首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Very pure, detergent-solubilized Na,K-ATPase from dog or lamb kidneys has been successfully reconstituted at high protein-to-lipid weight ratios. Studies have been conducted to establish the orientation of the Na,K-ATPase molecules in the reconstituted membranes and to assess the functional activity and the conformational state of the reconstituted enzyme. Results indicate that reincorporation of the Na,K-ATPase molecules in the lipid bilayer is unidirectional and that the reconstituted enzyme retains its functional and structural integrity. Two-dimensional crystals have been induced in these preparations by vanadate ions. The arrays, with a dimeric structure in the unit cell, have a morphology similar to that of the crystals that had previously formed in the native membranes. Filtered images show that in projection, the molecule had an asymmetrical mass distribution, which at the resolution of 2.5 nm is identical to that of the earlier crystals. These sheets, although small, represent the first crystals of Na, K-ATPase to be formed by reconstitution. We expect that optimization of the reconstitution and crystallization parameters will lead to larger and better-ordered sheets, suitable for electron crystallography.  相似文献   

2.
Oligomycin induces occlusion of Na+ in membrane-bound Na,K-ATPase. Here it is shown that Na,K-ATPase from pig kidney or shark rectal gland solubilized in the nonionic detergent C12E8 is capable of occluding Na+ in the presence of oligomycin. The apparent affinity for Na+ is reduced for both enzymes upon solubilization, and there is an increase in the sigmoidicity of binding curves, which indicates a change in the cooperativity between the occluded ions. A high detergent/protein ratio leads to a decreased occlusion capacity. De-occlusion of Na+ by addition of K+ is slow for solubilized Na,K-ATPase, with a rate constant of about 0.1 s-1 at 6 degrees C. Stopped-flow fluorescence experiments with 6-carboxyeosin, which can be used to monitor the E1Na-form in detergent solution, show that the K(+)-induced de-occlusion of Na+ correlates well with the fluorescence decrease which follows the transition from the E1Na-form to the E2-form. There is a marked increase in the rate of fluorescence change at high detergent/protein ratios, indicating that the properties of solubilized enzyme are subject to modification by detergent in other respects than mere solubilization of the membrane-bound enzyme. The temperature dependence of the rate of de-occlusion in the range 2 degrees C to 12 degrees C is changed slightly upon solubilization, with activation energies in the range 20-23 kcal/mol for membrane-bound enzyme, increasing to 26-30 kcal/mol for solubilized enzyme. Titrations of the rate of transition from E1Na to E2K with oligomycin can be interpreted in a model with oligomycin having an apparent dissociation constant of about 2.5 microM for C12E8-solubilized shark Na,K-ATPase and 0.2 microM for solubilized pig kidney Na,K-ATPase.  相似文献   

3.
4.
Voltage clamp fluorometry was used to monitor conformational changes associated with electrogenic partial reactions of the Na+,K+-ATPase after changes in the concentration of internal sodium (Na+i) or external potassium (K+o). To probe the effects of the Na+i concentration on the Na+ branch of the Na+,K+-ATPase, oocytes were depleted of Na+i and then loaded with external sodium (Na+o) using the amiloride-sensitive epithelial sodium channel. The K+ branch of the Na+,K+-ATPase was studied by exposing the oocytes to different K+o concentrations in the presence and absence of Na+o to obtain additional information on the apparent affinity for K+o. Our results demonstrate that lowering the concentration of Na+i or increasing the amount of K+o in the external solution shifts the equilibrium toward E1/E1P. Furthermore, the K+o-induced relocation toward E1 occurs at a much lower K+o concentration when Na+o is absent, indicating a higher apparent affinity. Finally, voltage-dependent steps associated with the K+ branch or the Na+ branch of the Na+,K+-ATPase are affected by the K+o concentration or the Na+i concentration, respectively.  相似文献   

5.
The interaction of nile red (NR) with apomyoglobin (ApoMb) in the native (pH 7) and molten globule (pH 4) states was investigated using experimental and computational methods. NR binds to hydrophobic locations in ApoMb with higher affinity (K(d) = 25 +/- 5 microM) in the native state than in the molten globule state (K(d) = 52 +/- 5 microM). In the molten globule state, NR is located in a more hydrophobic environment. The dye does not bind to the holoprotein, suggesting that the binding site is located at the heme pocket. In addition to monitoring steady-state properties, the fluorescence emission of NR is capable of tracking submillisecond, time-resolved structural rearrangements of the protein, induced by a nanosecond pH jump. Molecular dynamics simulations were run on ApoMb at neutral pH and at pH 4. The structure obtained for the molten globule state is consistent with the experimentally available structural data. The docking of NR with the crystal structure shows that the ligand binds into the binding pocket of the heme group, with an orientation bringing the planar ring system of NR to overlap with the position of two of the heme porphyrin rings in Mb. The docking of NR with the ApoMb structure at pH 4 shows that the dye binds to the heme pocket with a slightly less favorable binding energy, in keeping with the experimental K(d) value. Under these conditions, NR is positioned in a different orientation, reaching a more hydrophobic environment in agreement with the spectroscopic data.  相似文献   

6.
The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the reduction of oxygen to O 2 at the expense of NADPH. During activation, the cytosolic oxidase components p47phox and p67phox, each containing two Src homology 3 (SH3) domains, migrate to the plasma membrane. p47phox and p67phox associate with cytochrome b558, a membrane-integrated flavohemoprotein, to assemble the active oxidase. Oxidase activation can be mimicked in a cell-free system using an anionic amphiphile, such as sodium dodecyl sulfate or arachidonic acid, as an activating agent. Activators of the oxidase in vitro cause exposure of the SH3 domains of p47phox, which has probably been masked by the C-terminal region of this protein in a resting state. We show here that the fluorescence exhibited by the covalently labeled N,N-di-methyl-N(iodoacetyl)-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethyleneamine (IANBD) was increased when N-terminal-truncated p47phox-(SH3)2-C was treated with anionic amphiphiles. This finding was similar to the results obtained with the full-length p47phox. However, the fluorescence of C-terminal-truncated p47phox-N-(SH3)2 and that of both C-terminal and N-terminal truncated p47phox-(SH3)2 were not altered by the activators. These results indicate that the C-terminal region of p47phox is a primary target of the conformational change during the activation of NADPH oxidase.  相似文献   

7.
Sánchez G  Blanco G 《Biochemistry》2004,43(28):9061-9074
The Na,K- and H,K-ATPases are plasma membrane enzymes responsible for the active exchange of extracellular K(+) for cytoplasmic Na(+) or H(+), respectively. At present, the structural determinants for the specific function of these ATPases remain poorly understood. To investigate the cation selectivity of these ATPases, we constructed a series of Na,K-ATPase mutants in which residues in the membrane spanning segments of the alpha subunit were changed to the corresponding residues common to gastric H,K-ATPases. Thus, mutants were created with substitutions in transmembrane domains TM1, TM4, TM5, TM6, TM7, and TM8 independently or together (designated TMAll). The function of each mutant was assessed after coexpression with the beta subunit in Sf-9 cells using baculoviruses. The enzymatic properties of TM1, TM7, and TM8 mutants were similar to the wild-type Na,K-ATPase, and while TM5 showed modest changes in apparent affinity for Na(+), TM4, TM6, and TMAll displayed an abnormal activity. This resulted in a Na(+)-independent hydrolysis of ATP, a 2-fold higher K(0.5) for Na(+) activation, and the ability to function at low pH. These results suggest a loss of discrimination for Na(+) over H(+) for the enzymes. In addition, TM4, TM6, and TMAll mutants exhibited a 1.5-fold lower affinity for K(+) and a 4-5-fold decreased sensitivity to vanadate. Altogether, these results provide evidence that residues in transmembrane domains 4 and 6 of the alpha subunit of the Na,K-ATPase play an important role in determining the specific cation selectivity of the enzyme and also its E1/E2 conformational equilibrium.  相似文献   

8.
Following a recent demonstration that H,K-ATPase can active transport Na+ at a low rate (Polvani, C., Sachs, G., and Blostein, R. (1989) J. Biol. Chem. 264, 17854-17859), we have looked for and found effects of Na+ ions on the conformational state of gastric H,K-ATPase labeled with fluorescein isothiocyanate. Na+ ions reverse the K(+)-induced quench of the fluorescein fluorescence and somewhat enhance fluorescence in the absence of K+ ions. Equilibrium titrations of the cation effects show that Na+ and K+ ions are strictly competitive with apparent dissociation constants of KNa+ = 62 mM (n = 2) and KK+ = 6.6 mM (n = 2). The observations demonstrate that Na+ ions bind to and stabilize the high fluorescence E1 form of the protein while K+ ions stabilize the low fluorescence E2 form. Elevation of pH from 6.4 to 8.0 increased the apparent affinity of the Na+ ions from approximately 62 to 10.2 mM, consistent with competition between protons and Na+. The action of Na+ to stabilize the E1 form was used to measure the rate of the E2K----E1Na transition with a stopped-flow fluorimeter. The rate at pH 6.4 and 20 degrees C is 18.1 s-1. In addition the rate of the reverse conformational transition E1K----E2K has been measured at several K+ concentrations. From the hyperbolic dependence on K+ concentration a maximal rate of 211 +/- 32 s-1 and intrinsic K+ dissociation constant on E1 of 64.6 +/- 3.3 mM have been estimated. The kinetic and equilibrium data are self-consistent and thus support the proposed action of Na+ and K+ ions. Compared with Na,K-ATPase, the H,K-ATPase exhibits a lower affinity for Na+ on E1 and a much faster rate of the E2K----E1Na transition, but a similar affinity for K+ ions on E1 and rate of the transition E1K----E2K. The significance of the similarities and differences in cation specificity and rates of conformational changes of Na,K- and H,K-ATPases is discussed.  相似文献   

9.
Pre-steady-state phosphorylation of purified Na,K-ATPase from red outer medulla of pig kidney was studied at 25 degrees C and an ample range of [tau-32P]ATP concentrations. At 10 microM ATP phosphorylation followed simple exponential kinetics reaching after 40 ms a steady level of 0.76 +/- 0.04 nmol of P/mg of protein with kapp = 73.0 +/- 6.5 s-1. At 500 microM ATP the time course of phosphorylation changed drastically, since the phosphoenzyme reached a level two to four times higher at a much higher rate (kapp greater than or equal to 370 s-1) and in about 40 ms dropped to the same steady level as with 10 microM ATP. This superphosphorylation was not observed in Na,K-ATPase undergoing turnover in a medium with Mg2+, Na+, and ATP, suggesting that it required the enzyme to be at rest. Superphosphorylation depended on Mg2+ and Na+ and was fully inhibited by ouabain and FITC. After denaturation the phosphoenzyme made by superphosphorylation had the electrophoretic mobility of the alpha-subunit of the Na,K-ATPase, and its hydrolysis was accelerated by hydroxylamine. On a molar basis, the stoichiometry of phosphate per ouabain bound was 2.40 +/- 0.60 after phosphorylation with 1000 microM ATP. The results are consistent with the idea that under proper conditions every functional Na,K-ATPase unit can accept two, or more, phosphates of rapid turnover from ATP.  相似文献   

10.
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na+,K+- and H+,K+-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.  相似文献   

11.
The cytoplasmic N terminus of the Na,K-ATPase is a highly charged and flexible structure that comprises three predicted helical regions including H1 spanning residues 27 to 33 and H2 spanning residues 42 to 50. Previous deletion mutagenesis experiments showed that deletion of residues up to and including most of H2 shifts the E(1)/E(2) conformational equilibrium toward E(1). The present study describes a clustered charge-to-alanine mutagenesis approach designed to delineate specific sites within the N terminus that modulate the steady-state E(1) <--> E(2) and E(1)P <--> E(2)P poise. Criteria to assess shifts in poise include (i) sensitivity to inhibition by inorganic orthovanadate to assess overall poise; (ii) K(+)-sensitivity of Na-ATPase measured at micromolar ATP to assess changes in the E(2)(K) + ATP --> E(1) x ATP + K(+) rate; (iii) K'(ATP) for low-affinity ATP binding at the latter step; (iv) overall catalytic turnover, and (v) the E(1)P --> E(2)P transition. The results of alanine replacements in H1 (31KKE) suggest that this site stabilizes E(2)P and to a lesser extent E(2). In H2, residues within 47HRK have a role in stabilizing E(2) but not E(2)P as revealed with double mutants 31KKE --> AAA/47H --> A and 31KKE --> AAA/47HRK --> AAA. Taken together, these observations suggest that sites 31KKE in H1 and 47HRK in H2 have distinct roles in modulating the enzyme's conformational transitions during the catalytic cycle of the enzyme.  相似文献   

12.
The ability of ATP, CTP, ITP, GTP and UTP to induce ouabain-sensitive accumulation of Na+ by proteoliposomes with a reconstituted Na/K-pump was studied. At low Na+/K+ ratio (20 mM/50 mM), a correlation was observed between the proton-accepting capacity of the nucleotide and its efficiency as an active transport substrate. In order to test the hypothesis on the role of the negative charge in position 1 of the purine (3-pyrimidine) base of the nucleotide in the reversible transitions from the Na- to the K-conformations of Na,K-ATPase, two ATP analogs (N1-hydroxy-ATP possessing a proton-accepting ability and N1-methoxy-ATP whose molecule carries a negative charge quenched by a methyl group) were used. The first substrate provides for active accumulation of Na+ by proteoliposomes at a rate similar to that of ATP, whereas the second substrate is fairly ineffective.  相似文献   

13.
Chimeras of the catalytic subunits of the gastric H,K-ATPase and Na, K-ATPase were constructed and expressed in LLC-PK1 cells. The chimeras included the following: (i) a control, H85N (the first 85 residues comprising the cytoplasmic N terminus of Na,K-ATPase replaced by the analogous region of H,K-ATPase); (ii) H85N/H356-519N (the N-terminal half of the cytoplasmic M4-M5 loop also replaced); and (iii) H519N (the entire front half replaced). The latter two replacements confer a decrease in apparent affinity for extracellular K+. The 356-519 domain and, to a greater extent, the H519N replacement confer increased apparent selectivity for protons relative to Na+ at cytoplasmic sites as shown by the persistence of K+ influx when the proton concentration is increased and the Na+ concentration decreased. The pH and K+ dependence of ouabain-inhibitable ATPase of membranes derived from the transfected cells indicate that the H519N and, to a lesser extent, the H356-519N substitution decrease the effectiveness of K+ to compete for protons at putative cytoplasmic H+ activation sites. Notable pH-independent behavior of H85N/H356-519N at low Na+ suggests that as pH is decreased, Na+/K+ exchange is replaced largely by (Na+ + H+)/K+ exchange. With H519N, the pH and Na+ dependence of pump and ATPase activities suggest relatively active H+/K+ exchange even at neutral pH. Overall, this study provides evidence for important roles in cation selectivity for both the N-terminal half of the M4-M5 loop and the adjacent transmembrane helice(s).  相似文献   

14.
R A Parente  B R Lentz 《Biochemistry》1986,25(5):1021-1026
The sensitivity of the fluorescence lifetime of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]- 3-sn-phosphatidylcholine (DPHpPC) to its local concentration in lipid bilayers was used to monitor both lipid mixing and phase separation occurring during membrane vesicle fusion. Vesicles containing 2 mol % DPHpPC were mixed with a 10-fold excess of vesicles devoid of probe. Upon addition of a fusogen, mixing of bilayer lipids associated with fusion was followed as an increase in the fluorescence lifetime of DPHpPC. Ca2+-induced fusion of phosphatidylserine vesicles served to test the method and was shown to have an exponential half-time of 7 s. Phase separation (between the phosphatidylserine head groups of bulk lipid and the phosphatidylcholine head groups of the probe) was monitored by DPHpPC under the same conditions used to follow lipid mixing due to fusion. Phase separation was not significant until 10 min after Ca2+ addition and was completely reversible by disodium ethylenediaminetetraacetate addition. Vesicle aggregation induced by Ca2+ addition to mixed phosphatidylserine/phosphatidylcholine vesicles did not alter the DPHpPC lifetime, indicating that close association of vesicles did not promote intervesicular exchange of the probe. In addition, we have investigated the effects of CA2+ on the fluorescence properties of this probe and of the head-group-labeled fluorescent probes N-(4-nitro-2,1,3-benzoxadiazolyl)phosphatidylethanolamine and N-(lissamine Rhodamine B sulfonyl)dioleoyl-phosphatidylethanolamine, which are used in the fluorescence energy transfer assay of Struck et al.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pseudouridine psi 73 in yeast 5.8S RNA was modified with 4-bromomethyl-7-methoxycoumarin(BMC). Temperature dependence of fluorescence intensity was measured and it was compared with UV-thermal melting curve. The region around psi 73 melts partially. Fluorescence intensity changes by titration with Mg2+ and it quenches largely by added iodide ion. The results are compared with those of BMC-modified psi 55 of tRNAPhe and psi 50 of 5S RNA reported in previous paper1-4.  相似文献   

16.
The amounts of the polyamines putrescine, spermine and spermidine as well as the Na,K-ATPase activity have been determined in the developing chick brain. The amounts of spermine and spermidine per gram fresh weight do not change significantly, the amount of putrescine declines until the 17th day of incubation after which an increase takes place. Spermine is able to inhibit the Na,K-ATPase from chick brain competitively. Half maximal inhibition is achieved at 4 X 10(-5) mol/1 spermine. This polyamine functions as an allosteric inhibitor; the Hill coefficient is 2.2 +/- 0.3. A regulatory effect of spermine on the Na,K-ATPase from chick brain is discussed. In contrast to spermine 1 mmol/1 spermidine inhibits the Na,K-ATPase only slightly, while 1 mmol/1 putrescine does not inhibit the Na,K-ATPase at all.  相似文献   

17.
Monofunctional imidoesters such as ethyl acetimidate can induce crosslinking of subunits of the (Na+ + K+) ion-stimulated ATPase. The cross-linked product is shown to be composed of equal parts of two subunits: one phosphorylated by γ-[32P]ATP, the other a glycoprotein. Because crosslinking of proteins by imidoesters normally requires reaction at both ends of a bifunctional reagent, the reaction is unexpected. A model for the reaction is proposed, in which a favorably positioned amino group on one subunit displaces the amidino group on the other, forming a covalent diamidino crosslink between the two subunits.Reaction with imidoesters also partially inhibits the Na,K-ATPase and reduces the sensitivity of the phosphorylated form of the enzyme to potassium ion. This modification resembles the effect of ouabain, a specific inhibitor of Na,K-ATPase, and is independent of crosslinking.  相似文献   

18.
The effect of ions on the thermostability and unfolding of Na,K-ATPase from shark salt gland was studied and compared with that of Na,K-ATPase from pig kidney by using differential scanning calorimetry (DSC) and activity assays. In 1 mM histidine at pH 7, the shark enzyme inactivates rapidly at 20 °C, as does the kidney enzyme at 42 °C (but not at 20 °C). Increasing ionic strength by addition of 20 mM histidine, or of 1 mM NaCl or KCl, protects both enzymes against this rapid inactivation. As detected by DSC, the shark enzyme undergoes thermal unfolding at lower temperature (Tm ≈ 45 °C) than does the kidney enzyme (Tm ≈ 55 °C). Both calorimetric endotherms indicate multi-step unfolding, probably associated with different cooperative domains. Whereas the overall heat of unfolding is similar for the kidney enzyme in either 1 mM or 20 mM histidine, components with high mid-point temperatures are lost from the unfolding transition of the shark enzyme in 1 mM histidine, relative to that in 20 mM histidine. This is attributed to partial unfolding of the enzyme due to a high hydrostatic pressure during centrifugation of DSC samples at low ionic strength, which correlates with inactivation measurements. Addition of 10 mM NaCl to shark enzyme in 1 mM histidine protects against inactivation during centrifugation of the DSC sample, but incubation for 1 h at 20 °C prior to addition of NaCl results in loss of components with lower mid-point temperatures within the unfolding transition. Cations at millimolar concentration therefore afford at least two distinct modes of stabilization, likely affecting separate cooperative domains. The different thermal stabilities and denaturation temperatures of the two Na,K-ATPases correlate with the respective physiological temperatures, and may be attributed to the different lipid environments.  相似文献   

19.
The effect of ions on the thermostability and unfolding of Na,K-ATPase from shark salt gland was studied and compared with that of Na,K-ATPase from pig kidney by using differential scanning calorimetry (DSC) and activity assays. In 1 mM histidine at pH 7, the shark enzyme inactivates rapidly at 20 degrees C, as does the kidney enzyme at 42 degrees C (but not at 20 degrees C). Increasing ionic strength by addition of 20 mM histidine, or of 1 mM NaCl or KCl, protects both enzymes against this rapid inactivation. As detected by DSC, the shark enzyme undergoes thermal unfolding at lower temperature (Tm approximately 45 degrees C) than does the kidney enzyme (Tm approximately 55 degrees C). Both calorimetric endotherms indicate multi-step unfolding, probably associated with different cooperative domains. Whereas the overall heat of unfolding is similar for the kidney enzyme in either 1 mM or 20 mM histidine, components with high mid-point temperatures are lost from the unfolding transition of the shark enzyme in 1 mM histidine, relative to that in 20 mM histidine. This is attributed to partial unfolding of the enzyme due to a high hydrostatic pressure during centrifugation of DSC samples at low ionic strength, which correlates with inactivation measurements. Addition of 10 mM NaCl to shark enzyme in 1 mM histidine protects against inactivation during centrifugation of the DSC sample, but incubation for 1 h at 20 degrees C prior to addition of NaCl results in loss of components with lower mid-point temperatures within the unfolding transition. Cations at millimolar concentration therefore afford at least two distinct modes of stabilization, likely affecting separate cooperative domains. The different thermal stabilities and denaturation temperatures of the two Na,K-ATPases correlate with the respective physiological temperatures, and may be attributed to the different lipid environments.  相似文献   

20.
The in vitro activity of Na,K-ATPase isolated from outer medulla of dog kidney was decreased in a dose- and time-dependent manner by interaction with 100 mM glucose 6-phosphate (G6P) during the first 8 h. In the subsequent 16 h no change in activity was observed. On the other hand, Amadori-products of the enzyme increased in a dose- and time-dependent manner by glycation up to 100 mM G6P during 24 h. The presence of 5 mM ATP in glycation experiments protected the enzyme activity but did not inhibit the formation of Amadori-products. These results were consistent with inhibition of the Na,K-ATPase activity by glycation of the amino groups located in the catalytic center of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号