首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus has been identified in accessions of wild relatives of tomato such as Solanum habrochaites LYC4. In a previous F2 mapping study, three QTLs conferring resistance to B. cinerea (Rbcq1, Rbcq2 and Rbcq4a) were identified. As it was probable that this study had not identified all QTLs involved in resistance we developed an introgression line (IL) population (n = 30), each containing a S. habrochaites introgression in the S. lycopersicum cv. Moneymaker genetic background. On average each IL contained 5.2% of the S. habrochaites genome and together the lines provide an estimated coverage of 95%. The level of susceptibility to B. cinerea for each of the ILs was assessed in a greenhouse trial and compared to the susceptible parent S. lycopersicum cv. Moneymaker. The effect of the three previously identified loci could be confirmed and seven additional loci were detected. Some ILs contains multiple QTLs and the increased resistance to B. cinerea in these ILs is in line with a completely additive model. We conclude that this set of QTLs offers good perspectives for breeding of B. cinerea resistant cultivars and that screening an IL population is more sensitive for detection of QTLs conferring resistance to B. cinerea than the analysis in an F2 population. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Blackmold, caused by the fungus Alternaria alternata, is a major ripe fruit disease of processing tomatoes. Previously, we found blackmold resistance in a wild tomato (Lycopersicon cheesmanii) and quantitative trait loci (QTL) for resistance were mapped in an interspecific population. Five QTLs were selected for introgression from L. cheesmanii into cultivated tomato using marker-assisted selection (MAS). Restriction fragment length polymorphism and PCR-based markers flanking, and within, the chromosomal regions containing QTLs were used for MAS during backcross and selfing generations. BC1 plants heterozygous at the QTLs, and subsequent BC1S1 and BC1S2 lines possessing different homozygous combinations of alleles at the target QTLs, were identified using DNA markers. Field experiments were conducted in 1998 (with 80 marker-selected BC1S2 lines) and 1999 (with 151 marker-selected BC1S2 and BC1S3 lines) at three California locations. Blackmold resistance was assessed during both years, and horticultural traits were evaluated in 1999. The BC1S2 and BC1S3 lines containing L. cheesmanii alleles at the QTLs were associated with a large genetic variance for resistance to blackmold and moderate heritability, suggesting that significant genetic gain may be achieved by selection in this genetic material. L. cheesmanii alleles at three of the five introgressed QTLs showed a significant, positive effect on blackmold resistance. A QTL on chromosome 2 had the largest positive effect on blackmold resistance, alone and in combination with other QTLs, and was also associated with earliness, a positive horticultural trait. The other four QTLs were associated primarily with negative horticultural traits. Fine mapping QTLs using near isogenic lines could help determine if such trait associations are due to linkage drag or pleiotropy.  相似文献   

3.
 A BC3 population previously developed from a backcross of Lycopersicon peruvianum, a wild relative of tomato, into the cultivated variety L. esculentum was analyzed for QTLs. Approximately 200 BC4 families were scored for 35 traits in four locations worldwide. One hundred and sixty-six QTLs were detected for 29 of those traits. For more than half of those 29 traits at least 1 QTL was detected for which the presence of the wild allele was associated with an agronomically beneficial effect despite the inferior phenotype of the wild parent. Eight QTLs for fruit weight could be followed through the BC2, BC3, and BC4, generations, supporting the authenticity of these QTLs. Comparisons were made between the QTLs found in this study and those found in studies involving two other wild species; the results showed that while some of these QTLs can be presumed to be allelic, most of the QTLs detected in this study are ones not previously discovered. Received: 9 April 1997 / Accepted: 20 May 1997  相似文献   

4.
Lycopene content is a key component of tomato (Solanum lycopersicum L.) fruit quality, and is a focus of many tomato-breeding programs. Two QTLs for increased fruit lycopene content, inherited from a high-lycopene S. pimpinellifolium accession, were previously detected on tomato chromosomes 7 and 12 using a S. lycopersicum × S. pimpinellifolium RIL population, and were identified as potential targets for marker-assisted selection and positional cloning. To validate the phenotypic effect of these two QTLs, a BC2 population was developed from a cross between a select RIL and the S. lycopersicum recurrent parent. The BC2 population was field-grown and evaluated for fruit lycopene content using HPLC. Statistical analyses revealed that while lyc7.1 did not significantly increase lycopene content in the heterozygous condition, individuals harboring lyc12.1 in the heterozygous condition contained 70.3 % higher lycopene than the recurrent parent. To eliminate the potential pleiotropic effect of fruit size and minimize the physical size of the lyc12.1 introgression, a marker-assisted backcross program was undertaken and produced a BC3S1 NIL population (n = 1,500) segregating for lyc12.1. Lycopene contents from lyc12.1 homozygous and heterozygous recombinants in this population were measured and lyc12.1 was localized to a 1.5 cM region. Furthermore, we determined that lyc12.1 was delimited to a ~1.5 Mb sequence of tomato chromosome 12, and provided some insight into potential candidate genes in the region. The derived sub-NILs will be useful for transferring of lyc12.1 to other tomato genetic backgrounds and for further fine-mapping and cloning of the QTL.  相似文献   

5.
 Quantitative trait loci (QTLs) contributing to salt tolerance during the vegetative stage in tomato were investigated using an interspecific backcross between a salt-sensitive Lycopersicon esculentum breeding line (NC84173, maternal and recurrent parent) and a salt-tolerant Lycopersicon pimpinellifolium accession (LA722). One hundred and nineteen BC1 individuals were genotyped for 151 RFLP markers and a linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of the BC1 individuals) were evaluated for salt tolerance in aerated saline-solution cultures with the salt concentration gradually raised to 700 mM NaCl+70 mM CaCl2 (equivalent to an electrical conductivity of approximately 64 dS/m and a water potential of approximately −35.2 bars). The two parental lines were distinctly different in salt tolerance: 80% of the LA722 plants versus 25% of the NC84173 plants survived for at least 2 weeks after the final salt concentration was reached. The BC1S1 population exhibited a continuous variation, typical of quantitative traits, with the survival rate of the BC1S1 families ranging from 9% to 94% with a mean of 51%. Two QTL mapping techniques, interval mapping (using MAPMAKER/QTL) and single-marker analysis (using QGENE), were used to identify QTLs. The results of both methods were similar and five QTLs were identified on chromosomes 1 (two QTLs), 3, 5 and 9. Each QTL accounted for between 5.7% and 17.7%, with the combined effects (of all five QTLs) exceeding 46%, of the total phenotypic variation. All QTLs had the positive QTL alleles from the salt-tolerant parent. Across QTLs, the effects were mainly additive in nature. Digenic epistatic interactions were evident among several QTL-linked and QTL-unlinked markers. The overall results indicate that tomato salt tolerance during the vegetative stage could be improved by marker-assisted selection using interspecific variation. Received: 4 January 1999 / Accepted: 4 January 1999  相似文献   

6.
Cultivated tomato (Solanum lycopersicum, syn. Lycopersicon esculentum) is susceptible to the necrotrophic ascomycete and causal agent of gray mold, Botrytis cinerea. Resistance to this fungal pathogen is elevated in wild relatives of tomato, including Solanum lycopersicoides. An introgression line population (IL) containing chromosomal segments of S. lycopersicoides within the background of tomato cv. VF36 was used to screen the genome for foliar resistance and susceptibility to B. cinerea. Based on this screen, putative quantitative trait loci (QTL) were identified, five for resistance and two for susceptibility. Four resistance QTL decreased infection frequency while the fifth reduced lesion diameter. One susceptibility QTL increased infection frequency whereas the other increased lesion diameter. Overlapping chromosomal segments provided strong evidence for partial resistance on chromosomes 1 and 9 and for elevated susceptibility on chromosome 11. Segregation analysis confirmed the major resistance QTL on the long arm of chromosome 1 and susceptibility on chromosome 11. Linkage of partial resistance to chromosome 9 could not be confirmed. The usefulness of these data for resistance breeding and for map-based cloning of foliar resistance to B. cinerea is discussed.  相似文献   

7.
 Most cultivars of tomato (Lycopersicon esculentum) are sensitive to salinity during seed germination and at later stages. Genetic resources for salt tolerance have been identified within the related wild species of tomato. The purpose of the present study was to identify quantitative trait loci (QTLs) for salt tolerance during germination in an inbred backcross (BC1S1) population of an interspecific cross between a salt-sensitive tomato breeding line (NC84173, maternal and recurrent parent) and a salt-tolerant Lycopersicon pimpinellifolium accession (LA722). Onehundred and nineteen BC1 individuals were genotyped for 151 restriction fragment length polymorphism (RFLP) markers and a genetic linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of 119 BC1 individuals) were evaluated for germination at an intermediate salt-stress level (150 mM NaCl+15 mM CaCl2, water potential approximately −850 kPa). Germination was scored visually as radicle protrusion at 8-h intervals for 28 consecutive days. Germination response was analyzed by survival analysis and the time to 25, 50, and 75% germination was determined. In addition, a germination index (GI) was calculated as the weighted mean of the time from imbibition to germination for each family/line. Interval mapping, single-marker analysis and distributional extreme analysis, were used to identify QTLs and the results of all three mapping methods were generally similar. Seven chromosomal locations with significant effects on salt tolerance were identified. The L. pimpinellifolium accession had favorable QTL alleles at six locations. The percentage of phenotypic variation explained (PVE) by individual QTLs ranged from 6.5 to 15.6%. Multilocus analysis indicated that the cumulative action of all significant QTLs accounted for 44.5% of the total phenotypic variance. A total of 12 pairwise epistatic interactions were identified, including four between QTL-linked and QTL-unlinked regions and eight between QTL-unlinked regions. Transgressive phenotypes were observed in the direction of salt sensitivity. The graphical genotyping indicated a high correspondence between the phenotypes of the extreme families and their QTL genotypes. The results indicate that tomato salt tolerance during germination can be improved by marker-assisted selection using interspecific variation. Received: 29 January 1998 / Accepted: 4 June 1998  相似文献   

8.
In this study, the advanced backcross QTL (AB-QTL) mapping strategy was used to identify loci for yield, processing and fruit quality traits in a population derived from the interspecific cross Lycopersicon esculentum E6203 × Lycopersicon pennellii accession LA1657. A total of 175 BC2 plants were genotyped with 150 molecular markers and BC2F1 plots were grown and phenotyped for 25 traits in three locations in Israel and California, U.S.A. A total of 84 different QTLs were identified, 45% of which have been possibly identified in other wild-species-derived populations of tomato. Moreover, three fruit-weight/size and shape QTLs (fsz2b.1, fw3.1/fsz3.1 and fs8.1) appear to have putative orthologs in the related solanaceous species, pepper and eggplant. For the 23 traits for which allelic effects could be deemed as favorable or unfavorable, 26% of the identified loci had L. pennellii alleles that enhanced the performance of the elite parent. Alleles that could be targeted for further introgression into cultivated tomato were also identified.Communicated by G. Wenzel  相似文献   

9.
 Fine mapping was carried out on three putative QTLs (tentatively designated as Hd-1 to Hd-3) of five such QTLs controlling heading date in rice that had been earlier identified using an F2 population derived from a cross between a japonica variety, ‘Nipponbare’, and an indica variety, ‘Kasalath’, using progeny backcrossed with ‘Nipponbare’ as the recurrent parent. One BC3F2 and two BC3F1 plants, in which the target QTL regions were heterozygous and most other chromosomal regions were homozygous for the ‘Nipponbare’ allele, were selected as the experimental material. Self-pollinated progeny (BC3F2 and BC3F3) of the BC3F1 or BC3F2 showed continuous variation in days to heading. By means of progeny testing based on BC3F3 or BC3F4 lines, we determined the genotypes of each BC3F2 or BC3F3 individual at target QTLs. Their segregation patterns fitted Mendelian inheritance ratios. When the results obtained by RFLP analysis and progeny tests were combined, Hd-1, Hd-2 and Hd-3 were mapped precisely on chromosomes 6, 7 and 6, respectively, of a rice RFLP linkage map. The results demonstrated that QTLs can be treated as Mendelian factors. Moreover, these precise locations were in good agreement with the regions estimated by QTL analysis of the initial F2 population, demonstrating the high reliability of QTL mapping using a high-density linkage map. Received: 5 November 1997 / Accepted: 10 February 1998  相似文献   

10.
We report here the second advanced backcross quantitative trait locus (AB-QTL) analysis carried out in winter wheat. Seven agronomic traits were studied in a BC2F1population derived from a cross between the German winter wheat variety Flair and the synthetic wheat line XX86 developed in Japan. We selected 111 BC2F1 lines and genotyped these with 197 microsatellite markers. Field data for seven agronomic traits were collected from corresponding BC2F3 families that were grown at up to six locations in Germany. QTL analyses for yield and yield components were performed using single-marker regression and interval mapping. A total of 57 putative QTLs derived from XX86 were detected, of which 24 (42.1%) were found to have a positive effect from the synthetic wheat XX86. These favourable QTLs were mainly associated with thousand-grain weight and grain weight per ear. Many QTLs for correlated traits were mapped in similar chromosomal regions. The AB-QTL data obtained in the present study are discussed and compared with results from previous QTL analyses.  相似文献   

11.
 To detect quantitative trait loci (QTLs) controlling seed dormancy, 98 BC1F5 lines (backcross inbred lines) derived from a backcross of Nipponbare (japonica)/Kasalath (indica)//Nipponbare were analyzed genetically. We used 245 RFLP markers to construct a framework linkage map. Five putative QTLs affecting seed dormancy were detected on chromosomes 3, 5, 7 (two regions) and 8, respectively. Phenotypic variations explained by each QTL ranged from 6.7% to 22.5% and the five putative QTLs explained about 48% of the total phenotypic variation in the BC1F5 lines. Except for those of the QTLs on chromosome 8, the Nipponbare alleles increased the germination rate. Five putative QTLs controlling heading date were detected on chromosomes 2, 3, 4, 6 and 7, respectively. The phenotypic variation explained by each QTL for heading date ranged from 5.7% to 23.4% and the five putative QTLs explained about 52% of the total phenotypic variation. The Nipponbare alleles increased the number of days to heading, except for those of two QTLs on chromosomes 2 and 3. The map location of a putative QTL for heading date coincided with that of a major QTL for seed dormancy on chromosome 3, although two major heading-date QTLs did not coincide with any seed dormancy QTLs detected in this study. Received: 10 October 1997 / Accepted: 12 January 1998  相似文献   

12.
Fruit pH is an important quality attribute in tomato and it is defined during ripening. The aims of this work were to detect pericarp polypeptides associated with pH in an interspecific tomato BC1 generation by 1D-PAGE and to identify those differentially expressed polypeptides by comparing 2D-PAGE protein profiles from bulked segregant analysis (BSA). Polypeptide patterns were resolved by 1D-PAGE in a BC1 population obtained by crossing the cv. ‘Caimanta’ of Solanum lycopersicum (recurrent parental genotype) and the accession LA722 of S. pimpinellifolium (donor parental genotype). Putative QTL for fruit quality were detected by single point analysis. The presence of a 54-kDa band at the mature green stage (MG) carried by the wild genotype decreased the mean value of the pH trait. A BSA combined with 2D-PAGE was applied to the extreme phenotypes for pH in the BC1 segregating population. Four differentially expressed spots were detected when the polypeptide patterns of the bulks were compared. The spots had the expected molecular mass (around 54-kDa), and they were present in the lower-pH bulk and absent in the higher-pH one. The spots were identified by MS MALDI-TOF and two of them showed homology with the ATP synthase CF1 alpha subunit of S. lycopersicum. These results indicate that the association between the polypeptide marker and a fruit quantitative trait detected by 1D-PAGE not only would indicate genetic linkage but also could be directly related with the gene underlying the quantitative trait.  相似文献   

13.
Genetic resistance to pathogens is important for sustainable maintenance of crop yields. Recent biotechnologies offer alternative approaches to generate resistant plants by compensating for the lack of natural resistance. Tomato (Solanum lycopersicum) and related species offer a model in which natural and TILLING‐induced potyvirus resistance alleles may be compared. For resistance based on translation initiation factor eIF4E1, we confirm that the natural allele Sh–eIF4E1PI24–pot1, isolated from the wild tomato species Solanum habrochaites, is associated with a wide spectrum of resistance to both potato virus Y and tobacco etch virus isolates. In contrast, a null allele of the same gene, isolated through a TILLING strategy in cultivated tomato S. lycopersicum, is associated with a much narrower resistance spectrum. Introgressing the null allele into S. habrochaites did not extend its resistance spectrum, indicating that the genetic background is not responsible for the broad resistance. Instead, the different types of eIF4E1 mutations affect the levels of eIF4E2 differently, suggesting that eIF4E2 is also involved in potyvirus resistance. Indeed, combining two null mutations affecting eIF4E1 and eIF4E2 re‐establishes a wide resistance spectrum in cultivated tomato, but to the detriment of plant development. These results highlight redundancy effects within the eIF4E gene family, where regulation of expression alters susceptibility or resistance to potyviruses. For crop improvement, using loss‐of‐function alleles to generate resistance may be counter‐productive if they narrow the resistance spectrum and limit growth. It may be more effective to use alleles encoding functional variants similar to those found in natural diversity.  相似文献   

14.
A malting quality quantitative trait locus (QTL) study was conducted using a set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs). Each S42IL harbors a single marker-defined chromosomal segment from the wild barley accession ‘ISR 42-8’ (Hordeum vulgare ssp. spontaneum) within the genetic background of the elite spring barley cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare). The aim of the study was (1) to verify genetic effects previously identified in the advanced backcross population S42, (2) to detect new QTLs, and (3) to identify S42ILs exhibiting multiple QTL effects. For this, grain samples from field tests in three different environments were subjected to micro malting. Subsequently, a line × phenotype association study was performed with the S42ILs in order to localize putative QTL effects. A QTL was accepted if the trait value of a particular S42IL was significantly (P < 0.05) different from the recurrent parent as a control, either across all tested environments or in a particular environment. For eight malting quality traits, altogether 40 QTLs were localized, among which 35 QTLs (87.5%) were stable across all environments. Six QTLs (15.0%) revealed a trait improving wild barley effect. Out of 36 QTLs detected in a previous advanced backcross QTL study with the parent BC2DH population S42, 18 QTLs (50.0%) could be verified with the S42IL set. For the quality parameters α-amylase activity and Hartong 45°C, all QTLs assessed in population S42 were verified by S42ILs. In addition, eight new QTL effects and 17 QTLs affecting two newly investigated traits were localized. Two QTL clusters harboring simultaneous effects on eight and six traits, respectively, were mapped to chromosomes 1H and 4H. In future, fine-mapping of these QTL regions will be conducted in order to shed further light on the genetic basis of the most interesting QTLs.  相似文献   

15.
A backcross breeding strategy was used to identify quantitative trait loci (QTLs) associated with 14 traits in a BC2F2 population derived from a cross between MR219, an indica rice cultivar and an accession of Oryza rufipogon (IRGC 105491). A total of 261 lines were genotyped with 96 microsatellite markers and evaluated for plant morphology, yield components and growth period. The genetic linkage map generated for this population with an average interval size of 16.2?cM, spanning 1,553.4?cM (Kosambi) of the rice genome. Thirty-eight QTLs were identified with composite interval mapping (CIM), whereas simple interval mapping (SIM) resulted in 47 QTLs (LOD >3.0). The O. rufipogon allele was favourable for 59% of QTLs detected through CIM. Of 261 BC2F2 families, 26 advanced backcross breeding lines (BC2F5) were used for QTL validation. These lines were selected on the basis of the yield traits potentiality in BC2F3 and BC2F4 generations. The field trial was conducted at three different locations in Malaysia using randomized complete block design with three replications. Trait based marker analysis was done for QTL determination. Twenty-five QTLs were detected in BC2F5 generation whereas 29 QTLs were detected in BC2F2 generation of the same population. Two QTLs (qPL-1 and qSPL-7) were not considered for validation due to their low R 2 values and two QTLs (qPSS-3-2 and qGW-3-2) were not detected in the BC2F5 population. Fifteen QTLs showed the beneficial effect to enhance the trait value of the breeding lines. QTL validation aided to select the promising lines for further utilization.  相似文献   

16.
Tomato (Solanum lycopersicum L.) has become a popular model for genetic studies of fruit flavor in the last two decades. In this article we present a study of tomato fruit flavor, including an analysis of the genetic, metabolic and sensorial variation of a collection of contemporary commercial glasshouse tomato cultivars, followed by a validation of the associations found by quantitative trait locus (QTL) analysis of representative biparental segregating populations. This led to the identification of the major sensorial and chemical components determining fruit flavor variation and detection of the underlying QTLs. The high representation of QTL haplotypes in the breeders’ germplasm suggests that there is great potential for applying these QTLs in current breeding programs aimed at improving tomato flavor. A QTL on chromosome 4 was found to affect the levels of the phenylalanine‐derived volatiles (PHEVs) 2‐phenylethanol, phenylacetaldehyde and 1‐nitro‐2‐phenylethane. Fruits of near‐isogenic lines contrasting for this locus and in the composition of PHEVs significantly differed in the perception of fruity and rose‐hip‐like aroma. The PHEV locus was fine mapped, which allowed for the identification of FLORAL4 as a candidate gene for PHEV regulation. Using a gene‐editing‐based (CRISPR‐CAS9) reverse‐genetics approach, FLORAL4 was demonstrated to be the key factor in this QTL affecting PHEV accumulation in tomato fruit.  相似文献   

17.
Salt tolerance has been analysed in two populations of F7 lines developed from a salt sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Salinity effects on 19 quantitative traits including fruit yield were investigated by correlation, principal component analysis, ANOVA and QTL analysis. A total of 153 and 124 markers were genotyped in the P and C populations, respectively. Some flowering time and salt tolerance candidate genes were included. Since most traits deviated from a normal distribution, results based on the Kruskal–Wallis non-parametric test were preferred. Interval mapping methodology and ANOVA were also used for QTL detection. Eight out of 15 QTLs at each population were detected for the target traits under both control and high salinity conditions, and among them, only average fruit weight (FW) and fruit number (FN) QTLs (fw1.1, fw2.1 and fn1.2) were detected in both populations. The individual contribution of QTLs were, in general, low. After leaf chloride concentration, flowering time is the trait most affected by salinity because different QTLs are detected and some of their QTL×E interactions have been found significant. Also reinforcing the interest on information provided by QTL analysis, it has been found that non-correlated traits may present QTL(s) that are associated with the same marker. A few salinity specific QTLs for fruit yield, not associated with detrimental effects, might be used to increase tomato salt tolerance. The beneficial allele at two of them, fw8.1 (in C) and tw8.1 (for total fruit weight in P) corresponds to the salt sensitive parent, suggesting that the effect of the genetic background is crucial to breed for wide adaptation using wild germplasm.  相似文献   

18.
19.
Investigations to identify quantitative trait loci (QTLs) governing cooking quality traits including amylose content, gel consistency and gelatinization temperature (expressed by the alkali spread value) were conducted using a set of 241 RIL populations derived from an elite hybrid cross of “Zhenshan 97” × “Minghui 63” and their reciprocal backcrosses BC1F1 and BC2F1 populations in two environments. QTLs and QTL × environment interactions were analyzed by using the genetic model with endosperm and maternal effects and environmental interaction effects on quantitative traits of seed in cereal crops. The results suggested that a total of seven QTLs were associated with cooking quality of rice, which were subsequently mapped to chromosomes 1, 4 and 6. Six of these QTLs were also found to have environmental interaction effects.  相似文献   

20.
The tuberous stem of kohlrabi is an important quantitative trait, which affects its yield and quality. Genetic control of this trait has not yet been unveiled. To identify the QTLs controlling stem swelling of kohlrabi, a BC1 population of 92 plants was developed from a cross of broccoli DH line GCP04 and kohlrabi var. Seine. A wide range of variation in tuberous stem diameter was observed among the mapping populations. We constructed a genetic map of nine linkage groups (LGs) with different types of markers, spanning a total length of 913.5 cM with an average marker distance of 7.55 cM. Four significant QTLs for radial enlargement of kohlrabi stem, namely, REnBo1, REnBo2, REnBo3, and REnBo4 were detected on C02, C03, C05, and C09, respectively, and accounted for the phenotypic variation of 59% for the stem diameter and 55% for the qualitative grading of tuberous stem in classes. Then, we confirmed the stability of identified QTLs using BC1S1 populations derived from the BC1 plants having heterozygous alleles at the target QTL and homozygous kohlrabi alleles at the remaining QTLs. REnBo1and REnBo2 using 128 plants of BC168S1 and 94 plants of BC143S1, respectively, and REnBo3 and REnBo4 using 152 plants of BC157S1 were detected at the same positions as the respective QTLs of the BC1 population. Confirmation of QTLs in two successive generations indicates that the QTLs are persistent. The QTLs obtained in this study could be useful in marker-assisted selection of kohlrabi breeding, and to understand the genetic mechanisms of stem swelling and storage organ development in kohlrabi and other Brassica species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号