首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic O(2) production from water is catalyzed by a cluster of four manganese ions and a tyrosine residue that comprise the redox-active components of the water-oxidizing complex (WOC) of photosystem II (PSII) in all known oxygenic phototrophs. Knowledge of the oxidation states is indispensable for understanding the fundamental principles of catalysis by PSII and the catalytic mechanism of the WOC. Previous spectroscopic studies and redox titrations predicted the net oxidation state of the S(0) state to be (Mn(III))(3)Mn(IV). We have refined a previously developed photoassembly procedure that directly determines the number of oxidizing equivalents needed to assemble the Mn(4)Ca core of WOC during photoassembly, starting from free Mn(II) and the Mn-depleted apo-WOC complex. This experiment entails counting the number of light flashes required to produce the first O(2) molecules during photoassembly. Unlike spectroscopic methods, this process does not require reference to synthetic model complexes. We find the number of photoassembly intermediates required to reach the lowest oxidation state of the WOC, S(0), to be three, indicating a net oxidation state three equivalents above four Mn(II), formally (Mn(III))(3)Mn(II), whereas the O(2) releasing state, S(4), corresponds formally to (Mn(IV))(3)Mn(III). The results from this study have major implications for proposed mechanisms of photosynthetic water oxidation.  相似文献   

2.
G M Ananyev  A Murphy  Y Abe  G C Dismukes 《Biochemistry》1999,38(22):7200-7209
The size and charge density requirements for metal ion binding to the high-affinity Mn2+ site of the apo-water oxidizing complex (WOC) of spinach photosystem II (PSII) were studied by comparing the relative binding affinities of alkali metal cations, divalent metals (Mg2+, Ca2+, Mn2+, Sr2+), and the oxo-cation UO22+. Cation binding to the apo-WOC-PSII protein was measured by: (1) inhibition of the rate and yield of photoactivation, the light-induced recovery of O2 evolution by assembly of the functional Mn4Ca1Clx, core from its constituent inorganic cofactors (Mn2+, Ca2+, and Cl-); and by (2) inhibition of the PSII-mediated light-induced electron transfer from Mn2+ to an electron acceptor (DCIP). Together, these methods enable discrimination between inhibition at the high- and low-affinity Mn2+ sites and the Ca2+ site of the apo-WOC-PSII. Unexpectedly strong binding of large alkali cations (Cs+ > Rb+ > K+ > Na+ > Li+) was found to smoothly correlate with decreasing cation charge density, exhibiting one of the largest Cs+/Li+ selectivities (>/=5000) for any known chelator. Both photoactivation and electron-transfer measurements at selected Mn2+ and Ca2+ concentrations reveal that Cs+ binds to the high-affinity Mn2+ site with a slightly greater affinity (2-3-fold at pH 6.0) than Mn2+, while binding about 10(4)-fold more weakly to the Ca2+-specific site required for reassembly of functional O2 evolving centers. In contrast to Cs+, divalent cations larger than Mn2+ bind considerably more weakly to the high-affinity Mn2+ site (Mn2+ > Ca2+ > Sr2+). Their affinities correlate with the hydrolysis constant for formation of the metal hydroxide by hydrolysis of water: Me2+aq --> [MeOH]+aq + H+aq. Along with the strong stimulation of the rate of photoactivation by alkaline pH, these metal cation trends support the interpretation that [MnOH]+ is the active species that forms upon binding of Mn2+aq to apo-WOC. Further support for this interpretation is found by the unusually strong inhibition of Mn2+ photooxidation by the linear uranyl cation (UO22+). The intrinsic binding constant for [MnOH]+ to apo-WOC was determined using a thermodynamic cycle to be K = 4.0 x 10(15) M-1 (at pH 6.0), consistent with a high-affinity, preorganized, multidentate coordination site. We propose that the selectivity for binding [MnOH]+, a linear low charge-density monocation, vs symmetrical Me2+ dications is functionally important for assembly of the WOC by enabling: (1) discrimination against higher charge density alkaline earth cations (Mg2+ and Ca2+) and smaller alkali metal cations (Na+ and K+) that are present in considerably greater abundance in vivo, and thus would suppress photoactivation; and (2) higher affinity binding of the one Ca2+ ion or the remaining three Mn2+ ions via coordination to form mu-hydroxo-bridged intermediates, apo-WOC-[Mn(mu-OH)2Mn]3+ or apo-WOC-[Mn(mu-OH)Ca]3+, during subsequent assembly steps of the native Mn4Ca1Clx core. In contrast to more acidic Me2+ divalent ion inhibitors of the high-affinity Mn2+ site, like Ca2+ and Sr2+, Cs+ does not accelerate the decay of the first light-induced intermediate, IM1, formed during photoactivation (attributed to apo-WOC-[Mn(OH)2]+). The inability of Cs+ to promote decay of IM1, despite having comparable affinity as Mn2+, is consistent with its considerably weaker Lewis acidity, resulting in the reprotonation of IM1 by water becoming the rate-limiting step for decay prior to displacement of Mn2+. All four different lines of evidence provide a self-consistent picture indicating that the initial step in assembly of the WOC involves high-affinity binding of [MnOH]+.  相似文献   

3.
The proposed role for bicarbonate (HCO(3)(-)) as an intrinsic cofactor within the water-oxidizing complex (WOC) of photosystem II (PSII) [Klimov et al. (1997) Biochemistry 36, 16277-16281] was tested by investigation of its influence on the kinetics and yield of photoactivation, the light-induced assembly of the functional inorganic core (Mn(4)O(y)Ca(1)Cl(x)) starting from the cofactor-depleted apo-WOC-PSII center and free Mn(2+), Ca(2+), and Cl(-). Two binding sites for bicarbonate were found that stimulate photoactivation by accelerating the formation and suppressing the decay, respectively, of the first light-induced assembly intermediate, IM(1) [apo-WOC-Mn(OH)(2)(+)]. A high-affinity bicarbonate site (K(D) 相似文献   

4.
The chlorophyll-binding protein CP43 is an inner subunit of the Photosystem II (PSII) reaction center core complex of all oxygenic photoautotrophs. X-Ray structural evidence places the guanidinium cation of the conserved arginine 357 residue of CP43 within a few Angstroms to the Mn(4)Ca cluster of the water-oxidizing complex (WOC) and has been implicated as a possible carbonate binding site. To test the hypothesis, the serine mutant, CP43-R357S, from Synechocystis PCC 6803 was investigated by PSII variable fluorescence (F(v)/F(m)) and simultaneous flash O(2) yield measurements in cells and thylakoid membranes. The R357S mutant assembles PSII-WOC centers, but is unable to grow photoautotrophically. Reconstitution of O(2) evolution by photoactivation and the occurrence of period-four oscillations of F(v)/F(m) establishes that the R357S mutant contains an assembled Mn(4)Ca cluster, but turnover is impaired as seen by an 11-fold larger Kok double miss parameter and faster decay of upper S states. Using pulsed light to avoid photoinactivation, wild-type cells and thylakoid membranes exhibit a 2-4-fold loss in O(2) evolution rate upon partial bicarbonate depletion under multiple turnover conditions, while the R357S mutant is unaffected by bicarbonate. Arginine R357 appears to function in binding a (bi)carbonate ion essential to normal catalytic turnover of the WOC. The quantum yield of electron donation from the WOC into PSII increases with decreasing turnover rate in R357S mutant cells and involves an aborted two-flash pathway that is distinct from the classical four-flash pattern. We speculate that an altered photochemical mechanism for O(2) production occurs via formation of hydrogen peroxide, by analogy to other treatments that retard the kinetics of proton release into the lumen.  相似文献   

5.
Hwang HJ  Nagarajan A  McLain A  Burnap RL 《Biochemistry》2008,47(37):9747-9755
The light-driven oxidative assembly of Mn (2+) ions into the H 2O oxidation complex (WOC) of the photosystem II (PSII) reaction center is termed photoactivation. The fluorescence yield characteristics of Synechocystis sp. PCC6803 cells undergoing photoactivation showed that basal fluorescence, F 0, exhibited a characteristic decline when red, but not blue, measuring light was employed. This result was traced to a progressive increase in the coupling of the phycobilisome (PBS) to the PSII reaction center as determined by observing the changes in room temperature and 77 K fluorescence emission spectra that accompany photoactivation. The results support the hypothesis that strong energetic coupling of the PBS to the PSII reaction center depends upon the formation of an active WOC, which presumably diminishes the likelihood of photodamage to reaction centers that have either lost an intact Mn cluster or are in the process of assembling an active WOC.  相似文献   

6.
Oxygen consumption in Mn-depleted photosystem II (PSII) preparations under continuous and pulsed illumination is investigated. It is shown that removal of manganese from the water-oxidizing complex (WOC) by high pH treatment leads to a 6-fold increase in the rate of O2 photoconsumption. The use of exogenous electron acceptors and donors to PSII shows that in Mn-depleted PSII preparations along with the well-known effect of O2 photoreduction on the acceptor side of PSII, there is light-induced O2 consumption on the donor side of PSII (nearly 30% and 70%, respectively). It is suggested that the light-induced O2 uptake on the donor side of PSII is related to interaction of O2 with radicals produced by photooxidation of organic molecules. The study of flash-induced O2 uptake finds that removal of Mn from the WOC leads to O2 photoconsumption with maximum in the first flash, and its yield is comparable with the yield of O2 evolution on the third flash measured in the PSII samples before Mn removal. The flash-induced O2 uptake is drastically (by a factor of 1.8) activated by catalytic concentration (5-10 μM, corresponding to 2-4 Mn per RC) of Mn2+, while at higher concentrations (> 100 μM) Mn2+ inhibits the O2 photoconsumption (like other electron donors: ferrocyanide and diphenylcarbazide). Inhibitory pre-illumination of the Mn-depleted PSII preparations (resulting in the loss of electron donation from Mn2+) leads to both suppression of flash-induced O2 uptake and disappearance of the Mn-induced activation of the O2 photoconsumption. We assume that the light-induced O2 uptake in Mn-depleted PSII preparations may reflect not only the negative processes leading to photoinhibition but also possible participation of O2 or its reactive forms in the formation of the inorganic core of the WOC.  相似文献   

7.
Our previous studies with the pgsA mutant of the cyanobacterium Synechocystis sp. PCC6803 (hereafter termed pgsA mutant), which is defective for the biosynthesis of phosphatidylglycerol (PG), revealed an important role for PG in the electron acceptor side of photosystem II (PSII), especially in the electron transport between plastoquinones Q(A) and Q(B). This study now shows that PG also plays an important role in the electron donor side of PSII, namely, the oxygen-evolving system. Analyses of purified PSII complexes indicated that PSII from PG-depleted pgsA mutant cells sustained only approximately 50% of the oxygen-evolving activity compared to wild-type cells. Dissociation of the extrinsic proteins PsbO, PsbV, and PsbU, which are required for stabilization of the manganese (Mn) cluster, followed by the release of a Mn atom, was observed in PSII of the PG-depleted mutant cells. The released PsbO rebound to PSII when PG was added back to the PG-depleted mutant cells, even when de novo protein synthesis was inhibited. Changes in photosynthetic activity of the PG-depleted pgsA mutant cells induced by heat treatment or dark incubation resembled those of DeltapsbO, DeltapsbV, and DeltapsbU mutant cells. These results suggest that PG plays an important role in binding extrinsic proteins required for sustaining a functional Mn cluster on the donor side of PSII.  相似文献   

8.
J Tso  M Sivaraja  J S Philo  G C Dismukes 《Biochemistry》1991,30(19):4740-4747
A new intermediate in the water-oxidizing reaction has been observed in spinach photosystem II (PSII) membranes that are depleted of Ca2+ from the site which is conformationally coupled to the manganese cluster comprising the water-oxidizing complex (WOC). It gives rise to a recently identified EPR signal (symmetric line shape with width 163 +/- 5 G, g = 2.004 +/- 0.005), which forms in samples inhibited either by depletion of Ca2+ [Boussac, A., Zimmerman, J.-L., & 28, 8984-8989; Sivaraja, M., Tso, J., & Dismukes, G.C. (1989) Biochemistry 28 9459-9464] or by substitution of Cl- by F- (Baumgarten, Philo, and Dismukes, submitted for publication). Further characterization of this EPR signal has revealed the following: (1) it forms independently of the local structure of the PSII acceptors; (2) it arises from photooxidation of a PSII species that donates an electron to Tyr-Z+ or to the Mn cluster in competition with an exogenous donor (DPC); (3) the Curie temperature dependence of the intensity suggests an isolated doublet ground state, attributable to a spin S = 1/2 radical; (4) the electron spin orientation relaxes 1000-fold more rapidly than typical for a free radical, exhibiting a strong temperature dependence of P1/2 (half-saturation power approximately T3.4) and a broad inhomogeneous line width; (5) it yields an undetectable change in the magnetic susceptibility upon formation by a laser flash; (6) it disappears in parallel with release of Mn during reduction with NH2OH, indicating that it forms only in the presence of the modified Mn cluster. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In photosynthesis, cyanobacteria, algae and plants fix carbon dioxide (CO(2)) into carbohydrates; this is necessary to support life on Earth. Over 50years ago, Otto Heinrich Warburg discovered a unique stimulatory role of CO(2) in the Hill reaction (i.e., O(2) evolution accompanied by reduction of an artificial electron acceptor), which, obviously, does not include any carbon fixation pathway; Warburg used this discovery to support his idea that O(2) in photosynthesis originates in CO(2). During the 1960s, a large number of researchers attempted to decipher this unique phenomenon, with limited success. In the 1970s, Alan Stemler, in Govindjee's lab, perfected methods to get highly reproducible results, and observed, among other things, that the turnover of Photosystem II (PSII) was stimulated by bicarbonate ions (hydrogen carbonate): the effect would be on the donor or the acceptor, or both sides of PSII. In 1975, Thomas Wydrzynski, also in Govindjee's lab, discovered that there was a definite bicarbonate effect on the electron acceptor (the plastoquinone) side of PSII. The most recent 1.9? crystal structure of PSII, unequivocally shows HCO(3)(-) bound to the non-heme iron that sits in-between the bound primary quinone electron acceptor, Q(A), and the secondary quinone electron acceptor Q(B). In this review, we focus on the historical development of our understanding of this unique bicarbonate effect on the electron acceptor side of PSII, and its mechanism as obtained by biochemical, biophysical and molecular biological approaches in many laboratories around the World. We suggest an atomic level model in which HCO(3)(-)/CO(3)(2-) plays a key role in the protonation of the reduced Q(B). In addition, we make comments on the role of bicarbonate on the donor side of PSII, as has been extensively studied in the labs of Alan Stemler (USA) and Vyacheslav Klimov (Russia). We end this review by discussing the uniqueness of bicarbonate's role in oxygenic photosynthesis and its role in the evolutionary development of O(2)-evolving PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

10.
Ferrous iron cations Fe(II) can effectively bind to the donor side of the manganese-depleted photosystem II (PSII(-Mn)) and in this way block electron transfer from diphenylcarbazide (DPC) to the major donor for P680, YZ. The present study was focused on the characteristic features of this process. The oxidation and subsequent binding of Fe(II) cations to PSII(-Mn) may proceed in the absence of an artificial electron acceptor, and therefore we investigated the role of O2 as a putative endogenous acceptor. Oxygen was shown to participate in the blockade of YZ by Fe cations, apparently as a structural element of Fe cluster formed at the donor side of PSII(-Mn). The kinetic study of blocking YZ by Fe(II) as dependent on light intensity demonstrated that the quantum efficiency of Fe cations binding to the donor side of PSII(-Mn) considerably exceeded that of Mn cations. We also compared the possibilities of extracting the native Mn cluster and reconstructed Fe cations from PSII and an alternative electron transport from DPC to P680+ under the conditions of the YZ blockade by Fe cations. Neither an alternative donor for P680, YD , nor cytochrome b 559 participated in the latter process. As a whole, our evidence shows that many features of binding Fe cation to the donor side of PSII(-Mn) are in common with photoassembling the Mn cluster.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 12–20.Original Russian Text Copyright © 2005 by Lovyagina, Davletshina, Kultysheva, Timofeev, Ivanov, Semin.  相似文献   

11.
The water-oxidizing complex (WOC) within photosystem II (PSII) can be reconstituted with synthetic manganese complexes by a process called photoactivation; however, the key factors affecting the efficiency of synthetic manganese complexes in reconstitution of electron transport and oxygen evolution activity in manganese-depleted PSII remain unclear. In the present study, four complexes with different manganese coordination environments were used to reconstitute the WOC, and an interesting relationship was found between the coordination environment of the manganese atom in the complexes and their efficiency in restoring electron transport and oxygen evolution. If Mn(II) is coordinated to nitrogen atoms within the ligand, it can restore significant rates of electron transport and oxygen evolution; however, if the manganese atom is coordinated only to oxygen atoms instead of nitrogen atoms, it has no capability to restore electron transport and oxygen evolution. So, our results demonstrate that the capability of manganese complexes to reconstitute the WOC is mainly determined by the coordination between nitrogen atoms from ligands and the manganese atom. It is suggested from our results that the ligation between the nitrogen atom and the manganese atom within the manganese complex facilitates the photoligation of the manganese atom to histidyl residues on the apo-protein in manganese-depleted PSII during photoactivation.  相似文献   

12.
The photosystem II (PSII) reaction center complex coordinates a cluster of Mn atoms that are involved in the accumulation of oxidizing equivalents generated by light-induced charge separations within the intrinsic portion of the PSII complex. A 33-kDa extrinsic protein, termed the Mn-stabilizing protein (MSP), has been implicated in the stabilization of two of the four Mn atoms of the cluster, yet the precise role of this protein in O2 evolution remains to be elucidated. Here we describe the construction of a mutant of the cyanobacterium Synechocystis sp. PCC6803 in which the entire gene encoding MSP has been deleted. Northern and immunoblot analyses indicate that other PSII proteins are expressed and accumulated, despite the absence of MSP. Fluorescence emission spectra at 77 K indicate PSII assembles in the mutant, but that the binding of MSP is required for the normal fluorescence characteristics of the PSII complex, and suggest a specific interaction between MSP and CP47. Fluorescence induction measurements indicate a reduced rate of forward electron transport to the primary electron donor, P680, in the mutant. It is concluded that in contrast to previous reports, MSP is not required for the assembly of active PSII complexes nor is it essential for H2O-splitting activity in vivo.  相似文献   

13.
Hwang HJ  Burnap RL 《Biochemistry》2005,44(28):9766-9774
The assembly of Mn(2+) ions into the H(2)O oxidation complex (WOC) of the photosystem II (PSII) reaction center is a light-driven process, termed photoactivation. According to the "two-quantum" model, photoactivation involves two light-driven charge separations coupled to the photooxidation of Mn(2+) in order to form the first stable intermediate in a process that culminates in the oxidative assembly of four Mn(2+) ions and one Ca(2+) ion to form the active, higher valence (Mn(4)-Ca) center of the WOC. To better define the kinetics of the dark rearrangement and to gain some understanding of the basis for the very low quantum yield of the overall process, photoactivation experiments, involving different flash patterns, were conducted with Synechocystis sp. PCC6803. It was found that even the so-called first stable intermediate is readily lost during protracted (1-10 s) dark periods during photoactivation of Synechocystis cells. Low concentrations of the electron acceptor, DCBQ, improved the stability of the dark intermediates. The unstable photoactivation intermediates formed early in the photoactivation process were not, however, stabilized by the addition of Ca(2+), although the overall yield of photoactivation is enhanced by the additional Ca(2+). Measurements of the kinetics of fluorescence yield verify that Q(A)(-) to Q(B) electron transfer rates change during the course of photoactivation as the high potential form of Q(A)(-) is converted to the low potential form and show that DCBQ acts as an efficient electron acceptor from Q(A)(-) even while in its high potential form. In addition the approximately 150 ms phase corresponding to the originally described dark rearrangement of photoactivation, repetitive, double flash experiments, with a 10 s intervening dark period, reveals a faster, 15 ms phase that is accentuated by DCBQ.  相似文献   

14.
The electron transport properties of photosystem II (PSII) from five different domains of the thylakoid membrane were analyzed by flash-induced fluorescence kinetics. These domains are the entire grana, the grana core, the margins from the grana, the stroma lamellae, and the Y100 fraction (which represent more purified stroma lamellae). The two first fractions originate from appressed grana membranes and have PSII with a high proportion of O(2)-evolving centers (80-90%) and efficient electron transport on the acceptor side. About 30% of the granal PSII centers were found in the margin fraction. Two-thirds of those PSII centers evolve O(2), but the electron transfer on the acceptor side is slowed. PSII from the stroma lamellae was less active. The fraction containing the entire stroma has only 43% O(2)-evolving PSII centers and slow electron transfer on the acceptor side. In contrast, PSII centers of the Y100 fraction show no O(2) evolution and were unable to reduce Q(B). Flash-induced fluorescence decay measurements in the presence of DCMU give information about the integrity of the donor side of PSII. We were able to distinguish between PSII centers with a functional Mn cluster and without any Mn cluster, and PSII centers which undergo photoactivation and have a partially assembled Mn cluster. From this analysis, we propose the existence of a PSII activity gradient in the thylakoid membrane. The gradient is directed from the stroma lamellae, where the Mn cluster is absent or inactive, via the margins where photoactivation accelerates, to the grana core domain where PSII is fully photoactivated. The photoactivation process correlates to the PSII diffusion along the membrane and is initiated in the stroma lamellae while the final steps take place in the appressed regions of the grana core. The margin domain is seemingly very important in this process.  相似文献   

15.
To study the function of the carboxyl-terminal domain of a photosystem II (PSII) reaction center polypeptide, D1, chloroplast mutants of the green alga Chlamydomonas reinhardtii have been generated in which Leu-343 and Ala-344 have been simultaneously or individually replaced by Phe and Ser, respectively. The mutants carrying these replacements individually, L343F and A344S, showed a wild-type phenotype. In contrast, the double mutant, L343FA344S, evolved O2 at only 20-30% of the wild-type rate and was unable to grow photosynthetically. In this mutant, PSII accumulated to 60% of the wild-type level, indicating that the O2-evolving activity per PSII was reduced to approximately half that of the wild-type. However, the amount of Mn atom detected in the thylakoids suggested that a normal amount of Mn cluster was assembled. An investigation of the kinetics of flash-induced fluorescence yield decay revealed that the electron transfer from Q(-)(A) to Q(B) was not affected. When a back electron transfer from Q(-)(A) to a donor component was measured in the presence of 3-(3,4-dichlorophenol)-1,1-dimethylurea, a significantly slower component of the Q(-)(A) oxidation was detected in addition to the normal component that corresponds to the back electron transfer from the Q(-)(A) to the S(2)-state of the Mn cluster. Thermoluminescence measurements revealed that L343FA344S cells contained two functionally distinct Mn clusters. One was equivalent to that of the wild-type, while the other was incapable of water oxidation and was able to advance the transition from the S(1)-state to the S(2)-state. These results suggested that a fraction of the Mn cluster had been impaired by the L343FA344S mutation, leading to decreased O2 evolution. We concluded that the structure of the C-terminus of D1 is critical for the formation of the Mn cluster that is capable of water oxidation, in particular, transition to higher S-states.  相似文献   

16.
Oxygenic photosynthesis in cyanobacteria, algae, and plants requires photosystem II (PSII) to extract electrons from H(2)O and depends on photosystem I (PSI) to reduce NADP(+). Here we demonstrate that mixotrophically-grown mutants of the cyanobacterium Synechocystis sp. PCC 6803 that lack PSI (ΔPSI) are capable of net light-induced O(2) evolution in vivo. The net light-induced O(2) evolution requires glucose and can be sustained for more than 30min. Utilizing electron transport inhibitors and chlorophyll a fluorescence measurements, we show that in these mutants PSII is the source of the light-induced O(2) evolution, and that the plastoquinone pool is reduced by PSII and subsequently oxidized by an unidentified electron acceptor that does not involve the plastoquinol oxidase site of the cytochrome b(6)f complex. Moreover, both O(2) evolution and chlorophyll a fluorescence kinetics of the ΔPSI mutants are highly sensitive to KCN, indicating the involvement of a KCN-sensitive enzyme(s). Experiments using (14)C-labeled bicarbonate show that the ΔPSI mutants assimilate more CO(2) in the light compared to the dark. However, the rate of the light-minus-dark CO(2) assimilation accounts for just over half of the net light-induced O(2) evolution rate, indicating the involvement of unidentified terminal electron acceptors. Based on these results we suggest that O(2) evolution in ΔPSI cells can be sustained by an alternative electron transport pathway that results in CO(2) assimilation and that includes PSII, the platoquinone pool, and a KCN-sensitive enzyme.  相似文献   

17.
Water oxidation in photosystem II (PSII) is still insufficiently understood and is assumed to involve HCO(3)(-). A Chlamydomonas mutant lacking a carbonic anhydrase associated with the PSII donor side shows impaired O(2) evolution in the absence of HCO(3)(-). The O(2) evolution for saturating, continuous illumination (R(O2)) was slower than in the wild type, but was elevated by HCO(3)(-) and increased further by Cah3. The R(O2) limitation in the absence of Cah3/HCO(3)(-) was amplified by H(2)O/D(2)O exchange, but relieved by an amphiphilic proton carrier, suggesting a role of Cah3/HCO(3)(-) in proton translocation. Chlorophyll fluorescence indicates a Cah3/HCO(3)(-) effect at the donor side of PSII. Time-resolved delayed fluorescence and O(2)-release measurements suggest specific effects on proton-release steps but not on electron transfer. We propose that Cah3 promotes proton removal from the Mn complex by locally providing HCO(3)(-), which may function as proton carrier. Without Cah3, proton removal could become rate limiting during O(2) formation and thus, limit water oxidation under high light. Our results underlie the general importance of proton release at the donor side of PSII during water oxidation.  相似文献   

18.
We show for the first time that Cah3, a carbonic anhydrase associated with the photosystem II (PSII) donor side in Chlamydomonas reinhardtii, regulates the water oxidation reaction. The mutant cia3, lacking Cah3 activity, has an impaired water splitting capacity, as shown for intact cells, thylakoids and PSII particles. To compensate this impairment, the mutant overproduces PSII reaction centres (1.6 times more than wild type). We present compelling evidence that the mutant has an average of two manganese atoms per PSII reaction centre. When bicarbonate is added to mutant thylakoids or PSII particles, the O2 evolution rates exceed those of the wild type by up to 50%. The donor side of PSII in the mutant also exhibits a much higher sensitivity to overexcitation than that of the wild type. We therefore conclude that Cah3 activity is necessary to stabilize the manganese cluster and maintain the water-oxidizing complex in a functionally active state. The possibility that two manganese atoms are enough for water oxidation if bicarbonate ions are available is discussed.  相似文献   

19.
An O2-evolving photosystem II (PSII) reaction center complex was prepared from wheat by a simple method consisting of octylglucoside solubilization of Triton PSII particles followed by one-step sucrose density gradient centrifugation. The complex contained six species of proteins including the 33-kDa extrinsic protein with the same relative abundance as in the original PSII particles, one cytochrome b559, 4 Mn, and about 40 chlorophyll (Chl) per O2-evolving unit, and evolved O2 at a high rate of 1400-1700 mumol O2/mg Chl/h. O2 evolution by the complex was dependent on acceptor species, showing a hierarchy, ferricyanide greater than dichlorobenzoquinone greater than phenylbenzoquinone greater than dimethylbenzoquinone greater than duroquinone, and insensitive to DCMU, indicative of disjunction of the secondary quinone acceptor of PSII from the electron transport pathway. O2 evolution also showed a marked dependence on Cl- and Ca2+: about 10-fold acceleration by Cl- and an additional 2- to 3-fold by Ca2+. Comparison of the dissociation constants for Cl- and Ca2+ between the complex and NaCl-washed PSII particles revealed that octylglucoside treatment gives rise to a new Ca2+-sensitive site by removal of some unknown factor(s) other than the extrinsic 22- and 16-kDa proteins, while it preserves the Cl(-)-sensitive site as native as in NaCl-washed PSII particles. Analysis of the relationship between Cl- demand and Ca2+ demand revealed that Ca2+ absence noncompetitively inhibits the Cl(-)-supported O2 evolution, indicative of the independence of the binding site of these two factors.  相似文献   

20.
Assembly of the inorganic core (Mn(4)O(x)Ca(1)Cl(y)) of the water oxidizing enzyme of oxygenic photosynthesis generates O(2) evolution capacity via the photodriven binding and photooxidation of the free inorganic cofactors within the cofactor-depleted enzyme (apo-WOC-PSII) by a process called photoactivation. Using in vitro photoactivation of spinach PSII membranes, we identify a new lower affinity site for bicarbonate interaction in the WOC. Bicarbonate addition causes a 300% stimulation of the rate and a 50% increase in yield of photoassembled PSII centers when using Mn(2+) and Ca(2+) concentrations that are 10-50-fold larger range than previously examined. Maintenance of a fixed Mn(2+)/Ca(2+) ratio (1:500) produces the fastest rates and highest yields of photoactivation, which has implications for intracellular cofactor homeostasis. A two-step (biexponential) model is shown to accurately fit the assembly kinetics over a 200-fold range of Mn(2+) concentrations. The first step, the binding and photooxidation of Mn(2+) to Mn(3+), is specifically stimulated via formation of a ternary complex between Mn(2+), bicarbonate, and apo-WOC-PSII, having a proposed stoichiometry of [Mn(2+)(HCO(3)(-))]. This low-affinity bicarbonate complex is thermodynamically easier to oxidize than the aqua precursor, [Mn(2+)(OH(2))]. The photooxidized intermediate, [Mn(3+)(HCO(3)(-))], is longer lived and increases the photoactivation yield by suppressing irreversible photodamage to the cofactor-free apo-WOC-PSII (photoinhibition).Bicarbonate does not affect the second (rate-limiting) dark step of photoactivation, attributed to a protein conformational change. Together with the previously characterized high-affinity site, these results reveal that bicarbonate is a multifunctional "native" cofactor important for photoactivation and photoprotection of the WOC-PSII complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号