首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Kutuk O  Basaga H 《Free radical research》2003,37(12):1267-1276
The classical pathway of nuclear factor-kappa B (NF-kappaB) activation by several inducers mainly involves the phosphorylation of IkappaBalpha by a signalsome complex composed of IkappaBalpha kinases (IKKalpha and IKKbeta). However, in some cell types hydrogen peroxide (H2O2) has been shown to activate an alternative pathway that does not involve the classical signalsome activation process. In this study, we demonstrate that H2O2 induced NF-kappaB activation in HeLa cells through phosphorylation and degradation of IkappaB proteins as shown by immunblot analysis. Our studies reveal that a commonly used non-steroid anti-inflammatory drug, acetylsalicylic acid (aspirin) prevents H2O2-induced NF-kappaB activation in a dose-dependent manner through inhibition of phosphorylation and degradation of IkappaBalpha and IkappaBbeta. Differential staining and DNA fragmentation analysis also show that aspirin preloading of HeLa cells also prevents H2O2-induced apoptosis in a dose-dependent manner with maximum efficiency at 10 mM concentration. Additionally, aspirin effectively prevents caspase-3 and caspase-9 (cysteinyl aspartate-specific proteases) activation by H2O2. These results suggest that NF-kappaB activation is involved in H2O2-induced apoptosis and aspirin may inhibit both processes simultaneously.  相似文献   

2.
Recent studies suggest that sodium arsenite downregulates NF-kappaB activity by inhibiting phosphorylation and subsequent degradation of IkappaBalpha. Many effects of sodium arsenite are secondary to induction of heat shock proteins. The role of the heat shock response in arsenite-induced inhibition of NF-kappaB, however, is not known. We examined the involvement of the heat shock response in arsenite-induced inhibition of NF-kappaB activity in IL-1beta-stimulated Caco-2 cells, a human colorectal adenocarcinoma cell line with enterocytic properties. Treatment of the cells with IL-1beta resulted in increased IkappaB kinase activity, reduced levels of IkappaBalpha and increased NF-kappaB DNA binding activity. Sodium arsenite blocked all of these responses to IL-1beta without inducing changes in heat shock factor activity or heat shock protein levels. Results from additional experiments showed that the protective effect of sodium arsenite on IkappaBalpha was not influenced by the oxygen radical scavenger catalase or by inhibitors of the MAP-kinase signaling pathway. The present results suggest that sodium arsenite stabilizes IkappaBalpha and prevents NF-kappaB activation in IL-1beta-stimulated Caco-2 cells independent of the heat shock response. In addition, stabilization of IkappaBalpha by sodium arsenite does not require oxygen radical formation or activation of the MAP kinase signaling pathway.  相似文献   

3.
4.
5.
Redox regulation of nuclear factor kappaB (NF-kappaB) has been described, but the molecular mechanism underlying such regulation has remained unclear. We recently showed that a novel disulfide reductase, TRP14, inhibits tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation, and we identified the dynein light chain LC8, which interacts with the NF-kappaB inhibitor IkappaBalpha, as a potential substrate of TRP14. We now show the molecular mechanism by which NF-kappaB activation is redox-dependently regulated through LC8. LC8 inhibited TNFalpha-induced NF-kappaB activation in HeLa cells by interacting with IkappaBalpha and thereby preventing its phosphorylation by IkappaB kinase (IKK), without affecting the activity of IKK itself. TNFalpha induced the production of reactive oxygen species, which oxidized LC8 to a homodimer linked by the reversible formation of a disulfide bond between the Cys(2) residues of each subunit and thereby resulted in its dissociation from IkappaBalpha. Butylated hydroxyanisol, an antioxidant, and diphenyleneiodonium, an inhibitor of NADPH oxidase, attenuated the phosphorylation and degradation of IkappaBalpha by TNFalpha stimulation. In addition LC8 inhibited NF-kappaB activation by other stimuli including interleukin-1beta and lipopolysaccharide, both of which generated reactive oxygen species. Furthermore, TRP14 catalyzed reduction of oxidized LC8. Together, our results indicate that LC8 binds IkappaBalpha in a redox-dependent manner and thereby prevents its phosphorylation by IKK. TRP14 contributes to this inhibitory activity by maintaining LC8 in a reduced state.  相似文献   

6.
7.
8.
9.
10.
In periodontitis, alveolar bone resorption is induced by excessive host immune and inflammatory response against bacterial infection. Secretory leukocyte protease inhibitor (SLPI) has anti-bacterial and anti-inflammatory activity in inflammatory responses. SLPI inhibits joint inflammation and bone destruction, but the function of SLPI in periodontitis is unclear. Therefore, this study investigated whether SLPI inhibits the inflammatory response and alveolar bone resorption in LPS-induced periodontitis of rats. Micro-computed tomography and histological analysis showed that SLPI inhibited alveolar bone resorption by LPS-induced periodontitis. Immunohistochemistry revealed that SLPI decreased tumor necrosis factor-α (TNF-α) and interleukine-1β (IL-1β) expression in periodontitis tissue, and decreased mRNA and protein expression of TNF-α and IL-1β in LPS-stimulated MC3T3-E1 cells. The results indicated that SLPI reduced alveolar bone resorption in LPS-induced periodontitis and inhibited inflammatory cytokine, such as TNF-α and IL-1β, expression in LPS-stimulated MC3T3-E1 preosteoblasts. Therefore, SLPI could be a regulatory molecule by inhibiting alveolar bone resorption through the reduction of inflammatory cytokines, and inducing osteoblast activation for bone formation.  相似文献   

11.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been shown to inhibit the effects of proinflammatory cytokines such as interleukin-1beta (IL-1beta). This cytokine plays a key role in articular pathophysiologies by inducing the production of inflammatory mediators such as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). We previously demonstrated that 15d-PGJ(2) was more potent than troglitazone to counteract IL-1beta effects on chondrocytes. Here, we studied the action of 15d-PGJ(2) on intracellular targets in nuclear factor-kappaB (NF-kappaB) signalling pathway in IL-1beta treated rat chondrocytes. We found that 15d-PGJ(2) decreased inhibitor kappaBalpha (IkappaBalpha) degradation but not its phosphorylation by specifically inhibiting IkappaB kinase beta (IKKbeta), but not IKKalpha, enzymatic activity. We further evaluated the involvement of PPARgamma in the anti-inflammatory action of its ligands. In chondrocytes overexpressing functional PPARgamma protein, 15d-PGJ(2) pre-treatment inhibited inducible NO synthase and COX-2 mRNA expression, nitrite and PGE(2) production, p65 translocation and NF-kappaB activation. Troglitazone or rosiglitazone pre-treatment had no effect. 15d-PGJ(2) exhibited the same effect in chondrocytes overexpressing mutated PPARgamma protein. These results suggest that 15d-PGJ(2) exerts its anti-inflammatory effect in rat chondrocytes by a PPARgamma-independent mechanism, which can be conferred to a partial inhibition of IkappaBalpha degradation.  相似文献   

12.
NF-kappaB-IkappaB complex formation regulates the level and specificity of NF-kappaB activity. Quantitative analyses showed that RelA-NF-kappaB-induced IkappaBalpha binding is regulated through inhibitor retention and phosphorylation. RelA caused an increase in IkappaBalpha phosphorylation and in degradation, which was enhanced monotonically with inhibitor concentration. In vivo analysis demonstrated the RelA-induced IkappaBalpha/RelA interactions to be specific, saturable, and phosphorylation-dependent. In addition, it showed that phosphorylation regulates both the level and affinity of the complexes and demonstrated an increased average affinity to coincide with reduction in the level of complexes during cytokine-induced pathway activation. The data show that RelA regulation of NF-kappaB-IkappaBalpha complex formation is IkappaBalpha phosphorylation-dependent and that IkappaBalpha/NF-kappaB binding is dynamic and determined by concentration of the subunits. In addition, they suggest that regulation of both complex levels and affinities through phosphorylation, with effects on the system steady state, participate in selective activation of the NF-kappaB pathway.  相似文献   

13.
14.
15.
16.
17.
Infection with lesion-derived Leishmania mexicana amastigotes inhibited LPS-induced IL-12 production by mouse bone marrow-derived macrophages. This effect was associated with expression of cysteine peptidase B (CPB) because amastigotes of CPB deletion mutants had limited ability to inhibit IL-12 production, whereas preincubation of cells with a CPB inhibitor, cathepsin inhibitor IV, was able to suppress the effect of wild-type amastigotes. Infection with wild-type amastigotes resulted in a time-dependent proteolytic degradation of IkappaBalpha and IkappaBbeta and the related protein NF-kappaB. This effect did not occur with amastigotes of CPB deletion mutants or wild-type promastigotes, which do not express detectable CPB. NF-kappaB DNA binding was also inhibited by amastigote infection, although nuclear translocation of cleaved fragments of p65 NF-kappaB was still observed. Cysteine peptidase inhibitors prevented IkappaBalpha, IkappaBbeta, and NF-kappaB degradation induced by amastigotes, and recombinant CPB2.8, an amastigote-specific isoenzyme of CPB, was shown to degrade GST-IkappaBalpha in vitro. LPS-mediated IkappaBalpha and IkappaBbeta degradation was not affected by these inhibitors, confirming that the site of degradation of IkappaBalpha, IkappaBbeta, and NF-kappaB by the amastigotes was not receptor-driven, proteosomal-mediated cleavage. Infection of bone marrow macrophages with amastigotes resulted in cleavage of JNK and ERK, but not p38 MAPK, whereas preincubation with a cysteine peptidase inhibitor prevented degradation of these proteins, but did not result in enhanced protein kinase activation. Collectively, our results suggest that the amastigote-specific cysteine peptidases of L. mexicana are central to the ability of the parasite to modulate signaling via NF-kappaB and consequently inhibit IL-12 production.  相似文献   

18.
Endogenous regulation of the acute inflammatory response   总被引:2,自引:0,他引:2  
The acute inflammatory response has been triggered in rat lungs by deposition of IgG immune complexes. The inflammatory reaction triggered is highly tissue damaging and requires activation of NF-kappaB with ensuing generation of chemokines and cytokines. Endogenous generation of IL- 10 and IL- 13 as well as secretory leukocyte protease inhibitor (SLPI), significantly regulates this inflammatory response. IL-10 and IL-13 attenuate NF-kappaB activation by interfering with breakdown of IkappaBalpha, while SLPI likewise suppresses NF-kappaB activation, but by interfering with breakdown of IkappaBbeta. Antibody induced blockade of IL-10, IL-13 or SLPI enhances NF-KB activation in lung and exacerbates the lung inflammatory response and injury. These data indicate that endogenous IL-10, IL-13 and SLPI are important regulators of the inflammatory response by reducing gene activation with resultant generation of peptide mediators/cytokines and chemokines.  相似文献   

19.
Using monolayers of intestinal Caco-2 cells, we reported that activation of NF-kappaB is required for oxidative disruption and that EGF protects against this injury but the mechanism remains unclear. Activation of the PKC-beta1 isoform is key to monolayer barrier integrity. We hypothesized that EGF-induced activation of PKC-beta1 prevents oxidant-induced activation of NF-kappaB and the consequences of NF-kappaB activation, F-actin, and barrier dysfunction. We used wild-type (WT) and transfected cells. The latter were transfected with varying levels of cDNA to overexpress or underexpress PKC-beta1. Cells were pretreated with EGF or PKC modulators +/- oxidant. Pretreatment with EGF protected monolayers by increasing native PKC-beta1 activity, decreasing IkappaBalpha phosphorylation/degradation, suppressing NF-kappaB activation (p50/p65 subunit nuclear translocation/activity), enhancing stable actin (increased F-actin-to-G-actin ratio), increasing stability of actin cytoskeleton, and reducing barrier hyperpermeability. Cells stably overexpressing PKC-beta1 were protected by low, previously nonprotective doses of EGF or modulators. In these clones, we found enhanced IkappaBalpha stabilization, NF-kappaB inactivation, actin stability, and barrier function. Low doses of the modulators led to increases in PKC-beta1 in the particulate fractions, indicating activation. Stably inhibiting endogenous PKC-beta1 substantially prevented all measures of EGF's protection against NF-kappaB activation. We conclude that EGF-mediated protection against oxidant disruption of the intestinal barrier function requires PKC-beta1 activation and NF-kappaB suppression. The molecular event underlying this unique effect of PKC-beta1 involves inhibition of phosphorylation and increases in stabilization of IkappaBalpha. The ability to inhibit the dynamics of NF-kappaB/IkappaBalpha and F-actin disassembly is a novel mechanism not previously attributed to the classic subfamily of PKC isoforms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号