首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two cysteine proteinase inhibitors (cystatins) from Arabidopsis thaliana, designated AtCYSa and AtCYSb, were characterized. Recombinant GST-AtCYSa and GST-AtCYSb were expressed in Escherichia coli and purified. They inhibit the catalytic activity of papain, which is generally taken as evidence for cysteine proteinase inhibitor function. Northern blot analyses showed that the expressions of AtCYSa and AtCYSb gene in Arabidopsis cells and seedlings were strongly induced by multiple abiotic stresses from high salt, drought, oxidant, and cold. Interestingly, the promoter region of AtCYSa gene contains a dehydration-responsive element (DRE) and an abscisic acid (ABA)-responsive element (ABRE), which identifies it as a DREB1A and AREB target gene. Under normal conditions, AtCYSa was expressed in 35S: DREB1A and 35S: AREB1 plants at a higher level than in WT plants, while AtCYSa gene was expressed in 35S: DREB2A plants at the same level as in WT plants. Under stress conditions (salt, drought and cold), AtCYSa was expressed more in all three transgenic plants than in WT plants. Over-expression of AtCYSa and AtCYSb in transgenic yeast and Arabidopsis plants increased the resistance to high salt, drought, oxidative, and cold stresses. Taken together, these data raise the possibility of using AtCYSa and AtCYSb to genetically improve environmental stresses tolerance in plants.  相似文献   

2.
Histone deacetylation catalyzed by histone deacetylases is an important type of histone modification. Histone deacetylases affect various processes of plant development and involve in responding to hormones and biotic and abiotic stresses. Here, we report a tomato PRD3/HDA1 histone deacetylase gene, SlHDA5, which is expressed ubiquitously in different tissues and development stages. Expression profiles in hormone treatments showed that SlHDA5 was induced by abscisic acid (ABA) and methyl jasmonate (MeJA). Seedlings growth of SlHDA5-RNAi lines were more inhibited on the medium containing salt compared with wild type (WT). Under salt stress, chlorophyll in mature leaves degraded earlier in transgenic leaves than that in WT, and transgenic plants displayed wilting earlier and more severe than WT. After drought treatment, transgenic plants wilted and dehydrated earlier than WT, which was confirmed by lower water and chlorophyll content, and higher malondialdehyde (MDA) content in transgenic plants manifesting that the tolerance of transgenic plants to drought receded. Under the treatment of ABA, root length of transgenic seedlings was more strongly repressed by contrast with WT, suggesting repression of SlHDA5 increased seedling sensibility to ABA. Our study indicated that silencing of SlHDA5 resulted in decreasing tolerance to salt, drought, and ABA.  相似文献   

3.
4.
One strategy to increase the level of drought and salinity tolerance is the transfer of genes codifying different types of proteins functionally related to macromolecules protection, such as group 2 of late embryogenesis abundant (LEA) proteins or dehydrins. The TAS14 dehydrin was isolated and characterized in tomato and its expression was induced by osmotic stress (NaCl and mannitol) and abscisic acid (ABA) [Godoy et al., Plant Mol Biol 1994;26:1921-1934], yet its function in drought and salinity tolerance of tomato remains elusive. In this study, transgenic tomato plants overexpressing tas14 gene under the control of the 35SCaMV promoter were generated to assess the function of tas14 gene in drought and salinity tolerance. The plants overexpressing tas14 gene achieved improved long-term drought and salinity tolerance without affecting plant growth under non-stress conditions. A mechanism of osmotic stress tolerance via osmotic potential reduction and solutes accumulation, such as sugars and K(+) is operating in tas14 overexpressing plants in drought conditions. A similar mechanism of osmotic stress tolerance was observed under salinity. Moreover, the overexpression of tas14 gene increased Na(+) accumulation only in adult leaves, whereas in young leaves, the accumulated solutes were K(+) and sugars, suggesting that plants overexpressing tas14 gene are able to distribute the Na(+) accumulation between young and adult leaves over a prolonged period in stressful conditions. Measurement of ABA showed that the action mechanism of tas14 gene is associated with an earlier and greater accumulation of ABA in leaves during short-term periods. A good feature for the application of this gene in improving drought and salt stress tolerance is the fact that its constitutive expression does not affect plant growth under non-stress conditions, and tolerance induced by overexpression of tas14 gene was observed at the different stress degrees applied to the long term.  相似文献   

5.
Xiong L  Ishitani M  Lee H  Zhu JK 《The Plant cell》2001,13(9):2063-2083
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.  相似文献   

6.
As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1‐silenced peppers and CaLEA1‐overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus‐induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl‐treated leaves. CaLEA1‐OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild‐type plants because of enhanced stomatal closure and increased expression of stress‐responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA‐mediated cell signaling.  相似文献   

7.
8.
9.
The impact of water deficit progression on cytokinin (CK), auxin and abscisic acid (ABA) levels was followed in upper, middle and lower leaves and roots of Nicotiana tabacum L. cv. Wisconsin 38 plants [wild type (WT)]. ABA content was strongly increased during drought stress, especially in upper leaves. In plants with a uniformly elevated total CK content, expressing constitutively the trans -zeatin O-glucosyltransferase gene ( 35S::ZOG1 ), a delay in the increase of ABA was observed; later on, ABA levels were comparable with those of WT.
As drought progressed, the bioactive CK content in leaves gradually decreased, being maintained longer in the upper leaves of all tested genotypes. Under severe stress (11 d dehydration), a large stimulation of cytokinin oxidase/dehydrogenase (CKX) activity was monitored in lower leaves, which correlated well with the decrease in bioactive CK levels. This suggests that a gradient of bioactive CKs in favour of upper leaves is established during drought stress, which might be beneficial for the preferential protection of these leaves.
During drought, significant accumulation of CKs occurred in roots, partially because of decreased CKX activity. Simultaneously, auxin increased in roots and lower leaves. This indicates that both CKs and auxin play a role in root response to severe drought, which involves the stimulation of primary root growth and branching inhibition.  相似文献   

10.
半胱氨酸脱巯基酶(CDes)可催化降解半胱氨酸(Cys)生成硫化氢(H2S)。通过克隆小麦(Triticum aestivum)中的L-半胱氨酸脱巯基酶基因TaLCD, 并将其在拟南芥(Arabidopsis thaliana)中过表达, 探讨TaLCD对渗透胁迫条件下种子萌发和根系生长的影响, 并分析其对干旱胁迫的调节作用。结果显示, 盐胁迫条件下, TaLCD过表达植株种子萌发率显著高于野生型; 甘露醇处理条件下, TaLCD过表达植株的根长也显著高于野生型, 且TaLCD过表达显著提高植株抗旱性。此外, TaLCD过表达植株对ABA更加敏感, ABA处理下TaLCD过表达植株的种子萌发率及根长均显著低于野生型。干旱胁迫下, TaLCD过表达植株胁迫响应基因(COR47RD29ARAB18RD22)及ABA信号途径相关基因(NCED3HAB1HAB2ABI1ABI2ABF2)的表达水平均显著高于野生型。因此推测, TaLCD增强植株抗旱和抗盐能力可能依赖于ABA信号途径。  相似文献   

11.
12.
AtDjB1 is a member of the Arabidopsis thaliana J‐protein family. AtDjB1 is targeted to the mitochondria and plays a crucial role in A. thaliana heat and oxidative stress resistance. Herein, the role of AtDjB1 in adapting to saline and drought stress was studied in A. thaliana. AtDjB1 expression was induced through salinity, dehydration and abscisic acid (ABA) in young seedlings. Reverse genetic analyses indicate that AtDjB1 is a negative regulator in plant osmotic stress tolerance. Further, AtDjB1 knockout mutant plants (atj1‐1) exhibited greater ABA sensitivity compared with the wild‐type (WT) plants and the mutant lines with a rescued AtDjB1 gene. AtDjB1 gene knockout also altered the expression of several ABA‐responsive genes, which suggests that AtDjB1 is involved in osmotic stress tolerance through its effects on ABA signaling pathways. Moreover, atj1‐1 plants exhibited higher glucose levels and greater glucose sensitivity in the post‐germination development stage. Applying glucose promoted an ABA response in seedlings, and the promotion was more evident in atj1‐1 than WT seedlings. Taken together, higher glucose levels in atj1‐1 plants are likely responsible for the greater ABA sensitivity and increased osmotic stress tolerance.  相似文献   

13.
OsZFP1(水稻锌指蛋白1)基因编码的蛋白含有3个推测的Cys2/Cys2-型锌指结构域,它的表达受盐胁迫负调控.构建了以35S为启动子的OsZFP1基因的植物表达载体,并将其转入拟南芥(Arabidopsis thaliana L.)植物和水稻(Oryza sativa L.)愈伤组织中以过量表达OsZFP1基因.转基因的拟南芥植株和水稻愈伤组织对盐处理的敏感性都比野生型要高.这一结果表明OsZFP1基因可能编码一种负调控蛋白,它可能抑制某些盐诱导基因的表达.在ABA处理下,转基因拟南芥植株比野生型植株抽苔晚,说明OsZFP1基因的作用可能受ABA调节.  相似文献   

14.

Key message

We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments.

Abstract

Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.  相似文献   

15.
AtSAP5, one of approximately 14 members of the Stress Associated Protein gene family in Arabidopsis, was identified by its expression in response to salinity, osmotic, drought and cold stress. AtSAP5 shows strong homology to OSISAP1, an A20/AN1-type zinc finger protein implicated in stress tolerance in rice. To evaluate the function of AtSAP5 in the regulation of abiotic stress responses, transgenic Arabidopsis plants that over-express AtSAP5 (35S::AtSAP5) were characterized, along with wild-type and T-DNA knock-down plants. Plants that over-express AtSAP5 showed increased tolerance to environmental challenges including salt stress, osmotic stress and water deficit. Comparison of gene expression patterns between 35S::AtSAP5 transgenic plants and wild-type plants under normal conditions and water deficit stress indicated that over-expression of AtSAP5 correlates with up-regulation of drought stress responsive gene expression. Analysis of transgenic plants that express GFP-AtSAP5 showed that it is localized primarily in nuclei of root cells and recombinant AtSAP5 has E3 ubiquitin ligase activity in vitro. These results indicate that AtSAP5 has E3 ligase activity and acts as a positive regulator of stress responses in Arabidopsis.  相似文献   

16.
Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned and characterized the gene for a late embryogenesis abundant (LEA) protein from J. curcas that we designated JcLEA. Sequence analyses showed that the JcLEA protein belongs to group 5, a subgroup of the LEA protein family. In young seedlings, expression of JcLEA is significantly induced by abscisic acid (ABA), dehydration, and salt stress. Subcellular localization analysis shows that that JcLEA protein is distributed in both the nucleus and cytoplasm. Moreover, based on growth status and physiological indices, the overexpression of JcLEA in transgenic Arabidopsis plants conferred increased resistance to both drought and salt stresses compared to the WT. Our data suggests that the group 5 JcLEA protein contributes to drought and salt stress tolerance in plants. Thus, JcLEA is a potential candidate gene for plant genetic modification.  相似文献   

17.
18.
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.  相似文献   

19.
锌指蛋白(ZFP)是一类重要的转录因子, 广泛参与植物的生长发育和非生物胁迫应答。新疆小拟南芥(Arabidopsispumila)又名无苞芥, 是十字花科短命植物, 具有高光效、繁殖力强和适应干旱等生物学特征, 而且比模式植物拟南芥(A.thaliana)更耐高盐胁迫。将前期克隆的小拟南芥锌指蛋白基因ApZFP通过花滴法转化到哥伦比亚生态型拟南芥(Col-0)中,获得了独立表达的转基因株系。表型观察发现, 过量表达ApZFP基因可促使拟南芥在长短日照下均提前开花。实时荧光定量PCR结果显示, 转基因拟南芥株系中, 光周期途径中的CO基因和年龄途径中的SPL基因表达上调; 春化、环境温度和自主途径中的FLC基因表达下调; 编码成花素的基因FT及下游开花相关基因AP1和LFY的表达量均升高。进一步通过盐、干旱和ABA胁迫处理ApZFP转基因株系的种子和幼苗, 发现在胁迫处理下, 与对照相比, 转基因拟南芥种子萌发率较高, 幼苗主根较长。因此推测, ApZFP在植物发育过程中具有多种功能, 可能既参与植物的开花转变过程, 又同其它植物的锌指蛋白基因一样, 参与植物的耐逆过程。  相似文献   

20.
CBF/DREB是一类植物中特有的转录因子,在植物抵抗逆境胁迫过程中发挥重要功能。本研究从陆地棉(Gossypium hirsutum L.)Coker 312中克隆获得1个棉花CBF/DREB基因,命名为Gh CBF2,该基因编码一个由216个氨基酸组成的CBF蛋白。序列分析结果显示,Gh CBF2与其他植物的CBF蛋白类似,含有AP2转录因子典型的保守结构域。干旱或高盐胁迫处理明显增加了Gh CBF2基因的表达量。亚细胞定位分析结果发现Gh CBF2定位在细胞核中。将Gh CBF2基因构建到由35S启动子调控的植物表达载体p MD上并转化拟南芥(Arabidopsis thaliana L.),结果表明,在干旱和盐胁迫条件下,过量表达Gh CBF2基因拟南芥的成活率显著高于野生型,并且游离脯氨酸和可溶性糖含量也高于野生型,说明转Gh CBF2基因提高了拟南芥的耐盐抗旱能力。采用实时荧光定量PCR方法分析胁迫相关标记基因COR15A、RD29A和ERD6的表达情况,结果显示转基因株系中的表达量显著高于野生型,说明Gh CBF2参与调控拟南芥干旱和盐胁迫相关基因的表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号