首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nucleotide sequence of the pldA gene, coding for the outer membrane (OM) phospholipase A of Escherichia coli K-12, and flanking sequences, was determined. Data were obtained from sequences of overlapping deletions which had been generated in vitro from both ends of the gene, using DNase I in the presence of Mn2+ and Bal31 nuclease. The deduced amino acid sequence of the pldA gene product is the first primary sequence of a membrane-bound phospholipase. The complete PldA protein contains 260 amino acids, which include a putative signal sequence, and has a calculated mol. wt. of 29 946 similar to that of the purified protein. Furthermore we found the N terminus of the purified protein to be blocked and the overall amino acid composition to be consistent with the one deduced from the complete pldA gene. Analysis of proteins synthesized in minicells with a pldA coding plasmid in the presence of 8% ethanol did not reveal any new bands on polyacrylamide gels, whereas the control beta-lactamase clearly showed its unprocessed form under the same conditions. These data are consistent with the empirical prediction from the primary sequence, that the PldA protein lacks any signal peptidase 'target' site. We therefore conclude that the PldA protein is exported to the OM without proteolytic removal of the signal peptide.  相似文献   

2.
Phospholipases D (PLDs) are virtually ubiquitous in eukaryotic organisms; however, they are relatively uncommon in prokaryotes. In this report, we demonstrate that the environmentally acquired, opportunistic pathogen Pseudomonas aeruginosa expresses PLD activity. A gene designated pldA was identified in the genomic database of P. aeruginosa PAO1 encoding a protein with significant homology to eukaryotic PLDs, but not to any prokaryotic PLDs. PldA is most homologous to PLDs from mammals and yeast. The pldA gene was cloned and shown to express an approximately 116 kDa protein with calcium-regulated PLD activity that is localized to the periplasm. Interestingly, not all strains of P. aeruginosa carry pldA. When present, pldA is always linked to an open reading frame (ORF), ORF4, and a gene (vgrA1) encoding a protein homologous to Vgr from Escherichia coli. Vgr proteins contain regularly repeated dipeptide motifs (valine-glycine repeats). In E. coli, genes encoding Vgr are associated with multicopy genetic elements designated Rhs (rearrangement hot-spots). P. aeruginosa PAO1 has 10 vgr homologues dispersed throughout its genome, but the copy number of these genetic elements varies considerably in different strains. Neither vgrA1 nor ORF4 is present in strains lacking pldA. Furthermore, sequences flanking vgrA1, pldA and ORF4 in the P. aeruginosa strains examined are highly conserved, suggesting a specific site of insertion. These and other data suggest that vgrA1, pldA and ORF4 constitute an approximately 7 kb mobile genetic element and that pldA was acquired horizontally, perhaps from a eukaryotic organism. Competition studies between a PldA knock-out mutant and the parental wild-type strain indicate that PldA contributes to the ability of P. aeruginosa PAO1 to persist in a chronic pulmonary infection model in rats.  相似文献   

3.
4.
The argF gene encoding ornithine carbamoyl-transferase (OTCase; EC2.1.3.3) has been cloned from Corynebacterium glutamicum by transforming the Escherichia coli arginine auxotroph with the genomic DNA library. The cloned DNA also complements the E. coli argG mutant, suggesting a clustered organization of the genes in the genome. We have determined the DNA sequence of the minimal fragment complementing the E. coli argF mutant. The coding region of the cloned gene is 957 nucleotides long with a deduced molecular mass of about 35 kDa polypeptide. The enzyme activity and size of the expressed protein in the E. coli auxotroph carrying the argF gene revealed that the cloned gene indeed codes for OTCase. Analysis of the amino acid sequence of the predicted protein revealed a strong similarity to the corresponding protein of other bacteria.  相似文献   

5.
6.
The rotA gene of Escherichia coli encodes a peptidyl-prolyl cis/trans isomerase (PPlase), which is supposed to catalyse protein folding in the periplasm. To investigate the importance of the enzyme, the rotA gene was cloned and a chromosomal deletion mutant was created. The rotA mutant was normally viable. No residual PPlase activity could be detected in the periplasmic fraction of the mutant. Comparison of the patterns of periplasmic and outer membrane proteins by SDS-PAGE revealed no differences in protein composition between the rotA mutant and its parental strain. Similarly, the kinetics of periplasmic protein folding and outer membrane protein assembly appeared unaffected by the rotA mutation. Our results show that the periplasmic PPlase of E. coli is not essential and that the protein does not play an important role in protein folding.  相似文献   

7.
Campylobacter concisus is an opportunistic pathogen commonly found in the human oral cavity. It has also been isolated from clinical sources including gastroenteritis cases. Both secreted and cell-associated hemolytic activities were detected in C. concisus strains isolated from children with gastroenteritis. The secreted hemolytic activity of C. concisus strains was labile and was detected in variable levels from fresh-culture filtrates only. In addition, another secreted hemolysin/cytotoxin with a molecular weight < 10 kDa was detected in a single C. concisus strain (RCH 12). A C. concisus genomic library, constructed from strain RCH 3 in Escherichia coli XL1-Blue, was screened for hemolytic clones. Subcloning and sequence analysis of selected hemolytic clones identified ORFs for genes that enhance hemolytic activity but do not appear to be related to any known hemolysin genes found in Gram-negative bacteria. In a previous study, a stable cell-associated hemolysin was identified as an outer-membrane phospholipase A (OMPLA) encoded by the pldA gene. In this study, we report cloning of the pldA gene of the clinical strain C. concisus RCH 3 and the complementation of phospholipase A activity in an E. coli pldA mutant.  相似文献   

8.
An Escherichia coli K-12 mutant deficient for detergent-resistant (DR) phospholipase A, a principal enzyme catalyzing the first step in phospholipid degradation, was characterized genetically. The mutation was found to affect the locus pldA (phospholipid degradation), which is cotransducible both with ilv and metE at a frequencies of 13 and 78%, respectively, and shown to lie between the ilv and metE loci on the E. coli chromosome. DR phospholipase A(1) and A(2) activities were simultaneously transduced with pldA(+) by phage P1; therefore it is proposed that DR phospholipase A has both activities.  相似文献   

9.
10.
The requirement for the activation of phospholipase A by the colicin A lysis protein (Cal) in the efficient release of colicin A by Escherichia coli cells containing colicin A plasmids was studied. In particular, we wished to determine if this activation is the primary effect of Cal or whether it reflects more generalized damage to the envelope caused by the presence of large quantities of this small acylated protein. E. coli tolQ cells, which were shown to be leaky for periplasmic proteins, were transduced to pldA and then transformed with the recombinant colicin A plasmid pKA. Both the pldA and pldA+ strains released large quantities of colicin A following induction, indicating that in these cells phospholipase A activation is not required for colicin release. This release was, however, still dependent on a functioning Cal protein. The assembly and processing of Cal in situ in the cell envelope was studied by combining pulse-chase labelling with isopycnic sucrose density gradient centrifugation of the cell membranes. Precursor Cal and lipid-modified precursor Cal were found in the inner membrane at early times of chase, and gave rise to mature Cal which accumulated in both the inner and outer membrane after further chase. The signal peptide was also visible on these gradients, and its distribution too was restricted to the inner membrane. Gradient centrifugation of envelopes of cells which were overproducing Cal resulted in very poor separation of the membranes. The results of these studies provide evidence that the colicin A lysis protein causes phospholipase A-independent alterations in the integrity of the E. coli envelope.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The gene encoding the outer membrane phosphate-selective porin protein P from Pseudomonas aeruginosa was cloned into Escherichia coli. The protein product was expressed and transported to the outer membrane of an E. coli phoE mutant and assembled into functional trimers. Expression of a product of the correct molecular weight was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis, using polyclonal antibodies to protein P monomer and trimer forms. Protein P trimers were partially purified from the E. coli clone and shown to form channels with the same conductance as those formed by protein P from P. aeruginosa. The location and orientation of the protein P-encoding (oprP) gene on the cloned DNA was identified by three methods: (i) mapping the insertion point of transposon Tn501 in a previously isolated P. aeruginosa protein P-deficient mutant; (ii) hybridization of restriction fragments from the cloned DNA to an oligonucleotide pool synthesized on the basis of the amino-terminal protein sequence of protein P; and (iii) fusion of a PstI fragment of the cloned DNA to the amino terminus of the beta-galactosidase gene of pUC8, producing a fusion protein that contained protein P-antigenic epitopes. Structural analysis of the cloned DNA and P. aeruginosa chromosomal DNA revealed the presence of two adjacent PstI fragments which cross-hybridized, suggesting a possible gene duplication. The P-related (PR) region hybridized to the oligonucleotide pool described above. When the PstI fragment which contained the PR region was fused to the beta-galactosidase gene of pUC8, a fusion protein was produced which reacted with a protein P-specific antiserum. However, the restriction endonuclease patterns of the PR region and the oprP gene differed significantly beyond the amino-terminal one-third of the two genes.  相似文献   

12.
M Givskov  L Olsen    S Molin 《Journal of bacteriology》1988,170(12):5855-5862
From a genomic library of Serratia liquefaciens, a cloned DNA fragment comprising a two-gene operon was isolated and expressed in Escherichia coli. One of the gene products was identified as a phospholipase A1, and the enzyme was found to be excreted to the outer environment from S. liquefaciens as well as from E. coli. Both genes were sequenced, and the relationship between open reading frames in the DNA sequence and in vitro-expressed polypeptides was established. The length of the phospholipase polypeptide was found to be 319 amino acids. In the amino-terminal end of the coding sequence was a stretch of about 20 hydrophobic amino acids, but, in contrast to consensus signal peptides, no basic residues were present. The length of the second polypeptide was 227 amino acids. It was found that expression of the phospholipase gene in both E. coli and S. liquefaciens was growth phase regulated (late expression).  相似文献   

13.
ABSTRACT: BACKGROUND: In the past decade, researchers have proposed that the pldA gene for outer membrane phospholipase A (OMPLA) is important for bacterial colonization of the human gastric ventricle. Several conserved Helicobacter pylori genes have distinct genotypes in different parts of the world, biogeographic patterns that can be analyzed through phylogenetic trees. The current study will shed light on the importance of the pldA gene in H. pylori. In silico sequence analysis will be used to investigate whether the bacteria are in the process of preserving, optimizing, or rejecting the pldA gene. The pldA gene will be phylogenetically compared to other housekeeping (HK) gene, and a possible origin via horizontal gene transfer (HGT) will be evaluated through both at intra- and inter-species evolutionary analyses. RESULTS: In this study, pldA gene sequences were phylogenetically analyzed and compared with a large reference set of concatenated HK gene sequences. A total of 246 pldA nucleotide sequences were used; 207 were from Norwegian isolates, 20 were from Korean isolates, and 19 were from the NCBI database. Best-fit evolutionary models were determined with MEGA5 ModelTest for the pldA (K80 + I + G) and HK (GTR + I + G) sequences, and maximum likelihood trees were constructed. Both HK and pldA genes showed biogeographic clustering. Horizontal gene transfer was inferred based on significantly different GC contents, the codon adaptation index, and a phylogenetic conflict between a tree of OMPLA protein sequences representing 171 species and a tree of the AtpA HK protein for 169 species. Although a vast majority of the residues in OMPLA were predicted to be under purifying selection, sites undergoing positive selection were also found. CONCLUSIONS: Our findings indicate that the pldA gene could have been more recently acquired than seven of the HK genes found in H. pylori. However, the common biogeographic patterns of both the HK and pldA sequences indicated that the transfer occurred long ago. Our results indicate that the bacterium is preserving the function of OMPLA, although some sites are still being evolutionarily optimized.  相似文献   

14.
Results of Southern blot analyses and polymerase chain reaction revealed that the Gram-negative pathogen, Actinobacillus actinomycetemcomitans, harbored DNA homologous to the secA gene of Escherichia coli. In E. coli, the secA gene product is essential for translocation of proteins across the inner membrane via the Sec system. This A. actinomycetemcomitans secA homolog was cloned and its nucleotide sequence determined. Amino acid sequence analysis of the cloned gene revealed significant homology to the SecA proteins of Haemophilus influenzae, E. coli, Caulobacter crescentus and Bacillus subtilis. Although the cloned gene did not complement a temperature sensitive mutation in the E. coli secA gene, strains harboring the cloned gene did produce a protein that cross-reacted with anti-SecA antibody. In addition, the cloned gene did restore sensitivity to sodium azide in an E. coli azide mutant. These data support the hypothesis that A. actinomycetemcomitans may use a system similar to the Sec system of E. coli to transport proteins across the cytoplasmic membrane, but suggest that the A. actinomycetemcomitans gene product may require genera-specific Sec proteins to complement some Sec mutations in E. coli.  相似文献   

15.
Bacillus cereus secretes phospholipases C, which hydrolyze phosphatidylcholine, sphingomyelin and phosphatidylinositol. A 7.5-kb HindIII fragment of B. cereus DNA cloned into Escherichia coli, with pUC18 as a vector, directed the synthesis of the sphingomyelin-hydrolyzing phospholipase C, sphingomyelinase. Nucleotide sequence analysis of the subfragment revealed that it contained two open reading frames in tandem. The upstream truncated open reading frame corresponds to the carboxy-terminal portion of the phosphatidylcholine-hydrolyzing phospholipase C, and the downstream open reading frame to the entire translational portion of the sphingomyelinase. The two phospholipase C genes form a gene cluster. As inferred from the DNA sequence, the B. cereus sphingomyelinase has a signal peptide of 27 amino acid residues and the mature enzyme comprises 306 amino acid residues, with a molecular mass of 34233 Da. The signal peptide of the enzyme was found to be functional in protein transport across the membrane of E. coli. The enzymatic properties of the sphingomyelinase synthesized in E. coli resemble those of the donor strain sphingomyelinase. The enzymatic activity toward sphingomyelin was enhanced 20-30-fold in the presence of MgCl2, and the adsorption of the enzyme onto erythrocyte membranes was accelerated in the presence of CaCl2.  相似文献   

16.
A cloned fragment of Yersinia enterocolitica DNA complemented the defect in ferrioxamine B uptake of an Escherichia coli fhuE mutant lacking the outer membrane high-affinity transport protein FhuE. Subcloning revealed that a 13.7-kDa outer membrane protein was required for complementation. The amino acid sequence deduced from the nucleotide sequence showed extensive homology to PCPHi, an outer membrane lipoprotein of Haemophilus influenzae. We therefore termed this protein PCPYe. Plasmid-encoded pcpY mediated a low-affinity uptake of ferrioxamine B which may be caused by changes in the permeability of the outer membrane due to an overexpression of this outer membrane protein. A transposon insertion mutant in the plasmid-encoded pcpY gene was transferred into the chromosome of Y. enterocolitica. The resulting mutation had no effect on the high-affinity uptake of ferrioxamine B in Yersinia cells. Using the antibiotic ferrimycin we were able to isolate a Y. enterocolitica mutant lacking the high-affinity outer membrane receptor for ferrioxamine uptake, termed FoxA.  相似文献   

17.
The genes coding for the phospholipid degradation enzymes in E. coli, detergent-resistant (DR-) phospholipase A (pldA) and lysophospholipase L2 (pldB), were cloned together on the plasmid pKO1 (Homma, H., Kobayashi, T., Ito, Y., Kudo, I., Inoue, K., Ikeda, H., Sekiguchi, M., & Nojima, S. (1983) J. Biochem. 94, 2079-2081). To study their gene organization, a transducing lambda phage, lambda pldApldB, carrying both the pldA and pldB genes was constructed in vitro from plasmid pKO1. Viable deletion mutants of lambda pldApldB were isolated by EDTA killing, and their deleted DNA regions were determined by electron microscopic analysis of appropriate heteroduplexes. The activities of DR-phospholipase A and lysophospholipase L2 were also measured in lysates of cells infected with the deletion phages. The DNA region essential for the expression of each lipolytic activity was determined. In addition, proteins coded by the bacterial DNA on the plasmids containing the pldApldB region to various extents were detected by the maxicell system. The results showed that the product of the pldB gene is a protein with molecular weight of 40,000. It was also shown that the pldB gene is located at a region about 3 kilobase from the pldA gene.  相似文献   

18.
Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7   总被引:9,自引:5,他引:4  
In this study, we identified the iron-transport systems of Escherichia coli O157:H7 strain EDL933. This strain synthesized and transported enterobactin and had a ferric citrate transport system but lacked the ability to produce or use aerobactin. It used haem and haemoglobin, but not transferrin or lactoferrin, as iron sources. We cloned the gene encoding an iron-regulated haem-transport protein and showed that this E. coli haem-utilization gene ( chuA ) encoded a 69 kDa outer membrane protein that was synthesized in response to iron limitation. Expression of this protein in a laboratory strain of E. coli was sufficient for utilization of haem or haemoglobin as iron sources. Mutation of the chromosomal chuA and tonB genes in E. coli O157:H7 demonstrated that the utilization of haemin and haemoglobin was ChuA- and TonB-dependent. Nucleotide sequence analysis of chuA revealed features characteristic of TonB-dependentFur-regulated, outer membrane iron-transport proteins. It was highly homologous to the shuA gene of Shigella dysenteriae and less closely related to hemR of Yersinia enterocolitica and hmuR of Yersinia pestis . A conserved Fur box was identified upstream of the chuA gene, and regulation by Fur was confirmed.  相似文献   

19.
A cloned fragment of Salmonella typhimurium DNA complemented the defect in cobalamin uptake of Escherichia coli or S. typhimurium btuB mutants, which lack the outer membrane high-affinity transport protein. This DNA fragment did not carry btuB and was derived from the 90-kb plasmid resident in S. typhimurium strains. The cobalamin transport activity engendered by this plasmid had substantially lower affinity and activity than that conferred by btuB. Complementation behavior and maxicell analyses of transposon insertions showed that the cloned fragment encoded five polypeptides, at least two of which were required for complementation activity. The nucleotide sequence of the coding region for one of these polypeptides, an outer membrane protein of about 84,000 Da, was determined. The deduced polypeptide had properties typical of outer membrane proteins, with an N-terminal signal sequence and a predicted preponderance of beta structure. This outer membrane protein had extensive amino acid sequence homology with PapC and FaeD, two E. coli outer membrane proteins involved in the export and assembly of pilus and fimbria subunits on the cell surface. This homology raises the likelihood that the observed cobalamin transport did not result from the production of an authentic transport system but that overexpression of one or more outer membrane proteins allowed leakage of cobalamins through the perturbed outer membrane. These results also suggest that the 90-kb plasmid carries genes encoding an adherence mechanism.  相似文献   

20.
DegP is a periplasmic protease that is a member of both the sigma(E) and Cpx extracytoplasmic stress regulons of Escherichia coli and is essential for viability at temperatures above 42 degrees C. [U-(14)C]acetate labeling experiments demonstrated that phospholipids were degraded in degP mutants at elevated temperatures. In addition, chloramphenicol acetyltransferase, beta-lactamase, and beta-galactosidase assays as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that large amounts of cellular proteins are released from degP cells at the nonpermissive temperature. A mutation in pldA, which encodes outer membrane phospholipase A (OMPLA), was found to rescue degP cells from the temperature-sensitive phenotype. pldA degP mutants had a normal plating efficiency at 42 degrees C, displayed increased viability at 44 degrees C, showed no degradation of phospholipids, and released far lower amounts of cellular protein to culture supernatants. degP and pldA degP mutants containing chromosomal lacZ fusions to Cpx and sigma(E) regulon promoters indicated that both regulons were activated in the pldA mutants. The overexpression of the envelope lipoprotein, NlpE, which induces the Cpx regulon, was also found to suppress the temperature-sensitive phenotype of degP mutants but did not prevent the degradation of phospholipids. These results suggest that the absence of OMPLA corrects the degP temperature-sensitive phenotype by inducing the Cpx and sigma(E) regulons rather than by inactivating the phospholipase per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号