首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activins, cytokine members of the transforming growth factor-beta superfamily, have various effects on many physiological processes, including cell proliferation, cell death, metabolism, homeostasis, differentiation, immune responses endocrine function, etc. Activins interact with two structurally related serine/threonine kinase receptors, type I and type II, and initiate downstream signaling via Smads to regulate gene expression. Understanding how activin signaling is controlled extracellularly and intracellularly would not only lead to more complete understanding of cell growth and apoptosis, but would also provide the basis for therapeutic strategies to treat cancer and other related diseases. This review focuses on the recent progress on activin-receptor interactions, regulations of activin signaling by ligand-binding proteins, receptor-binding proteins, and nucleocytoplasmic shuttling of Smad proteins.  相似文献   

2.
The effects of hyperthermia on the expression of p53, the apoptosis-associated genes Bax and Bcl-2, Notch and S100A4 have been studied in the HepG2 cell line and the HUT cell line derived from HepG2, adapted for growth in hyperthermic conditions. Hyperthermia inhibits cell proliferation and induces apoptosis. HepG2 and HUT cells differed in respect of anchorage to growth surface, degree of proliferation and apoptosis and expression of p53, Bax, Bcl-2, Notch, and S100A4 genes. The induction of apoptosis and the inhibition of cell proliferation occurred independently of p53, and independently also of involvement of the apoptosis family genes Bax and Bcl-2. We demonstrate novel and marked differences between transient heat shock and heat adaptation in respect of pathways of signaling and generation of phenotypic effects in vitro. Different signaling patterns have been identified here. Pathways of signaling by S100A4, by its interaction with and sequestration of p53, and by Notch also seem differentially operational in the induction of apoptosis, and both appear to be activated as alternative pathways in the context of hyperthermia signaling independently of p53.  相似文献   

3.
Activins, members of the transforming growth factor-beta family, are pleiotropic growth and differentiation factors. Activin A induces B-cell apoptosis. To identify the genes responsible for activin-induced apoptosis, we performed retrovirus-mediated gene trap screening in a mouse B-cell line. We identified the rasGAP-binding protein Dok-1 (p62) as an essential molecule that links activin receptors with Smad proteins. In B cells overexpressing Dok-1, activin A-induced apoptotic responses were augmented. The expression of bcl-X(L) was down-regulated by inhibition of the ras/Erk pathway. Activin stimulation triggered association of Dok-1 with Smad3, as well as association of Smad3 with Smad4. Dok-1 also associated with both the type I and type II activin receptors. Dok-1 has been characterized previously as a tyrosine-phosphorylated protein acting downstream of the protein tyrosine kinase pathway: intriguingly, activin signaling did not induce tyrosine phosphorylation of Dok-1. These findings indicate that Dok-1 acts as an adaptor protein that links the activin receptors with the Smads, suggesting a novel function for Dok-1 in activin signaling leading to B-cell apoptosis.  相似文献   

4.
Activins and inhibins are members of the transforming growth factor-β superfamily that have been considered crucial regulators of cell processes, such as differentiation, proliferation and apoptosis, in different cell types. Initial studies about the function of activin A in the immune system focused on the regulation of hematopoiesis in the bone marrow under homeostatic and inflammatory conditions. Recent data provide a more comprehensive understanding about the role of activins/inhibins in the immune system. Novel findings included in this review point out the important requirement of activin/inhibin signaling to maintain the balance between homeostatic and inflammatory signals that are required for the optimal development and function of immune cells. The purpose of this review is to highlight the versatile nature of activins/inhibins as key regulators of both the innate and adaptive immune responses.  相似文献   

5.
Bauer J  Sporn JC  Cabral J  Gomez J  Jung B 《PloS one》2012,7(6):e39381
Activin and TGFβ share SMAD signaling and colon cancers can inactivate either pathway alone or simultaneously. The differential effects of activin and TGFβ signaling in colon cancer have not been previously dissected. A key downstream target of TGFβ signaling is the cdk2 inhibitor p21 (p21(cip1/waf1)). Here, we evaluate activin-specific effects on p21 regulation and resulting functions. We find that TGFβ is a more potent inducer of growth suppression, while activin is a more potent inducer of apoptosis. Further, growth suppression and apoptosis by both ligands are dependent on SMAD4. However, activin downregulates p21 protein in a SMAD4-independent fashion in conjunction with increased ubiquitination and proteasomal degradation to enhance migration, while TGFβ upregulates p21 in a SMAD4-dependent fashion to affect growth arrest. Activin-induced growth suppression and cell death are dependent on p21, while activin-induced migration is counteracted by p21. Further, primary colon cancers show differential p21 expression consistent with their ACVR2/TGFBR2 receptor status. In summary, we report p21 as a differentially affected activin/TGFβ target and mediator of ligand-specific functions in colon cancer, which may be exploited for future risk stratification and therapeutic intervention.  相似文献   

6.
This review captures the anabolic and stimulatory effects observed with inhibition of the transforming growth factor β superfamily in muscle, blood, and bone. New medicinal substances that rectify activin, myostatin, and growth differentiation factor 11 signaling give hope to the many whose lives are affected by deterioration of these tissues. The review first covers the origin, structure, and common pathway of activins, myostatin, and growth differentiation factor 11 along with the pharmacodynamics of the new class of molecules designed to oppose the activin receptor signaling pathway. Current terminology surrounding this new class of molecules is inconsistent and does not infer functionality. Adopting inhibitors of the activin receptor signaling pathway (IASPs) as a generic term is proposed because it encapsulates the molecular mechanisms along the pathway trajectory. To conclude, a pragmatic classification of IASPs is presented that integrates functionality and side effects based on the data available from animals and humans. This provides researchers and clinicians with a tool to tailor IASPs therapy according to the need of projects or patients and with respect to side effects.  相似文献   

7.
Fibroblast growth factors (FGFs) are soluble ligands important for embryonic patterning, limb and brain development, and stem cell proliferation. They activate specific receptors (FGFR) to elicit changes in gene expression and cellular responses such as proliferation, differentiation, and survival, but the extent to which these pleiotropic responses are driven by FGF concentration gradients has not been systematically addressed. Here, we show that a single cell type exhibits divergent, even opposing, responses to a single FGF dependent on the exposure concentration, and that this is controlled by differential signaling with specific negative feedback inhibition. Low concentrations of FGF2 stimulate survival and differentiation but actively inhibit proliferation while intermediate concentrations stimulate proliferation in the presence of serum but apoptosis in its absence. Intriguingly, high concentrations reverse the proliferation and apoptosis effects, and mirror the low concentration effects: inhibition of proliferation and stimulation of survival and differentiation. By screening for activation of sampled signaling intermediates across the FGF2 concentration range in fibroblasts, we show that the peak in proliferation and apoptosis correlates with abrupt activation of FRS-2 and Erk that is specifically down-regulated by high concentrations of FGF2, a pattern that contrasts with an incremental increase in activation of p38 MAP kinase and the FGFR itself, across the FGF2 concentration range. Whilst proliferation stimulated by FGF2 was dependent on p38 MAP kinase, apoptosis stimulated by proliferative concentrations of FGF2 under serum-free conditions was, in contrast, dependent on Erk MAP kinase. These findings indicate that FGF exposure concentration precisely controls intracellular signaling and cellular responses to the growth factor, and have important implications for understanding how FGF gradients influence cell proliferation, survival, and differentiation during processes such as limb development.  相似文献   

8.
Activin, a member of the TGFbeta superfamily, is expressed in the prostate and inhibits growth. We demonstrate that the effects of activin and androgen on regulation of prostate cancer cell growth are mutually antagonistic. In the absence of androgen, activin induced apoptosis in the androgen-dependent human prostate cancer cell line LNCaP, an effect suppressed by androgen administration. Although activin by itself did not alter the cell cycle distribution, it potently suppressed androgen- induced progression of cells into S-phase of the cell cycle and thus inhibited androgen-stimulated growth of LNCaP cells. Expression changes in cell cycle regulatory proteins such as Rb, E2F-1, and p27 demonstrated a strong correlation with the mutually antagonistic growth regulatory effects of activin and androgen. The inhibitory effect of activin on growth was independent of serine, serine, valine, serine motif phosphorylation of Smad3. Despite their antagonistic effect on growth, activin and androgen costimulated the expression of prostate-specific antigen through a Smad3-mediated mechanism. These observations indicate the existence of a complex cross talk between activin and androgen signaling in regulation of gene expression and growth of the prostate.  相似文献   

9.
Polo-like kinase 1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small-molecule inhibitors targeting this kinase have been developed and intensively investigated. Recently, it has been reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with inactive p53, leading to the hypothesis that inactive p53 is a predictive marker for the response of Plk1 inhibition. In our previous study based on different cancer cell lines, we showed that cancer cells with wild type p53 were more sensitive to Plk1 inhibition by inducing more apoptosis, compared with cancer cells depleted of p53. In the present work, we further demonstrate that in the presence of mitotic stress induced by different agents, Plk1 inhibitors strongly induced apoptosis in HCT116 p53+/+ cells, whereas HCT116 p53−/− cells arrested in mitosis with less apoptosis. Depletion of p53 in HCT116 p53+/+ or U2OS cells reduced the induction of apoptosis. Moreover, the surviving HCT116 p53−/− cells showed DNA damage and a strong capability of colony formation. Plk1 inhibition in combination with other anti-mitotic agents inhibited proliferation of tumor cells more strongly than Plk1 inhibition alone. Taken together, the data underscore that functional p53 strengthens the efficacy of Plk1 inhibition alone or in combination by strongly activating cell death signaling pathways. Further studies are required to investigate if the long-term outcomes of losing p53, such as low differential grade of tumor cells or defective DNA damage checkpoint, are responsible for the cytotoxicity of Plk1 inhibition.  相似文献   

10.
Neurotrophin stimulation of tropomyosin-related kinase (Trk) and p75 receptors influences cellular processes such as proliferation, growth, differentiation, and other cell-specific functions, as well as regeneration. In contrast to Trk receptors, which have a well-defined trophic role, p75 has activities ranging from trophism to apoptosis. Continued neurotrophin stimulation of differentiating neurons transforms the initially trophic character of p75 signaling into negative growth control and overstimulation leads to apoptosis. This function shift reflects the signaling effects of ceramide that is generated upon stimulation of p75. The use of ceramide signaling by p75 may provide a key to understanding the cell-biological role of p75. The review presents arguments that the control of cell shape formation and cell selection can serve as an organizing principle of p75 signaling. Concurrent stimulation by neurotrophins of p75 and Trk receptors constitutes a dual growth control with antagonistic and synergistic elements aimed at optimal morphological and functional integration of cells and cell populations into their context.  相似文献   

11.
In the present study, we report the effect and molecular mechanism of Ligularia fischeri (LF) on proliferation and migration in human lung cancer cells. LF-mediated inhibition of cell proliferation in p53 wild-type A549 and p53-deficient H1299 cells is accompanied by reduced expression of cell cycle-related proteins such as cyclin-dependent kinases and cyclins, resulting in pRb hypophosphorylation and G1 phase cell cycle arrest. In contrast, LF inhibits cell migration in A549 cells, but not in H1299 cells. These regulatory effects of LF on cell proliferation and migration are associated with inactivation of mitogenic signaling pathways such as ERK, Akt and p70S6K, and down-regulation of epidermal growth factor receptor and integrin β1 expression. Collectively, these findings suggest further development and evaluation of LF for the prevention and treatment of lung cancer with mutated p53 as well as wild-type p53.  相似文献   

12.
TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blocked TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-beta-gal, p21Waf1/Cip1, p16INK4a, and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects.  相似文献   

13.
Deregulated expression of activin A is reported in several tumors, but its biological functions in oral squamous cell carcinoma (OSCC) are unknown. Here, we investigate whether activin A can play a causal role in OSCCs. Activin A expression was assessed by qPCR and immunohistochemistry in OSCC tissues. Low activin A-expressing cells were treated with recombinant activin A and assessed for apoptosis, proliferation, adhesion, migration, invasion and epithelial-mesenchymal transition (EMT). Those phenotypes were also evaluated in high activin A-expressing cells treated with follistatin (an activin A antagonist) or stably expressing shRNA targeting activin A. Transfections of microRNA mimics were performed to determine whether the overexpression of activin A is regulated by miR-143/miR-145 cluster. Activin A was overexpressed in OSCCs in comparison with normal oral mucosa, and high activin A levels were significantly associated with lymph node metastasis, tumor differentiation and poor survival. High activin A levels promoted multiple properties associated with malignant transformation, including decreased apoptosis and increased proliferation, migration, invasion and EMT. Both miR-143 and miR-145 were markedly downregulated in OSCC cell lines and in clinical specimens, and inversely correlated to activin A levels. Forced expression of miR-143 and miR-145 in OSCC cells significantly decreased the expression of activin A. Overexpression of activin A in OSCCs, which is controlled by downregulation of miR-143/miR-145 cluster, regulates apoptosis, proliferation and invasiveness, and it is clinically correlated with lymph node metastasis and poor survival.  相似文献   

14.
The activin axis in liver biology and disease   总被引:4,自引:0,他引:4  
Activins are a closely related subgroup within the TGFbeta superfamily of growth and differentiation factors. They consist of two disulfide-linked beta subunits. Four mammalian activin beta subunits termed beta(A), beta(B), beta(C), and beta(E), respectively, have been identified. Activin A, the homodimer of two beta(A) subunits, has important regulatory functions in reproductive biology, embryonic development, inflammation, and tissue repair. Several intra- and extracellular antagonists, including the activin-binding proteins follistatin and follistatin-related protein, serve to fine-tune activin A activity. In the liver there is compelling evidence that activin A is involved in the regulation of cell number by inhibition of hepatocyte replication and induction of apoptosis. In addition, activin A stimulates extracellular matrix production in hepatic stellate cells and tubulogenesis of sinusoidal endothelial cells, and thus contributes to restoration of tissue architecture during liver regeneration. Accumulating evidence from animal models and from patient data suggests that deregulation of activin A signaling contributes to pathologic conditions such as hepatic inflammation and fibrosis, acute liver failure, and development of liver cancer. Increased production of activin A was suggested to be a contributing factor to impaired hepatocyte regeneration in acute liver failure and to overproduction of extracellular matrix in liver fibrosis. Recent evidence suggests that escape of (pre)neoplastic hepatocytes from growth control by activin A through overexpression of follistatin and reduced activin production contributes to hepatocarcinogenesis. The role of the activin subunits beta(C) and beta(E), which are both highly expressed in hepatocytes, is still quite incompletely understood. Down-regulation in liver tumors and a growth inhibitory function similar to that of beta(A) has been shown for beta(E). Contradictory results with regard to cell proliferation have been reported for beta(C). The profound involvement of the activin axis in liver biology and in the pathogenesis of severe hepatic diseases suggests activin as potential target for therapeutic interventions.  相似文献   

15.
研究紫铆因对人食管鳞癌细胞增殖和存活的影响。通过MTS和软琼脂集落实验检测紫铆因对食管鳞癌增殖的抑制,生化分析仪检测紫铆因对食管鳞癌糖酵解的影响,并利用免疫印迹检测紫铆因对食管鳞癌细胞增殖和凋亡激活相关蛋白分子的表达。结果发现紫铆因剂量依赖性抑制KYSE150和Eca109细胞增殖,下调EGFR信号通路活化,抑制HK2的表达及糖酵解。一定浓度的紫铆因能诱导食管鳞癌细胞发生凋亡,caspase3和PARP被剪切,Bcl-2和Mcl-1表达下调,但Bcl-XL未见明显改变。结果证明紫铆因抑制食管鳞癌的增殖,可能与EGFR信号通路和糖酵解被抑制,及促存活蛋白Bcl-2和Mcl-1的表达下调有关。  相似文献   

16.
Prostate cancer (PCa), the most common non-skin cancer in men, is a worldwide health concern. Treatment options for aggressive PCa are limited to androgen deprivation therapies (ADT), which are ineffective, with robust diagnostic options also being limited. The prostate specific antigen (PSA) test, for instance, is subject to high levels of false positive results and cannot distinguish between cancer confined to the prostate and aggressive metastatic cancer. As such, additional therapeutic and diagnostic options are urgently required. In recent years, a clear association between activins and prostate cancer has become evident. Activins are members of the TGF-β superfamily and are responsible for a plethora of physiological processes, including cell proliferation, apoptosis, immune surveillance, embryonic development, and follicle stimulating hormone (FSH) regulation. Activin A normally inhibits cancer development and progression, however, cancer cell growth in high-grade PCa is not inhibited by this protein. The mechanism for this apparent acquired capability to resist activin A-mediated growth inhibition is currently not well understood. Thus, the aim of this review is to analyse the role of activin A in PCa progression and to present mechanisms by which transformed cells may escape its effects. The overarching hypothesis is that insensitivity to the growth inhibitory effects of activin A is an acquired capability in PCa progression. Therefore, local and genetic elements that may be responsible for this change in cellular sensitivity to activin A during cancer progression will be highlighted with a view to identifying potential diagnostic or therapeutic targets.  相似文献   

17.
Glioblastoma is the most common malignant brain tumor in humans. We explored the molecular mechanisms how the efficacy of photofrin based photodynamic therapy (PDT) was enhanced by miR-99a transfection in human glioblastoma cells. Our results showed almost similar uptake of photofrin after 24 h in different glioblastoma cells, but p53 wild-type cells were more sensitive to radiation and photofrin doses than p53 mutant cells. Photofrin based PDT induced apoptosis, inhibited cell invasion, prevented angiogenic network formation, and promoted DNA fragmentation and laddering in U87MG and U118MG cells harvoring p53 wild-type. Western blotting showed that photofrin based PDT was efficient to block the angiogenesis and cell survival pathways. Further, photofrin based PDT followed by miR-99a transfection dramatically increased miR-99a expression and also increased apoptosis in glioblastoma cell cultures and drastically reduced tumor growth in athymic nude mice, due to down regulation of fibroblast growth factor receptor 3 (FGFR3) and PI3K/Akt signaling mechanisms leading to inhibition of cell proliferation and induction of molecular mechanisms of apoptosis. Therefore, our results indicated that the anti-tumor effects of photofrin based PDT was strongly augmented by miR-99a overexpression and this novel combination therapeutic strategy could be used for controlling growth of human p53 wild-type glioblastomas both in vitro and in vivo.  相似文献   

18.
Perinatal exposure to a synthetic estrogen, diethylstilbestrol (DES), causes cervicovaginal adenosis and permanent hyperplastic cornified vaginal epithelium with keratinization in mice. To investigate the mechanisms of the induction of vaginal abnormalities by DES, we have focused on activin A signaling. We have found that the βA-subunit mRNA is mainly expressed in the neonatal vaginal stroma, whereas activin A receptor type IB is localized in the neonatal vaginal epithelium. SMAD2, the intracellular signaling protein, is phosphorylated in the neonatal vagina. Cell proliferation in the vaginal epithelium grown in vitro is reduced by DES treatment or by activin signaling suppression through inhibin treatment. Thus, activin A (a homodimer of the βA-subunit) in the stroma stimulates epithelial cell proliferation in the neonatal vagina. DES treatment decreases the expression of the βA-subunit and activin receptor IIB but increases the expression of the βB-subunit and inhibin receptor. Neonatal DES treatment inhibits the phosphorylation of SMAD2 in the vaginal epithelium, indicating the inhibition of activin A signaling in the vaginal epithelium by neonatal DES treatment. Treatment with DES or inhibin, a native antagonist of activin, induces adenosis-like structures and keratinization in the vagina grown in vitro. These data suggest that the suppression of activin A signaling by DES is involved in the induction of cervicovaginal adenosis and keratinization in the neonatal mouse vaginal epithelium.  相似文献   

19.
N端乙酰转移酶A(N-acetyltransferase A, NatA)复合体是真核生物最主要的N端氨基酸α位乙酰转移酶,N端α位乙酰转移酶10基因(N-α-acetyltransferase 10, NAA10)编码的N端α位乙酰转移酶10蛋白(N-α-acetyltransferase 10 protein, Naa10p)是NatA的催化亚基. Naa10p具备新生蛋白质N端氨基酸α位乙酰化活性、成熟蛋白质Lys残基ε位乙酰化活性以及对部分转录因子的协同调节作用. Naa10p能够通过调节细胞周期促进细胞增殖,通过调节雷帕霉素靶蛋白(mechanistic target of rapamycin, mTOR)通路促进细胞自噬,并通过多种不同的分子信号通路抑制细胞运动能力.根据乙酰化底物的不同,Naa10p还在细胞凋亡的调控中起双重作用. Naa10p参与的生物学过程还涉及血管生成和神经发育等. Naa10p在多种癌症组织中呈过表达,但其预后意义随肿瘤不同而有较大差别.对Naa10p的生理生化研究必将使我们对细胞的生理病理学过程及其机制的了解更加深入全面.本文将从蛋白质结构、机制功能及临床意义等不同角度系统地阐述NAA10的研究现状与进展.  相似文献   

20.
Various signaling pathways have been identified in the heart as important players during development, physiological adaptation or pathological processes. This includes the MAPK families, particularly p38MAPK, which is involved in several key cellular processes, including differentiation, proliferation, apoptosis, inflammation, metabolism and survival. Disrupted p38MAPK signaling has been associated with several diseases, including cardiovascular diseases (CVD) as well as diabetes and its related complications. Despite efforts to translate this knowledge into therapeutic avenues, p38 inhibitors have failed in clinical trials due to adverse effects. Inhibition of MK2, a downstream target of p38, appears to be a promising alternative strategy. Targeting MK2 activity may avoid the adverse effects linked to p38 inhibition, while maintaining its beneficial effects. MK2 was first considered as a therapeutic target in inflammatory diseases such as rheumatoid polyarthritis. A growing body of evidence now supports a key role of MK2 signaling in the pathogenesis of CVD, particularly ischemia/reperfusion injury, hypertrophy, and hypertension and that its inhibition or inactivation is associated with improved heart and vascular functions. More recently, MK2 was shown to be a potential player in diabetes and related complications, particularly in liver and heart, and perturbations in calcium handling and lipid metabolism. In this review, we will discuss recent advances in our knowledge of the role of MK2 in p38MAPK-mediated signaling and the benefits of its loss of function in CVD and diabetes, with an emphasis on the roles of MK2 in calcium handling and lipid metabolism. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号