabilities per contact in mosquitoes and in humans, and the parasite production and clearance rates in the mosquitoes. Defining the feedback functions as a linear function of the mosquito biting rate, numerical exploration of the coupled model reveals oscillations in the parasite populations within a human host in the presence of the host immune response. These oscillations dampen as the mosquito biting rate increases. We also observed that the oscillation and damping effect seen in the within-human host dynamics fed back into the population level dynamics; this in turn amplifies the oscillations in the parasite population within the mosquito-host.  相似文献   

5.
Plasmodium falciparum infections in malaria endemic areas often harbor multiple clones of parasites. However, the transmission success of the different genotypes within the mosquito vector has remained elusive so far. The genetic diversity of malaria parasites was measured by using microsatellite markers in gametocyte isolates from 125 asymptomatic carriers. For a subset of 49 carriers, the dynamics of co-infecting genotypes was followed until their development within salivary glands. Also, individual oocysts from midguts infected with blood from 9 donors were genotyped to assess mating patterns. Multiplicity of infection (MOI) was high both in gametocyte isolates and sporozoite populations, reaching up to 10 genotypes. Gametocyte isolates with multiple genotypes gave rise to lower infection prevalence and intensity. Fluctuations of genotype number occurred during the development within the mosquito and sub-patent genotypes, not detected in gametocyte isolates, were identified in the vector salivary glands. The inbreeding coefficient Fis was positively correlated to the oocyst loads, suggesting that P. falciparum parasites use different reproductive strategies according to the genotypes present in the gametocyte isolate. The number of parasite clones within an infection affects the transmission success and the mosquito has an important role in maintaining P. falciparum genetic diversity. Our results emphasize the crucial importance of discriminating between the different genotypes within an infection when studying the A. gambiae natural resistance to P. falciparum, and the need to monitor parasite diversity in areas where malaria control interventions are implemented.  相似文献   

6.
We incorporate a representation of Plasmodium falciparum recombination within a discrete-event model of malaria transmission. We simulate the introduction of a new parasite genotype into a human population in which another genotype has reached equilibrium prevalence and compare the emergence and persistence of the novel recombinant forms under differing cross-reactivity relationships between the genotypes. Cross-reactivity between the parental (initial and introduced) genotypes reduces the frequency of appearance of recombinants within three years of introduction from 100% to 14%, and delays their appearance by more than a year, on average. Cross-reactivity between parental and recombinant genotypes reduces the frequency of appearance to 36% and increases the probability of recombinant extinction following appearance from 0% to 83%. When a recombinant is cross-reactive with its parental types, its probability of extinction is influenced by cross-reactivity between the parental types in the opposite manner; that is, its probability of extinction after appearance decreases. Frequencies of P. falciparum outcrossing are mediated by frequencies of mixed-genotype infections in the host population, which are in turn mediated by the structure of cross-reactivity between parasite genotypes. The three leading hypotheses about how meiosis relates to oocyst production lead to quantitative, but no qualitative, differences in these results.  相似文献   

7.
Molecular aspects of malaria pathogenesis   总被引:4,自引:0,他引:4  
  相似文献   

8.
Pathogens have evolved diverse strategies to maximize their transmission fitness. Here we investigate these strategies for directly transmitted pathogens using mathematical models of disease pathogenesis and transmission, modeling fitness as a function of within- and between-host pathogen dynamics. The within-host model includes realistic constraints on pathogen replication via resource depletion and cross-immunity between pathogen strains. We find three distinct types of infection emerge as maxima in the fitness landscape, each characterized by particular within-host dynamics, host population contact network structure, and transmission mode. These three infection types are associated with distinct non-overlapping ranges of levels of antigenic diversity, and well-defined patterns of within-host dynamics and between-host transmissibility. Fitness, quantified by the basic reproduction number, also falls within distinct ranges for each infection type. Every type is optimal for certain contact structures over a range of contact rates. Sexually transmitted infections and childhood diseases are identified as exemplar types for low and high contact rates, respectively. This work generates a plausible mechanistic hypothesis for the observed tradeoff between pathogen transmissibility and antigenic diversity, and shows how different classes of pathogens arise evolutionarily as fitness optima for different contact network structures and host contact rates.  相似文献   

9.
The malaria parasite (Plasmodium) life history accords well with the assumptions of local mate competition (LMC) of sex ratio theory. Within a single meal of the blood‐feeding vector, sexually dimorphic gametocyte cells produce gametes (females produce one, males several) that mate and undergo sexual recombination. The theory posits several factors drive the Plasmodium sex ratio: male fecundity (gametes/male gametocyte), number and relative abundance of parasite clones, and gametocyte density. We measured these traits for the lizard malaria parasite, Plasmodium mexicanum, with a large sample of natural infections and infections from experiments that manipulated clonal diversity. Sex ratio in single‐clone infections was slightly female‐biased, but matched predictions of theory for this low‐fecundity species. Sex ratio was less female‐biased in clonally diverse infections as predicted by LMC for the experimental, but not natural infections. Gametocyte density was not positively related to sex ratio. These results are explained by the P. mexicanum life history of naturally low clonal diversity and high gametocyte production. This is the first study of a natural malaria system that examines all traits relevant to LMC in individual vertebrate hosts and suggests a striking example of sex ratio theory having significance for human public health.  相似文献   

10.
Plasmodium falciparum gametocytes: still many secrets of a hidden life   总被引:3,自引:0,他引:3  
Sexual differentiation and parasite transmission are intimately linked in the life cycle of malaria parasites. The specialized cells providing this crucial link are the Plasmodium gametocytes. These are formed in the vertebrate host and are programmed to mature into gametes emerging from the erythrocytes in the midgut of a blood-feeding mosquito. The ensuing fusion into a zygote establishes parasite infection in the insect vector. Although key mechanisms of gametogenesis and fertilization are becoming progressively clear, the fundamental biology of gametocyte formation still presents open questions, some of which are specific to the human malaria parasite Plasmodium falciparum. Developmental commitment to sexual differentiation, regulation of stage-specific gene expression, the profound molecular and cellular changes accompanying gametocyte specialization, the requirement for tissue-specific sequestration in P. falciparum gametocytogenesis are proposed here as areas for future investigation. The epidemiological relevance of parasite transmission from humans to mosquito in the spread of malaria and of Plasmodium drug resistance genes indicates that understanding molecular mechanisms of gametocyte formation is highly relevant to design strategies able to interfere with the transmission of this disease.  相似文献   

11.
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.  相似文献   

12.
We establish some properties of a within host mathematical model of malaria proposed by Recker et al. [M. Recker et al., Transient cross-reactive immune responses can orchestrate antigenic variation in malaria, Lett. Nature 429 (2004), pp. 555-558; M. Recker and S. Gupta, Conflicting immune responses can prolong the length of infection in Plasmodium falciparum malaria, Bull. Math. Biol. 68 (2006), pp. 821-835.], which includes the role of the immune system during the infection. The model accounts for the antigenic variation exhibited by the malaria parasite (Plasmodium falciparum). We show that the model can exhibit a wide variety of dynamical behaviours. We provide criteria for global stability, competitive exclusion and persistence. We also demonstrate that the disease equilibrium can be destabilized by non-symmetric cross-reactive responses.  相似文献   

13.
Infections caused by the malaria parasite Plasmodium falciparum often comprise multiple genetically distinct clones. Individuals in endemic areas can have different clones detected in their peripheral blood over a few days or even hours. This reveals interesting within-host dynamics of multiclonal infections, which seem to differ in asymptomatic and symptomatic infections. As well as being an intriguing biological phenomenon that merits further understanding, the extensive dynamics of P. falciparum infections have practical implications on the design and interpretation of malaria studies. Most assessments will, indeed, only provide snapshots of the parasite population dynamics.  相似文献   

14.
15.
16.
In the human malaria parasite Plasmodium falciparum , gametocyte maturation is a process remarkably longer than in other malaria species, accompanied by expression of 2–300 sexual stage-specific proteins. Disruption of several of their encoding genes so far showed that only the abundant protein Pfg27, produced at the onset of sexual differentiation, is essential for gametocyte production. In contrast with what has been previously described, here we show that P. falciparum pfg27 disruptant lines are able to undergo all stages of gametocyte maturation, and are able to mature into gametes. A fraction of Pfg27-defective gametocytes show, however, distinct abnormalities in intra- and extra-cellular membranous compartments, such as accumulation of parasitophorous vacuole-derived vesicles in the erythrocyte cytoplasm, large intracellular vacuoles and discontinuities in their trilaminar cell membrane. This work revises current knowledge on the role of Pfg27, indicating that the protein is not required for parasite entry into sexual differentiation, and suggesting that it is instead involved in maintaining cell integrity in the uniquely long gametocytogenesis of P. falciparum .  相似文献   

17.
Why do parasites exhibit a wide dynamical range within their hosts? For instance, why does infecting dose either lead to infection or immune clearance? Why do some parasites exhibit boom-bust, oscillatory dynamics? What maintains parasite diversity, that is coinfection v single infection due to exclusion or priority effects? For insights on parasite dose, dynamics and diversity governing within-host infection, we turn to niche models. An omnivory food web model (IGP) blueprints one parasite competing with immune cells for host energy (PIE). Similarly, a competition model (keystone predation, KP) mirrors a new coinfection model (2PIE). We then drew analogies between models using feedback loops. The following three points arise: first, like in IGP, parasites oscillate when longer loops through parasites, immune cells and resource regulate parasite growth. Shorter, self-limitation loops (involving resources and enemies) stabilise those oscillations. Second, IGP can produce priority effects that resemble immune clearance. But, despite comparable loop structure, PIE cannot due to constraints imposed by production of immune cells. Third, despite somewhat different loop structure, KP and 2PIE share apparent and resource competition mechanisms that produce coexistence (coinfection) or priority effects of prey or parasites. Together, this mechanistic niche framework for within-host dynamics offers new perspective to improve individual health.  相似文献   

18.
Avian malaria is caused by a diverse community of genetically differentiated parasites of the genera Plasmodium and Haemoproteus. Rapid seasonal and annual antigenic allele turnover resulting from selection by host immune systems, as observed in some parasite populations infecting humans, may extend analogously to dynamic species compositions within communities of avian malarial parasites. To address this issue, we examined the stability of avian malarial parasite lineages across multiple time-scales within two insular host communities. Parasite communities in Puerto Rico and St Lucia included 20 and 14 genetically distinct parasite lineages, respectively. Lineage composition of the parasite community in Puerto Rico did not vary seasonally or over a 1 year interval. However, over intervals approaching a decade, the avian communities of both islands experienced an apparent loss or gain of one malarial parasite lineage, indicating the potential for relatively frequent lineage turnover. Patterns of temporal variation of parasite lineages in this study suggest periodic colonization and extinction events driven by a combination of host-specific immune responses, competition between lineages and drift. However, the occasional and ecologically dynamic lineage turnover exhibited by insular avian parasite communities is not as rapid as antigenic allele turnover within populations of human malaria.  相似文献   

19.
A model for the human immune response to the malaria parasite Plasmodium falciparum is used to analyse the dynamics of an infection within an individual patient. Previous models either looked at competition between two parasite genotypes or at one parasite clone and the immune response to it. This model describes the course of an infection caused by the blood stages of two parasite genotypes differing in reproductive rate and in the immune response they elicit. The interactions between the genotypes can be interpreted as exploitative competition for red blood cells. Interactions between omnipotent immune cells and parasites resemble a predator-prey relation. In analysing these kinds of models, classical theoretical ecology usually deals with long-term behaviours, i.e. looks for equilibria and conditions for coexistence. However, especially in endemic regions with ongoing transmission, an equilibrium state of infections is unlikely. When reinfections with another parasite genotype were considered, the short-term dynamics of the infection changed dramatically, depending on which genotype was first, when the second one appeared, and what kind of immune response was elicited. If the slow development of immunity to malaria really is due to its genotype specificity, the effects of superinfections will be of great importance.  相似文献   

20.
Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号