首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
MicroRNAs (miRNAs) have already been proposed to be implicated in the development of ischaemic stroke. We aim to investigate the role of miR‐130a in the neurological deficit and angiogenesis in rats with ischaemic stroke by regulating X‐linked inhibitor of apoptosis protein (XIAP). Middle cerebral artery occlusion (MCAO) models were established by suture‐occluded method, and MCAO rats were then treated with miR‐130a mimics/inhibitors or/and altered XIAP for detection of changes of rats’ neurological function, nerve damage and angiogenesis in MCAO rats. The oxygen‐glucose deprivation (OGD) cellular models were established and respectively treated to determine the roles of miR‐130a and XIAP in neuronal viability and apoptosis. The expression levels of miR‐130a and XIAP in brain tissues of MCAO rats and OGD‐treated neurons were detected. The binding site between miR‐130a and XIAP was verified by luciferase activity assay. MiR‐130a was overexpressed while XIAP was down‐regulated in MCAO rats and OGD‐treated neurons. In animal models, suppressed miR‐130a improved neurological function, alleviated nerve damage and increased new vessels in brain tissues of rats with MCAO. In cellular models, miR‐130a inhibition promoted neuronal viability and suppressed apoptosis. Inhibited XIAP reversed the effect of inhibited miR‐130a in both MCAO rats and OGD‐treated neurons. XIAP was identified as a target of miR‐130a. Our study reveals that miR‐130a regulates neurological deficit and angiogenesis in rats with MCAO by targeting XIAP.  相似文献   

2.
3.
Multiple microRNAs (miRNAs) have been found to be linked with cerebral ischemia. Thus, this study was employed to characterize the capabilities of miRNA-103a (miR-103a) on the brain microvascular endothelial cells (BMECs) injury in rat models of middle cerebral artery occlusion (MCAO) by regulating AXIN2. The MCAO rat model was developed by the suture method, where normal saline, miR-103a inhibitors, or its negative control were separately injected into the lateral ventricle to assess the function of miR-103a inhibitors in BMECs apoptosis, microvessel density, as well as angiogenesis. In addition, the oxygen-glucose deprivation model was induced in primarily cultured BMECs to unearth the functions of miR-103a inhibitors on cell viability and apoptosis, lactate dehydrogenase (LDH) release and tube formation ability. Furthermore, the relationship between miR-103a and AXIN2 was verified. The modeled rats of MCAO showed robustly expressed miR-103a, poorly expressed AXIN2, severe neurological deficits, accelerated apoptosis and reduced angiogenesis. miR-103a expression had a negative correlation with AXIN2 messenger RNA expression (r = −0.799; p < .05). In response to the treatment of miR-103a inhibitors, the BMECs apoptosis was suppressed and angiogenesis was restored, corresponding to upregulated Bcl-2, VEGF, and Ang-1, in addition to downregulated caspase-3 and Bax. Meanwhile, AXIN2 was verified to be the miR-103a's target gene. More important, miR-103a inhibitors led to promoted BMEC viability and tube formation and suppressed apoptosis and LDH release rate. This study highlights that miR-103a targets and negatively regulates AXIN2, whereby reducing BMEC injury in cerebral ischemia.  相似文献   

4.
Zhu  Tingting  Chen  Hongxi  He  Cuihong  Liu  Xiaojuan 《Neurochemical research》2022,47(5):1442-1458

To investigate the function of hairy/enhancer-of-split related with YRPW motif protein 1 (HEY1) and Notch receptor 3 (NOTCH3) in ischemic stroke. Stroke models were established by middle cerebral artery occlusion (MCAO) and oxygen glucose deprivation (OGD) in rats and rat brain microvascular endothelial cells (BMVECs), respectively. Neurological deficit evaluation and 2,3,5-triphenyltetrazolium chloride staining were used to assess cerebral injury. The expression of HEY1 and NOTCH3 was manipulated using gain and loss of function approaches. Terminal deoxynucleotidyl transferase dUTP nick end labeling and Western blotting analysis of cleaved caspase-3 and B-cell lymphoma-2 (Bcl2) were used to evaluate apoptosis. Enzyme-linked immunosorbent assay was performed to measure the expression levels of interleukin (IL)-1β, IL-6 and IL-18. The proliferation and migration of BMVECs were analyzed by Ki-67 immunofluorescence and scratch assay, respectively. Tube formation assay was conducted to measure the length of capillary-like tubes formed by BMVECs. Co-immunoprecipitation was used to testify the relationship between HEY1 and NOTCH3. HEY1 and NOTCH3 were upregulated in MCAO and OGD models. HEY1 ameliorated ischemic injuries in MCAO rats. Knockdown of HEY1 or NOTCH3 promoted OGD-induced apoptosis and inflammation and inhibited proliferation and migration in BMVECs. NOTCH3 was a binding protein of HEY1. Overexpression of HEY1 offset the disease-promoting effect of NOTCH3 silencing. HEY1 suppresses apoptosis and inflammation and promotes proliferation and migration in BMVECs by upregulating NOTCH3, thereby ameliorating ischemic stroke.

  相似文献   

5.
Angiogenesis is positively correlated with the survival rate of stroke patients. Therefore, studying factors that initiate and promote angiogenesis after ischemic stroke is crucial for finding novel and effective treatment targets that improve the prognosis of stroke. X-box binding protein l splicing (XBP1s) plays a positive regulatory role in cell proliferation and angiogenesis. However, the role and mechanism of XBP1s on the proliferation of brain microvascular endothelial cells (BMECs) and angiogenesis after cerebral ischemia remains unclear. In the current study, we investigated the role XBP1s plays in BMEC proliferation and angiogenesis following cerebral ischemia. In this study, the roles of XBP1s on cell survival, apoptosis, cycle migration, and angiogenesis were determined in oxygen-glucose deprivation (OGD) treated BMECs. The expression of XBP1s in BMECs, which were exposed to OGD at 0, 2, 4, and 6 hr, increased in a time-dependent manner. The overexpression of XBP1s promoted cell survival, cell cycle, migration, and angiogenesis of BMECs, and inhibited the apoptosis in OGD-treated BMECs. In addition, the overexpression of XBP1s promoted the expression of cyclin D1, matrix metalloproteinase (MMP-2), and MMP-9, but inhibited cleaved Caspase-3 and cleaved Caspase-9 expression in OGD-treated BMECs. The overexpression of XBP1s also promoted the expression of hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, phosphatidylinositol-4,5-bisphosphate 3-kinase, p-AKT, p-mTOR, p-GSK3β, and p-extracellular signal-regulated kinase1/2 in OGD-treated BMECs. The effect of XBP1s silencing was opposite to that of XBP1s overexpression. In conclusion, using an in vitro OGD model, we demonstrated that XBP1s may be a promising target for ischemic stroke therapy to maintain BMECs survival and induce angiogenesis.  相似文献   

6.
7.
Xu  Chuan  Yu  Hailong  Chen  Beilei  Ma  Yuan  Lv  Penghua 《Neurochemical research》2022,47(4):907-920

Ischemic stroke (IS) is a cerebrovascular disease with high morbidity, recurrence, and mortality. The purpose of the present study was to investigate the role and mechanism of human serum exosomes on angiogenesis after IS. The middle cerebral artery occlusion (MCAO) in vivo model and oxygen-glucose deprivation (OGD) in vitro model were established. Human serum exosomes from healthy samples (NC-exo) and IS samples (IS-exo) were injected into MCAO mice. Neurobehavioral tests were performed to assess the extent of neurological deficits. The infarct volume was assessed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining, and the levels of inflammatory cytokines were analyzed by enzyme-linked immunosorbent assay (ELISA). In addition, human serum exosomes were cocultured with brain microvascular endothelial cells (BMECs). Cell Counting Kit-8 (CCK-8), Transwell, and tubule formation assays were performed to investigate the proliferation, migration, invasion, length, and branching of BMECs. The miRNA expression profiles of NC-exo and IS-exo were analyzed by high-throughput sequencing and compared. Bioinformatics and luciferase reporter assays were performed to evaluate the relationship between miR-340-5p and CD147. Serum NC-exo and IS-exo had protective effects on IS injury and promoted BMEC angiogenesis. Interestingly, the protective effect of IS-exo was weaker than that of NC-exo. In addition, miR-340-5p was downregulated in IS-exo, and miR-340-5p accelerated angiogenesis of BMECs after OGD. Mechanistically, CD147 was confirmed as a direct target of miR-340-5p. Finally, miR-340-5p promoted angiogenesis by directly targeting CD147. Serum exosome-derived miR-340-5p promote angiogenesis in OGD-induced BMECs by targeting CD147.

  相似文献   

8.
BackgroundThe combination of Panax ginseng and Angelica sinensis (CPA) has been used to treat stroke for one thousand years and demonstrated clinically to have satisfied effects. However, the underlying mechanism remains unknown.PurposeWe investigate whether CPA has neuroprotective effects via suppressing Nod-like receptor protein 3 (NLRP3) inflammasome and microglial pyroptosis against ischemic injury in transient middle cerebral artery occlusion (MCAO) rats.MethodsMale rats were divided randomly into sham operated, MCAO, MCC950 (NLRP3-specific inhibitor) and CPA groups. Neurological deficits, glucose uptake, infarct size, activation of NLRP3 inflammasomes, microglial pyroptosis and related signaling pathways were detected. BV-2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) were used in in vitro experiments.ResultsCompared with sham rats, elevated level of proinflammatory interleukin-1β (IL-1β) in plasma, neurological function deficit, reduced glucose uptake in ipsilateral hemisphere, obvious infarct size, the activation of NLRP3 inflammasomes and enhanced microglial pyroptosis were presented in MCAO rats. The administrations of MCC950 and CPA respectively reversed the results. In vitro OGD/R induced the release of lactate dehydrogenase, promoted NLRP3 inflammasomes activation and pyroptosis in BV-2 cells, which was significantly suppressed by treatment with ginsenoside Rd (Rd) and Z-ligustilide (LIG). Mechanistically, OGD/R induced high expression of dynamin-related protein 1 (Drp1) and mitochondrial fission, as well as NLRP3 inflammasomes activation and pyroptosis in BV-2 cells, which was attenuated by treatment with Rd and LIG. Moreover, the increased expression of Drp1 was validated in MCAO rats, and also abolished by MCC950 or CPA treatments.ConclusionCPA treatment attenuates cerebral injury via inhibition of NLRP3 inflammasomes activation and microglial pyroptosis after stroke, which at least partially involved in the amelioration of Drp1-mediated mitochondrial fission.  相似文献   

9.
The human adult brain possesses intriguing plasticity, including neurogenesis and angiogenesis, which may be mediated by the activated sonic hedgehog (Shh). By employing a coculture system, brain microvascular endothelial cells (BMECs) cocultured with astrocytes, which were incubated under oxygen–glucose deprivation (OGD) condition, we tested the hypothesis that Shh secreted by OGD-activated astrocytes promotes cerebral angiogenesis following ischemia. The results of this study demonstrated that Shh was mainly secreted by astrocytes and the secretion was significantly upregulated after OGD. The proliferation, migration, and tube formation of BMECs cocultured with astrocytes after OGD were significantly enhanced, but cyclopamine (a Shh antagonist) or 5E1 (an antibody of Shh) reversed the change. Furthermore, silencing Ras homolog gene family, member A (RhoA) of BMECs by RNAi and blocking Rho-dependent kinase (ROCK) by Y27632, a specific antagonist of ROCK, suppressed the upregulation of proliferation, migration, and tube formation of BMECs after OGD. These findings suggested that Shh derived from activated astrocytes stimulated RhoA/ROCK pathway in BMECs after OGD, which might be involved in angiogenesis in vitro.  相似文献   

10.
Long non‐coding RNAs (lncRNAs) play important roles in the pathogenesis of brain and neurodegenerative disorders. As far as we know, the functions and potential mechanisms of small nucleolar RNA host gene 6 (SNHG6) in ischaemic stroke have not been explored. This study aimed to examine the functional role of SNHG6 in the ischaemic stroke. Middle cerebral artery occlusion (MCAO) in mice and the oxygen glucose deprivation (OGD)‐induced injury in neuronal cells were applied to mimic ischaemic stroke. TTC staining, quantitative real‐time PCR, cell apoptosis assay, caspase‐3 activity assay, Western blot, RNA immunoprecipitation and luciferase reporter assay were performed to evaluate the function and possible mechanisms of SNHG6 in the pathogenesis of ischaemic stroke. The results show that SNHG6 expression was significantly increased both OGD‐induced neuronal cells and MCAO model mice. In vitro results showed that inhibition of SNHG6 increased cell viability, inhibited cell apoptosis and caspase‐3 activity in OGD‐induced neuronal cells. Consistently, knockdown of SNHG6 reduced brain infarct size and improved neurological scores in the MCAO mice. Mechanistic study further revealed that SNHG6 functioned as a competing endogenous RNA (ceRNA) for miR‐181c‐5p, which in turn repressed its downstream target of Bcl‐2 interacting mediator of cell death (BIM) and inhibiting cell apoptosis. This study revealed a novel function of SNHG6 in the modulating neuronal apoptosis in the ischaemic stroke model, and the role of SNHG6 in the regulating of neuronal apoptosis was at least partly via targeting miR‐181c‐5p/BIM signalling pathway.  相似文献   

11.
Diabetes causes vascular injury and carries a high risk of ischaemic stroke. Human amniotic fluid stem cells ( hAFSCs) can enhance cerebral vascular remodelling and have the potential to improve neurological function after stroke in diabetic rats. Five groups of female rats were examined: (1) normal control, (2) type 1 diabetic (T1DM) rats induced by streptozotocin injection (DM), (3) non-DM rats receiving 60-minute middle cerebral artery occlusion (MCAO), (4) T1DM rats receiving 60-minute MCAO (DM + MCAO) and (5) T1DM rats receiving 60-minute MCAO and injection with 5 × 106 hAFSCs at 3 h after MCAO (DM + MCAO + hAFSCs). Neurological function was examined before, and at 1, 7, 14, 21 and 28 days, and cerebral infarction volume and haemorrhage, cerebral vascular density, angiogenesis and inflammatory were examined at 7 and 28 days after MCAO. hAFSCs treatment caused a significant improvement of neurological dysfunction, infarction volume, blood-brain barrier leakage, cerebral arterial density, vascular density and angiogenesis and a reduction of brain haemorrhage and inflammation compared with non-treatment. Our results showed that the effect of hAFSCs treatment against focal cerebral ischaemia may act through the recovery of vascular remodelling and angiogenesis and the reduction of inflammation in ischaemic brain.  相似文献   

12.
Recent studies revealed that folic acid deficiency (FD) increased the likelihood of stroke and aggravated brain injury after focal cerebral ischaemia. The microglia‐mediated inflammatory response plays a crucial role in the complicated pathologies that lead to ischaemic brain injury. However, whether FD is involved in the activation of microglia and the neuroinflammation after experimental stroke and the underlying mechanism is still unclear. The aim of the present study was to assess whether FD modulates the Notch1/nuclear factor kappa B (NF‐κB) pathway and enhances microglial immune response in a rat middle cerebral artery occlusion‐reperfusion (MCAO) model and oxygen‐glucose deprivation (OGD)‐treated BV‐2 cells. Our results exhibited that FD worsened neuronal cell death and exaggerated microglia activation in the hippocampal CA1, CA3 and Dentate gyrus (DG) subregions after cerebral ischaemia/reperfusion. The hippocampal CA1 region was more sensitive to ischaemic injury and FD treatment. The protein expressions of proinflammatory cytokines such as tumour necrosis factor‐α, interleukin‐1β and interleukin‐6 were also augmented by FD treatment in microglial cells of the post‐ischaemic hippocampus and in vitro OGD‐stressed microglia model. Moreover, FD not only dramatically enhanced the protein expression levels of Notch1 and NF‐κB p65 but also promoted the phosphorylation of pIkBα and the nuclear translocation of NF‐κB p65. Blocking of Notch1 with N‐[N‐(3, 5‐difluorophenacetyl)‐l‐alanyl]‐S‐phenylglycine t‐butyl ester partly attenuated the nuclear translocation of NF‐κB p65 and the protein expression of neuroinflammatory cytokines in FD‐treated hypoxic BV‐2 microglia. These results suggested that Notch1/NF‐κB p65 pathway‐mediated microglial immune response may be a molecular mechanism underlying cerebral ischaemia‐reperfusion injury worsened by FD treatment.  相似文献   

13.
14.
Ischemic stroke induces microglial activation and release of proinflammatory cytokines, contributing to the expansion of brain injury and poor clinical outcome. Propofol has been shown to ameliorate neuronal injury in a number of experimental studies, but the precise mechanisms involved in its neuroprotective effects remain unclear. We tested the hypothesis that propofol confers neuroprotection against focal ischemia by inhibiting microglia-mediated inflammatory response in a rat model of ischemic stroke. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by 24 h of reperfusion. Propofol (50 mg/kg/h) or vehicle was infused intravenously at the onset of reperfusion for 30 minutes. In vehicle-treated rats, MCAO resulted in significant cerebral infarction, higher neurological deficit scores and decreased time on the rotarod compared with sham-operated rats. Propofol treatment reduced infarct volume and improved the neurological functions. In addition, molecular studies demonstrated that mRNA expression of microglial marker Cd68 and Emr1 was significantly increased, and mRNA and protein expressions of proinflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 were augmented in the peri-infarct cortical regions of vehicle-treated rats 24 h after MCAO. Immunohistochemical study revealed that number of total microglia and proportion of activated microglia in the peri-infarct cortical regions were markedly elevated. All of these findings were ameliorated in propofol-treated rats. Furthermore, vehicle-treated rats had higher plasma levels of interleukin-6 and C-reactive protein 24 h after MCAO, which were decreased after treatment with propofol. These results suggest that propofol protects against focal cerebral ischemia via inhibition of microglia-mediated proinflammatory cytokines. Propofol may be a promising therapeutic agent for the treatment of ischemic stroke and other neurodegenerative diseases associated with microglial activation.  相似文献   

15.
Administration of vascular endothelial growth factor (VEGF) has been shown to increase cerebral blood flow and reduce neurological damage after experimental ischemic brain injury. The purpose of this study was to examine the optimal dose and time window for the neuroprotective effect of VEGF when administrated after focal ischemia/reperfusion injury in rabbits. Focal cerebral ischemia/reperfusion was induced by the middle cerebral artery occlusion (MCAO) method. In a dose response experiment, low (1.25 ng/μL), middle (2.5 ng/μL) and high (5.0 ng/μL) doses of VEGF were administered 2h after MCAO by the route of perifocal region. The VEGF at a dose of middle (2.5 ng/μL) displayed excellent effects on neuroprotective efficacy for focal cerebral ischemia/reperfusion injury. In another experiment, 2.5 ng/μL VEGF was administered at times varying from 2 to 8h after MCAO. Infarct volume, water content and neurological deficits were significantly reduced when VEGF was given at 2 and 3h after injury. The protective effect was less when the same dose was given at the later times. Thus, the present findings indicated that VEGF reduced ischemic neuronal danger with a therapeutic time window within the first 3h of transient MCAO and may be useful in the treatment of acute ischemic stroke in humans.  相似文献   

16.
Chen  Zhenzhen  Hu  Quan  Xie  Qingfeng  Wu  Shamin  Pang  Qiongyi  Liu  Meixia  Zhao  Yun  Tu  Fengxia  Liu  Chan  Chen  Xiang 《Neurochemical research》2019,44(4):930-946

Exercise has been regarded as an effective rehabilitation strategy to facilitate motor and cognitive functional recovery after stroke, even though the complex effects associated with exercise-induced repair of cerebral ischemic injury are not fully elucidated. The enhancement of angiogenesis and neurogenesis, and the improvement of synaptic plasticity following moderate exercise are conducive to functional recovery after ischemic damage. Our previous studies have confirmed the angiogenesis and neurogenesis through the caveolin-1/VEGF pathway in MCAO rats. As an essential neurotrophic factor, BDNF has multiple effects on ischemic injury. In this study, we attempted to determine an additional mechanism of treadmill exercise-mediated motor and cognitive functional recovery through the caveolin-1/VEGF pathway associated with BDNF in the ischemic penumbra of MCAO mice. We found that mice exposed to treadmill exercise after the MCAO operation showed a significant up-regulation in expression of caveolin-1, VEGF, BDNF, synapsin I and CYFIP1 proteins, numbers of cells positive for BrdU/CD34, BDNF, BrdU/NeuN, BrdU/Synapsin I and CYFIP1 expression were increased, which support the reduction in neurological deficit and infarction volume, as well as improved synaptic morphology and spatial learning abilities, compared with the non-exercise mice. However, the caveolin-1 inhibitor, daidzein, resulted in increase in neurological deficit and infarction volume. The selective VEGFR2 inhibitor, PD173074, significantly induced larger infarction volume and neurological injury, and decreased the expression of BDNF in the ischemic penumbra. These findings indicate that exercise improves angiogenesis, neurogenesis and synaptic plasticity to ameliorate motor and cognitive impairment after stroke partially through the caveolin-1/VEGF pathway, which is associated with the coregulator factor, BDNF.

  相似文献   

17.
MicroRNAs (miRNAs) have been suggested as pivotal regulators in the pathological process of cerebral ischemia and reperfusion injury. In this study, we aimed to investigate the role of miR‐135a in regulating neuronal survival in cerebral ischemia and reperfusion injury using an in vitro cellular model induced by oxygen‐glucose deprivation and reoxygenation (OGD/R). Our results showed that miR‐135a expression was significantly decreased in neurons with OGD/R treatment. Overexpression of miR‐135a significantly alleviated OGD/R‐induced cell injury and oxidative stress, whereas inhibition of miR‐135a showed the opposite effects. Glycogen synthase kinase‐3β (GSK‐3β) was identified as a potential target gene of miR‐135a. miR‐135a was found to inhibit GSK‐3β expression, but promote the expression of nuclear factor erythroid 2‐related factor 2 (Nrf2) and downstream signaling. However, overexpression of GSK‐3β significantly reversed miR‐135a‐induced neuroprotective effect. Overall, our results suggest that miR‐135a protects neurons against OGD/R‐induced injury through downregulation of GSK‐3β and upregulation of Nrf2 signaling.  相似文献   

18.
Cerebral ischemia/reperfusion (I/R) injury severely threatens human life, while the potential mechanism underlying it is still need further exploration. The rat model of cerebral I/R injury was established using middle cerebral artery occlusion (MCAO). The rat microvascular endothelial cell line bEND.3 was exposed to oxygen–glucose deprivation/reperfusion (OGD/R) to mimic ischemic condition in vitro. Evans blue was performed to determine the blood–brain barrier (BBB) permeability. Real-time PCR and western blot were performed to determine gene expression in mRNA and protein level, individually. Luciferase reporter assay was conducted to determine the relationship between miR-539 and MMP-9. The infarct volume and BBB permeability of cerebral (I/R) rats were significantly greater than Sham group. The expression of miR-539 was decreased, while MMP-9 was increased in the brain tissues of I/R injury rats and OGD/R pretreated bEND.3. Up-regulated miR-539 in OGD/R pretreated bEND.3 significantly promoted the BBB permeability. MiR-539 targets MMP-9 to regulate its expression. OGD/R treatment significantly promoted the BBB permeability in bEND.3, miR-539 mimic transfection abolished the effects of OGD/R, while co-transfected with pcDNA-MMP-9 abolished the effects of miR-539 mimic. MiR-539 targets MMP-9 and further regulates the BBB permeability in cerebral I/R injury.  相似文献   

19.
We previously reported that inhibition of Rho-kinase (ROCK) by hydroxyl fasudil improves cognitive deficit and neuronal damage in rats with chronic cerebral ischemia (Huang et al., Cell Mol Neurobiol 28:757–768, 2008). In this study, fasudil mesylate (FM) was investigated for its neuroprotective potential in rats with ischemia following middle cerebral artery occlusion (MCAO) and reperfusion. The effect of fasudil mesylate was also studied in rat brain cortical and hippocampal slices treated with oxygen-glucose deprivation (OGD) injury. Gross anatomy showed that cerebral infarct size, measured with 2,3,5-triphenyltetrazolium chloride (TTC) staining, was significantly smaller in the FM-treated than in the non-FM-treated ischemic rats. In the brain regions vulnerable to ischemia of ischemic rats, fasudil mesylate was also found to significantly restore the enzyme protein expression level of endothelial nitric oxide synthase (eNOS), which was decreased in ischemia. However, it remarkably reduced the protein synthesis of inducible nitric oxide synthase (iNOS) that was induced by ischemia and reperfusion. In rat brain slices treated with OGD injury, fasudil mesylate increased the neuronal cell viability by 40% for cortex and by 61% for hippocampus, respectively. Finally, in the presence of OGD and fasudil mesylate, superoxide dismutase (SOD) activity was increased by 50% for cortex and by 58% for hippocampus, compared to OGD only group. In conclusion, our in vivo study showed that fasudil mesylate not only decreased neurological deficit but also reduced cerebral infarct size, possibly and at least partially by augmenting eNOS protein expression and inhibiting iNOS protein expression after ischemia-reperfusion. Xian-Ju Huang contributed equally to this article.  相似文献   

20.

Background and Purpose

Microglia are resident immunocompenent and phagocytic cells of central nervous system (CNS), which produce various cytokines and growth factors in response to injury and thereby regulate disease pathology. The purpose of this study is to investigate the effects of microglial transplantation on focal cerebral ischemia model in rat.

Methods

Transient middle cerebral artery occlusion (MCAO) in rats was induced by the intraluminal filament technique. HMO6 cells, human microglial cell line, were transplanted intravenously at 48 hours after MCAO. Functional tests were performed and the infarct volume was measured at 7 and 14 days after MCAO. Migration and cell survival of transplanted microglial cells and host glial reaction in the brain were studied by immunohistochemistry. Gene expression of neurotrophic factors, cytokines and chemokines in transplanted cells and host rat glial cells was determined by laser capture microdissection (LCM) and quantitative real time-PCR.

Results

HMO6 human microglial cells transplantion group demonstrated significant functional recovery compared with control group. At 7 and 14 days after MCAO, infarct volume was significantly reduced in the HMO group. In the HMO6 group, number of apoptotic cells was time-dependently reduced in the infarct core and penumbra. In addition, number of host rat microglia/macrophages and reactive astrocytes was significantly decreased at 7 and 14 days after MCAO in the penumbra. Gene expression of various neurotrophic factors (GDNF, BDNF, VEGF and BMP7) and anti-inflammatory cytokines (IL4 and IL5) was up-regulated in transplanted HMO6 cells of brain tissue compared with those in culture. The expression of GDNF and VEGF in astrocytes in penumbra was significantly up-regulated in the HMO6 group.

Conclusions

Our results indicate that transplantation of HMO6 human microglial cells reduces ischemic deficits and apoptotic events in stroke animals. The results were mediated by modulation of gliosis and neuroinflammation, and neuroprotection provided by neurotrophic factors of endogenous and transplanted cells-origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号