首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. After the administration of labelled proline to guinea pigs deprived of ascorbic acid for 15 days, the dorsal skin was examined 5 days later in an attempt to detect the presence of hydroxyproline-deficient collagen (protocollagen). The extent of incorporation of proline into skin collagens indicated a severe impairment of collagen synthesis. 2. A comparison of proline and hydroxyproline specific radioactivities in diffusible peptides obtained by treatment with collagenase of either purified skin collagens or direct hot-trichloroacetic acid extracts of skin failed to indicate the presence of protocollagen. Possible reasons for this are discussed. 3. The incorporation results did not indicate an inability of normal collagen, i.e. collagen hydroxylated to the normal degree, to cross-link in scurvy. 4. Incorporation of labelled proline into aortic elastin isolated from the same animals did not indicate a decrease in elastin biosynthesis in ascorbic acid deficiency, beyond that attributable to the inanition accompanying the vitamin deficiency. The proline/hydroxyproline specific-radioactivity ratio in elastin from scorbutic guinea pigs was about 6:1 in contrast with the 1:1 ratio in control groups. It is concluded that the formation of elastin hydroxyproline was ascorbate-dependent and that a hydroxyproline-deficient elastin is formed and retained in scurvy. The formation of desmosines was unimpaired in scorbutic animals. 5. Studies with chick embryos confirmed the formation of elastin hydroxyproline from free proline. Incorporation of free hydroxyproline into elastin hydroxyproline was negligible. 6. Digestion of solubilized samples with collagenase indicated that the hydroxyproline in guinea-pig aortic elastin preparations was not derived from contamination by collagen. It is suggested that most if not all of the hydroxyproline in the guinea pig elastin preparations investigated can be considered an integral part of the elastin molecule.  相似文献   

2.
We show here that cultured neonatal-rabbit aortic smooth-muscle cells produce and accumulate significant amounts of insoluble elastin. When grown in the presence of ascorbic acid, the amount of insoluble elastin in these cultures decreases, whereas the accumulation of collagen increases. These changes have been attributed to increased hydroxylation of proline in elastin. The function of ascorbic acid in proline hydroxylation is thought to be that of a reductive cofactor that maintains the proper oxidation state of molecular iron in the enzyme complex. This study shows that both ascorbic and isoascorbic acids act similarly to modify the accumulation of elastin and collagen in culture. On the other hand, cultures grown in the presence of dithiothreitol, a reducing agent previously shown to act as a cofactor for prolyl hydroxylase, do not demonstrate altered elastin accumulation. These studies are consistent with the suggestion that there is a specific role for ascorbic acid in this cellular system that cannot be replaced by other reducing cofactors.  相似文献   

3.
Scorbutic guinea pigs were wounded and the influence of administering ascorbic acid 6 days later was studied with respect to cellular morphology, ribosomal distribution and protein synthesis. Electron-microscopic studies revealed that the dilated endoplasmic reticulum observed in the fibroblasts of scorbutic wound tissue had reverted to a normal configuration 24h after intraperitoneal injection of 100mg of ascorbate. Quantitative determination of the distribution of free and membrane-bound ribosomes indicated a significant increase in membrane-bound ribosomes in wound tissue from ascorbate-supplemented (recovery) animals. Sucrose-density-gradient centrifugation indicated a significant increase in the proportion of large membrane-bound polyribosomes in the range 300-350S and a concomitant decrease in 80S monoribosomes in the ribosome sedimentation profile of recovery tissue. Determination of the synthesis of non-diffusible [(3)H]hydroxyproline in scorbutic and recovery wounds showed a 3-4-fold stimulation in peptidyl-proline hydroxylation in recovery tissues. Studies carried out in which scorbutic and recovery tissues were incubated with [(14)C]leucine indicated that general protein synthesis, as measured by (14)C incorporated into non-diffusible material/mug of DNA, was unaltered by ascorbate supplementation. Similar studies of [(3)H]proline incorporation suggested that in recovery tissues there was a small but significant increase in [(3)H]proline incorporated/mug of DNA, which probably represents an increase in protocollagen synthesis. This observation correlates well with the increase seen in recovery tissues of large polyribosomes on which collagen precursor polypeptides are known to be synthesized. Preliminary characterization of the repair collagen synthesized by recovery animals showed it to be a typical Type I collagen having the chain composition (alpha(1))(2)alpha(2). The extent of glycosylation of the hydroxylysine of the newly synthesized collagen was greater than that reported for either normal guinea-pig dermal collagen or dermal scar collagen.  相似文献   

4.
BackgroundThis study aimed to investigate the prolyl and lysine hydroxylation in elastin from different species and tissues.MethodsEnzymatic digests of elastin samples from human, cattle, pig and chicken were analyzed using mass spectrometry and bioinformatics tools.ResultsIt was confirmed at the protein level that elastin does not contain hydroxylated lysine residues regardless of the species. In contrast, prolyl hydroxylation sites were identified in all elastin samples. Moreover, the analysis of the residues adjacent to prolines allowed the determination of the substrate site preferences of prolyl 4-hydroxylase. It was found that elastins from all analyzed species contain hydroxyproline and that at least 20%–24% of all proline residues were partially hydroxylated. Determination of the hydroxylation degrees of specific proline residues revealed that prolyl hydroxylation depends on both the species and the tissue, however, is independent of age. The fact that the highest hydroxylation degrees of proline residues were found for elastin from the intervertebral disc and knowledge of elastin arrangement in this tissue suggest that hydroxylation plays a biomechanical role. Interestingly, a proline-rich domain of tropoelastin (domain 24), which contains several repeats of bioactive motifs, does not show any hydroxyproline residues in the mammals studied.ConclusionsThe results show that prolyl hydroxylation is not a coincidental feature and may contribute to the adaptation of the properties of elastin to meet the functional requirements of different tissues.General significanceThe study for the first time shows that prolyl hydroxylation is highly regulated in elastin.  相似文献   

5.
1. The effects of various concentrations of ascorbic acid on the quality and quantity of the insoluble extracellular matrices produced by two strains of cultured rat smooth-muscle cells were studied. 2. Ascorbic acid was necessary for the appearance of insoluble collagen in the extracellular matrix. 3. Secretion of soluble collagen continued in the absence of ascorbic acid, but this soluble collagen was markedly underhydroxylated. 4. The amount of insoluble collagen present in the matrix was directly related to the ascorbic acid concentration. 5. The insoluble collagen that appeared in the matrix under conditions where ascorbic acid was limiting was no more than 7% underhydroxylated. 6. In contrast, the amount of insoluble elastin produced was inversely proportional to the ascorbic acid concentration. 7. The elastin produced in the absence of ascorbic acid had the expected amino acid composition, but hydroxyproline was absent. 8. The hydroxyproline content of elastin was also directly dependent on the ascorbic acid concentration. 9. Ascorbic acid had variable effects on the quantity of glycoprotein(s) present in the matrix. 10. The appearance of insoluble collagen in the extracellular matrices produced by cultured human fibroblasts and calf endothelial cells was also completely dependent on the presence of ascorbic acid.  相似文献   

6.
A technique of derivatizing proline and 4-hydroxyproline with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole was used to measure the radioactivities, concentrations and specific activities of proline and hydroxyproline. The technique was used to study the conditions of procollagen synthesis in cultured human foreskin fibroblasts. Procollagen synthesis appeared to be independent of the proline concentration in the medium, in the presence of glutamine, when monitored by the assay of non-dialyzable hydroxyproline, but not when monitored by [14C]proline incorporation. In the absence of unlabelled proline added to labelled proline in the medium, the specific activity of the secreted procollagen did not reach a plateau over a 24-h period. When the medium was supplemented with glutamine, glutamic acid, or aspartic acid, both the radioactivity and concentration of intracellular free proline decreased. Pyrrolidone-2-carboxylic acid and ornithine both induced a slight increase in concentration of the intracellular free proline. Glutamine competed with [14C]proline for incorporation into prolyl-tRNA and procollagen, independently of free intracellular proline, and it stimulated the biosynthesis of procollagen (expressed as non-dialyzable hydroxyproline) by a factor of 2.3.  相似文献   

7.
Measurement of [3H]proline incorporation into newly synthesized and mature collagen in connective tissues was used to compare rates and efficiency of collagen turnover. The approach minimizes label-recycling problems. By using a micro-assay to determine hydroxyproline specific radioactivities, a highly efficient and rapid collagen turnover in rat periodontal tissues was demonstrated.  相似文献   

8.
M A Paz  P M Gallop 《In vitro》1975,11(5):302-312
Collagen is produced by WI-38 diploid human fibroblast cultures throughout their life cycle. It is examined by a sensitive method based on the analysis of specific peptides obtained after digestion with bacterial collagenase. The production and hydroxylation of the collagen is strongly dependent upon the age (population doublings) of the culture and the presence of ascorbic acid. Young cultures (passage 26) produce large amounts of collagen in the absence of ascorbic acid, and this collagen is about 50% hydroxylated compared to that produced by young cultures in the presence of ascorbic acid. Ascorbic acid reduces to about one-half the amount of collagen produced by these young cultures. The young confluent cultures also depend strongly on ascorbic acid for hydroxylation of proline. The dependence declines rapidly with the age of the culture. The collagen produced by young cultures supplied with ascorbic acid is very similar to the type I collagen produced by normal individuals and has about the same degree of hydroxylation of its prolyl residues. The amount of collagen produced by "older" cultures is unaffected by ascorbic acid, but the degree of hydroxylation is normal only if ascorbic acid is present, and is decreased to about 60 to 70% in the absence of the vitamin. "Senescent" cultures showed little, if any, dependency on ascorbic acid, and the collagen produced, with and without the vitamine, is about 80% hydroxylated. The prolyl hydroxylation system of the WI-38 cells and the various controls on the system are age-dependent.  相似文献   

9.
Ascorbic acid-dependent collagen formation in penaeid shrimp.   总被引:4,自引:0,他引:4  
1. This study tested the hypothesis that black death, the ascorbic acid (AsA) related disease of penaeid shrimp, is related to collagen underhydroxylation. 2. Collagen measured as hydroxyproline (HYP) in healthy Penaeus californiensis (Holmes) and P. stylirostris (Stimpson) of a wide range of masses were determined. The results revealed a logarithmic relationship between total body collagen HYP and body weight fitting the equation y = 90x1.18 where y = total collagenous HYP (microgram) and x = body weight (g). 3. Shrimp tissues most subject to mechanical trauma (subcutis, hindgut and gills) had the highest collagenous HYP levels and were most consistently and severely affected by an ascorbic acid (AsA) deficiency disease. 4. Prolyl hydroxylase (PH) activity was demonstrated in tissues of P. californiensis and P. stylirostris by hydroxylation of [3,4-3H]proline. 5. AsA was required for shrimp PH activity using a chicken embryo substrate. 6. Nutritional trials revealed that dietary AsA was required for proline hydroxylation in collagen formation in P. californiensis.  相似文献   

10.
The effect of 16,16 dimethyl prostaglandin E2 (DMPG) on fibrogenesis was studied in slices from normal and fibrotic rat liver. Rats received a cirrhogenic diet for seven months; supplemented controls received a diet with the deficient nutrients restored. Slices from fibrotic livers incorporated more 14C-proline and produced more 14C-hydroxyproline in TCA precipitable proteins than slices from control livers. DMPG (10(-10) M) decreased the incorporation of labeled proline and the synthesis of labeled hydroxyproline in slices from fibrotic livers to the same extent, suggesting that DMPG did not affect the hydroxylation of proline per se. The magnitude of the DMPG induced decrease in labeled proline incorporation correlated with the hydroxyproline content in the liver (i.e. with increasing fibrosis there was a greater effect of DMPG: while in control rat liver slices, DMPG had no effect). DMPG did not change the size of the proline pool, its specific activity, or the activity of proline oxidase. We conclude that under these conditions of enhanced fibrogenesis, DMPG decreases the formation of collagen in vitro, possibly by lowering the incorporation of proline into collagen precursors. This may explain, at least in part, the inhibition of fibrogenesis by DMPG in vivo.  相似文献   

11.
Gingival tissue obtained from diphenylhydantoin-treated patients was cultured in the presence of [14C]proline for 24 h. The radioactive medium was removed and the tissue cultured for three days more. DNA, protein, hydroxyproline, proline and radioactivity determinations in the tissue indicated increased cellular proliferation, increased collagen contents and decreased breakdown of collagen in the affected tissues. The media were assayed for dialyzable and non-dialyzable hydroxyproline contents. It was found that the media in which diphenylhydantoin tissues were cultured contained more than twice as much non-dialyzable hydroxyproline than the controls. It was concluded that diphenylhydantoin brought about a reduction in collagen breakdown thus explaining the accumulation of hydroxylated collagen in the tissue.  相似文献   

12.
The rate of collagen synthesis relative to the rate of synthesis of noncollagen protein was determined in several lines of cultured fibroblasts using an assay which measures [14C]proline incorporation into the polypeptide chains of collagen. In this assay procedure, collagen is degraded by protease-free collagenase regardless of whether proline and lysine residues are hydroxylated, thus separating the process of polypeptide synthesis from hydroxylation. It was found that the relative rate of collagen synthesis in L-929 cells was approximately 0.8–1% at all stages of growth. There was no significant increase in the relative rate of collagen synthesis in stationary phase compared to log phase cells in the lines Balb 3T3, 3T6, 3T12, and Swiss mouse 3T6. In all cases, the absolute incorporation of [14C]proline into both collagen and noncollagen proteins expressed as radioactivity incorporated per milligram of cellular protein, was 2–10 times higher in log phase cells, depending on the line examined.  相似文献   

13.
Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.  相似文献   

14.
The mouse has become the most important model organism for the study of human physiology and disease. However, until the recent generation of mice lacking the enzyme gulanolactone oxidase (Gulo), the final enzyme in the ascorbic acid biosynthesis pathway, examination of the role of ascorbic acid in various biochemical processes using this model organism has not been possible. In the mouse, similar to most mammals but unlike humans who carry a mutant copy of this gene, Gulo produces ascorbic acid from glucose. We report here that, although ascorbic acid is essential for survival, its absence does not lead to measurable changes in proline hydroxylation. Vitamin C deficiency had no significant effect on the hydroxylation of proline and collagen production during tumor growth or in angiogenesis associated with tumor or mammary gland growth. This suggests that factors other than ascorbic acid can support proline hydroxylation and collagen synthesis in vivo. Furthermore, the failure of Gulo-/- mice to thrive on a vitamin C-deficient diet therefore suggests that ascorbic acid plays a critical role in survival other than the maintenance of the vasculature.  相似文献   

15.
The biosynthesis of collagen on polysomes has been studied by using a newly devised method for obtaining polysomes in high yield from stationary-phase mouse fibroblast (line 3T6; Goldberg &, Green, 1967). These polysomes were completely disaggregated to monosomes by brief exposure to ribonuclease and they lost most of their radioactivity to the top of the sucrose gradients as a result of a 30-minute chase with unlabeled proline. After a ten-minute pulse with [3H]proline, nascent collagen peptides could be identified in these polysomes on sucrose gradients. Most of the proline residues susceptible to hydroxylation by collagen proline hydroxylase were found, in most cases, to be already hydroxylated in these nascent peptides. The nascent nature of these peptides was confirmed by the observation that treatment of the polysomes with RNase transferred the radioactive collagen peptides to the monosome area and these peptides could subsequently be removed to the soluble material at the top of the gradient upon treatment with puromycin. These findings therefore, show clearly that the hydroxylation of proline residues is occurring, in vivo under normal conditions, on nascent collagen chains. In no case was the degree of hydroxylation of the released collagen chains higher than that on the nascent collagen peptides. It seems likely, therefore, that the major site of proline hydroxylation is the nascent collagen peptide.  相似文献   

16.
Various proline analogs and iron chelators were tested for their effect on collagen formation which occurs in the uterus of the immature rat following the administration of estradiol-17β. dl-3,4-Dehydroproline, l-α-azetidine-2-carboxylic acid and l-pyroglutamic acid reduced the estradiol-17β stimulated formation of hydroxyproline which occurs in the uterus following administration of the hormone while l-thiazolidine-4-carboxylic acid was without effect on this response. The activity of the d- and l-isomers of 3,4-dehydroproline was compared with the racemic mixture; the l-isomer was twice as active as the latter, while the d-isomer was only half as active. l-3,4-Dehydroproline was approximately four times as potent as l-α-azetidine-2-carboxylic acid, the second most active analog of those tested. dl-3,4-Dehydroproline inhibited the incorporation of l-[14C]proline into the proline and hydroxyproline of uterine collagen; it also inhibited the incorporation of [14C]glycine into collagen while having less effect on the incorporation of these amino acids into noncollagen protein. These results indicate dl-3,4-dehydroproline is a fairly specific and potent inhibitor of collagen formation in vivo.These observations indicate that dl-3,4-dehydroproline reduces the hydroxylation of prolyl residues in collagen. Presumably, this occurs in part due to the incorporation of the analog into the collagen molecule in place of proline. It is probably also related to a reduction of prolyl hydroxylase activity which can be demonstrated in the tissues of animals treated with 3,4-dehydroproline. A significant reduction of prolyl hydroxylase activity was shown to persist in the uterus, lung, and heart for approximately 24 h following a single intraperitoneal dose of dl-3,4-dehydroproline (200 mg/kg).  相似文献   

17.
Human skin fibroblasts were cultured under conditions optimized for collagen synthesis, and the effects of ascorbic acid on procollagen production, proline hydroxylation and the activity of prolyl hydroxylase were examined in cultures. the results indicated that addition of ascorbic acid to confluent monolayer cultures of adult human skin fibroblasts markedly increased the amount of [3H]hydroxyproline synthesized. Ascorbic acid, however, did not increase the synthesis of 3H-labeled collagenous polypeptides assayed independently of hydroxylation of proline residues, nor did it affect the amount of prolyl hydroxylase detectable by an in vitro enzyme assay. Also long-term cultures of the cells or initiation of fibroblast cultures in the presence of ascorbic acid did not lead to an apparent selection of a cell population which might be abnormally responsive to ascorbic acid. Thus, ascorbic acid appears to have one primary action on the synthesis of procollagen by cultured human skin fibroblasts: it is necessary for synthesis of hydroxyproline, and consequently for proper triple helix formation and secretion of procollagen.  相似文献   

18.
Significant amounts of native collagen can be extracted from bovine articular cartilage after removal of the acid mucopolysaccharides by controlled proteolysis. The fraction thus solubilized upon denaturation gives rise to three identical alpha chains. Cleavage of these chains with CNBr generated nine peptides, all of which contain glycine as one-third of their total amino acid residues. Two of the smaller peptides CB-1 and CB-2 contain partially hydroxylated proline. A similar CNBr digest of intact cartilage also gives a series of peptides identical with those obtained from the soluble cartilage collagen. The absence of cross-linking peptides, the fact that only few beta components are seen in articular cartilage collagen and the similarity in peptide pattern between the two collagen fractions investigated, suggests that this collagen is stabilized by a different cross-linking mechanism, possibly involving an association with the tissue proteoglycans.  相似文献   

19.
The effect of 16, 16 dimethyl prostaglandin E2 (DMPG) on fibrogenesis was studied in slices from normal and fibrotic rat liver. Rats received a cirrhogenic diet for seven months; supplemented controls received a diet with the deficient nutrients restored. Slices from fibrotic livers incorporated more 14C-proline and produced more 14C-hydroxyproline in TCA precipitable proteins than slices from control livers. DMPG (10−10M) decreased the incorporation of labeled proline and the synthesis of labeled hydroxyproline in slices from fibrotic livers to the same extent, suggesting that DMPG did not affect the hydroxylation of proline per se. The magnitude of the DMPG induced decrease in labeled proline incorporation correlated with the hydroxyproline content in the liver (i.e. with increasing fibrosis there was a greater effect of DMPG; while in control rat liver slices, DMPG had no effect). DMPG did not change the size of the proline pool, its specific activity, or the activity of proline oxidase. We conclude that under these conditions of enhanced fibrogenesis, DMPG decreases the formation of collagen in vitro, possibly by lowering the incorporation of proline into collagen precursors. This may explain, at least in part, the inhibition of fibrogenesis by DMPG in vivo.  相似文献   

20.
Human skin fibroblasts were cultured under conditions optimized for collagen synthesis, and the effects of ascorbic acid on procollagen production, proline hydroxylation and the activity of prolyl hydroxylase were examined in cultures. The results indicated that addition of ascorbic acid to confluent monolayer cultures of adult human skin fibroblasts markedly increased tha amount of [3H]hydroxyproline syntehsized. Ascorbic acid, however, did not increase the synthesis of 3H-labeled collagenous polypeptides assayed independently of hydroxylation of proline residues, nor did it affect the amount of prolyl hydroxylase detectable by an in vitro enzyme assay. Also long-term cultures of the cells or initiation of fibroblast cultures in the presence of ascorbic acid did not lead to an apparent selection of a cell population which might be abnormally responsive to ascorbic acid. Thus, ascorbic acid appears to have one primary action on the synthesis of procollagen by cultured human skin fibroblasts: it is necessary for synthesis of hydroxyproline, and consequently for proper triple helix formation and selection of procollagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号