首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
We analyzed global patterns of expression in genes related to glutamatergic neurotransmission (glutamatergic genes) in healthy human adult brain before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA‐Seq data from ‘BrainSpan’ was obtained across 16 brain regions from nine control adults. We also generated RNA‐Seq data from postmortem hippocampus from eight alcoholics, eight cocaine addicts and eight controls. Expression analyses were undertaken of 28 genes encoding glutamate ionotropic (AMPA, kainate, NMDA) and metabotropic receptor subunits, together with glutamate transporters. The expression of each gene was fairly consistent across the brain with the exception of the cerebellum, the thalamic mediodorsal nucleus and the striatum. GRIN1, encoding the essential NMDA subunit, had the highest expression across all brain regions. Six factors accounted for 84% of the variance in global gene expression. GRIN2B (encoding GluN2B), was up‐regulated in both alcoholics and cocaine addicts (FDR corrected P = 0.008). Alcoholics showed up‐regulation of three genes relative to controls and cocaine addicts: GRIA4 (encoding GluA4), GRIK3 (GluR7) and GRM4 (mGluR4). Expression of both GRM3 (mGluR3) and GRIN2D (GluN2D) was up‐regulated in alcoholics and down‐regulated in cocaine addicts relative to controls. Glutamatergic genes are moderately to highly expressed throughout the brain. Six factors explain nearly all the variance in global gene expression. At least in the hippocampus, chronic alcohol use largely up‐regulates glutamatergic genes. The NMDA GluN2B receptor subunit might be implicated in a common pathway to addiction, possibly in conjunction with the GABAB1 receptor subunit.  相似文献   

7.
8.
9.
10.
11.
油菜黑胫病是造成油菜产量损失的病害之一,致病菌为Leptosphaeria biglobosa。该研究采用形态学观察和转录组测序技术,分析油菜接种病原菌Leptosphaeria biglobosa 4、12、24、36、48和96 h后的表型及基因表达变化情况,以探讨响应死体营养型真菌L.biglobosa侵染时油菜的防御反应及抗病机理,为揭示油菜与L.biglobosa互作的分子机制提供理论依据,并为培育油菜抗病品种积累了基因资源信息。结果显示:(1)接种4~96 h,叶片病斑逐渐扩大,病原菌侵染48~96 h后形成菌丝网。(2)通过RNA-Seq测序,在L.biglobosa侵染油菜的不同时间点(4、12、24、36、48和96 h)分别得到3384、2270、3802、5811、6155和7153个差异表达基因。(3)15个油菜差异表达基因的qRT-PCR检测表达水平与转录组测序结果基本一致。(4)利用短时间序列聚类和KEGG富集分析差异表达基因,结果发现植物病原菌互作、蛋白激酶、茉莉酸/乙烯/水杨酸和芥子油苷合成途径中的基因被强烈诱导表达,而且基因表达呈动态变化趋势。  相似文献   

12.
13.
Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum‐specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate‐shaped compared with the three‐dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild‐type. The wild‐type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2‐Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co‐localized with the endoplasmic reticulum (ER) signal. RNA‐Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize.  相似文献   

14.
Bacterial pathogen Dickeya zeae strain EC1 produces antibiotics‐like phytotoxins called zeamines, which are major virulence determinants encoded by the zms gene cluster. In this study, we identified a zeamine‐deficient mutant with a Tn5 insertion in a gene designated as vfmI encoding a two‐component system (TCS) sensor histidine kinase (HK), which is accompanied by vfmH encoding a response regulator (RR) at the same genetic locus. Domain analysis shows this TCS is analogous to the VfmIH of D. dadantii, with typical characteristics of sensor HK and RR, respectively, and sharing the same operon. Deletion of either vfmI or vfmH resulted in decreased production of zeamines and cell wall degrading enzymes (CWDEs), and alleviated virulence on rice seeds and potato tubers. In D. dadantii 3937, VfmH was shown to bind to the promoters of vfmA and vfmE, while in D. zeae EC1, VfmH could bind to the promoters of vfmA, vfmE and vfmF. RNA‐seq analysis of strain EC1 and its vfmH mutant also showed that the TCS positively regulated a range of virulence genes, including zms, T1SS, T2SS, T3SS, T6SS, flagellar and CWDE genes.  相似文献   

15.
16.
17.
18.
19.
20.
High‐density genome‐wide sequencing increases the likelihood of discovering genes of major effect and genomic structural variation in organisms. While there is an increasing availability of reference genomes across broad taxa, the greatest limitation to whole‐genome sequencing of multiple individuals continues to be the costs associated with sequencing. To alleviate excessive costs, pooling multiple individuals with similar phenotypes and sequencing the homogenized DNA (Pool‐Seq) can achieve high genome coverage, but at the loss of individual genotypes. Although Pool‐Seq has been an effective method for association mapping in model organisms, it has not been frequently utilized in natural populations. To extend bioinformatic tools for rapid implementation of Pool‐Seq data in nonmodel organisms, we developed a pipeline called PoolParty and illustrate its effectiveness in genetic association mapping. Alignment expectations based on five pooled Chinook salmon (Oncorhynchus tshawytscha) libraries showed that approximately 48% genome coverage per library could be achieved with reasonable sequencing effort. We additionally examined male and female O. tshawytscha libraries to illustrate how Pool‐Seq techniques can successfully map known genes associated with functional differences among sexes such as growth hormone 2. Finally, we compared pools of individuals of different spawning ages for each sex to discover novel genes involved with age at maturity in O. tshawytscha such as opsin4 and transmembrane protein19. While not appropriate for every system, Pool‐Seq data processed by the PoolParty pipeline is a practical method for identifying genes of major effect in nonmodel organisms when high genome coverage is necessary and cost is a limiting factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号