首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In vivo protein kinases A and G (PKA and PKG) coordinately phosphorylate a broad range of substrates to mediate their various physiological effects. The functions of many of these substrates have yet to be defined genetically. Herein we show a role for smoothelin-like protein 1 (SMTNL1), a novel in vivo target of PKG/PKA, in mediating vascular adaptations to exercise. Aortas from smtnl1(-/-) mice exhibited strikingly enhanced vasorelaxation before exercise, similar in extent to that achieved after endurance training of wild-type littermates. Additionally, contractile responses to alpha-adrenergic agonists were greatly attenuated. Immunological studies showed SMTNL1 is expressed in smooth muscle and type 2a striated muscle fibers. Consistent with a role in adaptations to exercise, smtnl1(-/-) mice also exhibited increased type 2a fibers before training and better performance after forced endurance training compared smtnl1(+/+) mice. Furthermore, exercise was found to reduce expression of SMTNL1, particularly in female mice. In both muscle types, SMTNL1 is phosphorylated at Ser-301 in response to adrenergic signals. In vitro SMTNL1 suppresses myosin phosphatase activity through a substrate-directed effect, which is relieved by Ser-301 phosphorylation. Our findings suggest roles for SMTNL1 in cGMP/cAMP-mediated adaptations to exercise through mechanisms involving direct modulation of contractile activity.  相似文献   

3.
Pregnancy coordinately alters the contractile properties of both vascular and uterine smooth muscles reducing systemic blood pressure and maintaining uterine relaxation. The precise molecular mechanisms underlying these pregnancy-induced adaptations have yet to be fully defined but are likely to involve changes in the expression of proteins regulating myosin phosphorylation. Here we show that smoothelin like protein 1 (SMTNL1) is a key factor governing sexual development and pregnancy induced adaptations in smooth and striated muscle. A primary target gene of SMTNL1 in these muscles is myosin phosphatase-targeting subunit 1 (MYPT1). Deletion of SMTNL1 increases expression of MYPT1 30–40-fold in neonates and during development expression of both SMTNL1 and MYPT1 increases over 20-fold. Pregnancy also regulates SMTNL1 and MYPT1 expression, and deletion SMTNL1 greatly exaggerates expression of MYPT1 in vascular smooth muscle, producing a profound reduction in force development in response to phenylephrine as well as sensitizing the muscle to acetylcholine. We also show that MYPT1 is expressed in Type2a muscle fibers in mice and humans and its expression is regulated during pregnancy, suggesting unrecognized roles in mediating skeletal muscle plasticity in both species. Our findings define a new conserved pathway in which sexual development and pregnancy mediate smooth and striated muscle adaptations through SMTNL1 and MYPT1.  相似文献   

4.
5.
6.
7.
During the third trimester of pregnancy, there is an increase in serum triglyceride and cholesterol levels. The mechanisms accounting for these changes in lipid metabolism during pregnancy are unknown. We hypothesized that, during pregnancy, the expression of nuclear hormone receptors involved in regulating lipid metabolism would decrease. In 19-day pregnant mice, serum triglyceride and non-HDL cholesterol levels were significantly increased, whereas total cholesterol was slightly decreased, because of a decrease in the HDL fraction. Peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and PPARgamma, liver X receptor (LXR)alpha and LXRbeta, farnesoid X receptor (FXR), and retinoid X receptor (RXR)alpha, RXRbeta, and RXRgamma mRNA levels were significantly decreased in the livers of 19-day pregnant mice. Additionally, the expressions of thyroid receptor (TR)alpha, pregnane X receptor, sterol regulatory element-binding proteins (SREBP)-1a, SREBP-1c, SREBP-2, and liver receptor homolog 1 were also decreased, whereas the expression of TRbeta, constitutive androstane receptor, and hepatic nuclear factor 4 showed no significant change. mRNA levels of the PPAR target genes carnitine-palmitoyl transferase 1alpha and acyl-CoA oxidase, the LXR target genes SREBP1c, ATP-binding cassettes G5 and G8, the FXR target gene SHP, and the TR target genes malic enzyme and Spot14 were all significantly decreased. Finally, the expressions of PPARgamma coactivator (PGC)-1alpha and PGC-1beta, known activators of a number of nuclear hormone receptors, were also significantly decreased. The decreases in expression of RXRs, PPARs, LXRs, FXR, TRs, SREBPs, and PGC-1s could contribute to the alterations in lipid metabolism during late pregnancy.  相似文献   

8.
Expression of the mouse whey acidic protein (WAP) gene is specific to the mammary gland, is induced several thousand-fold during pregnancy, and is under the control of steroid and peptide hormones. To study developmental regulation of the mouse WAP gene, a 7.2-kilobase (kb) WAP transgene, including 2.6 kb of 5'- and 1.6 kb of 3'-flanking sequences, was introduced into mice. Of the 13 lines of mice examined, 6 expressed the transgenes during lactation at levels between 3 and 54% of the endogenous gene. Although expression was dependent on the site of integration, the transgenes within a given locus were expressed in a copy number-dependent manner and were coordinately regulated. The WAP transgenes were expressed specifically in the mammary gland, but showed a deregulated pattern of expression during mammary development. In all six lines of mice, induction of the WAP transgenes during pregnancy preceded that of the endogenous gene. During lactation, expression in two lines increased coordinately with the endogenous gene, and in three other lines of mice, transgene expression decreased to a basal level. These data indicate that the 7.2-kb gene contains some but not all of the elements necessary for correct developmental regulation. At a functional level it appears as if a repressor element, which inactivates the endogenous gene until late pregnancy, and an element necessary for induction during lactation are absent from the transgene. Complementary results from developmental and hormone induction studies suggest that WAP gene expression during pregnancy and lactation is mediated by different mechanisms.  相似文献   

9.
During early pregnancy, the steroid hormone progesterone induces differentiation of uterine stroma to decidual cells, which regulate embryo-uterine interactions. The progesterone-induced signaling molecules that participate in the formation and function of decidua remain poorly understood. We recently utilized high-density oligonucleotide microarrays to identify several genes whose expression is markedly altered in pregnant uterus in response to RU486, a well characterized antagonist of the progesterone receptor (PR). Our study revealed that the gene encoding cytotoxic T-lymphocyte antigen-2beta (CTLA-2beta), a cysteine protease inhibitor, is expressed during PR-induced decidualization. The spatio-temporal expression of CTLA-2beta mRNA precisely overlapped with the decidual phase of pregnancy. Interestingly, administration of progesterone to estrogen-primed ovariectomized mice failed to induce CTLA-2beta expression. A concomitant artificial decidual stimulation was necessary to trigger this expression. Uteri of PR knockout mice failed to express this mRNA, even after a combined administration of steroid hormones and artificial stimulation. The uterine expression of CTLA-2beta was, therefore, dependent on PR as well as other unknown factor(s) associated with decidual response. To identify the molecular target(s) of CTLA-2beta,we analyzed its interaction with proteins present in soluble extracts prepared from day 7 pregnant uteri containing implanted embryos. A protein affinity strategy employing recombinant CTLA-2beta helped us to determine that cathepsin L, a cysteine protease, is one of its targets in the pregnant uterus. Consistent with this finding, expression of cathepsin L was detected in the giant trophoblast cells of the ectoplacental cone on day 7 of pregnancy. Collectively, our results support the hypothesis that expression of CTLA-2beta in the decidua may regulate implantation of the embryo by neutralizing the activities of one or more proteases generated by the proliferating trophoblast.  相似文献   

10.
11.
12.
The steroidogenic acute regulatory (StAR) protein, a novel phosphoprotein, is a crucial factor involved in intramitochondrial cholesterol transportation, the rate-limiting step in steroidogenesis. The present investigations were undertaken to elucidate involvement of thyroid hormone and StAR protein in the regulation of steroidogenesis in mouse Leydig cells. Treatment of cells with triiodothyronine (T3) coordinately augmented the levels of StAR protein, StAR mRNA, and steroid production, and these responses were progressively dependent on expression of steroidogenic factor 1 (SF-1). With regard to steroidogenesis and StAR expression, the T3 response requires both on-going mRNA and protein synthesis. In addition, the effects of T3 were acutely modulated at the steroidogenic machinery and luteinizing hormone receptor (LHR) function, while these levels were suppressed following longer periods of exposure to T3. Furthermore, the inhibition of SF-1 expression by DAX-1 markedly abolished T3-mediated StAR expression in a time frame, which was consistent with decreased steroid biosynthesis. Specific involvement of SF-1 was further confirmed by assessing the 5′-flanking region of the mouse StAR gene, which identified a region between −254 and −110 bp that was essential for T3 function. Importantly, it was found that the SF-1 binding site at position −135 bp of the 5′-flanking region was greatly involved in T3-mediated reporter activity. Electrophoretic mobility shift assays (EMSA) also demonstrated involvement of SF-1 in T3 function. The relevance of T3-mediated LHR function was investigated in mice rendered hypo-and hyperthyroid, which accounted for up-regulation in the former and down-regulation in the latter group, respectively. These findings demonstrate a key role of thyroid hormone in maintaining mouse Leydig cell function, where thyroid hormone and StAR protein coordinately regulate steroid hormone biosynthesis.  相似文献   

13.
14.
In classical models of nuclear steroid hormone receptor function, ligand binds receptor, heat shock proteins dissociate, and receptor dimers enter or are withheld in the nucleus and interact with coregulatory molecules to mediate changes in gene expression. The footnotes, "receptors become phosphorylated" and "dynamic nucleo-cytoplasmic shuttling occurs" describe well-accepted, but less well-understood aspects of receptor action. Recently, the idea that several protein kinases are activated in response to steroid hormone binding to cognate cytoplasmic or membrane-associated receptors has become fashionable. However, the precise role of steroid hormone receptor phosphorylation and our understanding of which cytoplasmic kinases are activated and their functional significance remain elusive. This review provides an overview of the primary ways in which steroid hormone receptor and growth factor cross-talk occurs, using the human progesterone receptor (PR) as a model. The functional consequences of PR phosphorylation by protein kinases classically activated in response to peptide growth factors and novel extranuclear or nongenomic functions of PR as potential independent initiators of signal transduction pathways are discussed. Intracellular protein kinases are emerging as key mediators of steroid hormone receptor action. Cross-talk between steroid receptor- and growth factor-initiated signaling events may explain how gene subsets are coordinately regulated by mitogenic stimuli in hormonally responsive normal tissues, and is suspected to play a role in their cancer biology.  相似文献   

15.
Long-term administration of progesterone or allopregnanolone was previously shown to increase Y1 receptor gene expression in the medial amygdala of Y1R/LacZ transgenic mice, which harbor a construct comprising the murine Y1 receptor gene promoter and a lacZ reporter. We have now investigated the effects of physiological fluctuations in the cerebrocortical concentrations of neuroactive steroids during pregnancy on Y1R/LacZ transgene expression by quantitative histochemical analysis of beta-galactosidase activity. Cerebrocortical concentrations of progesterone and its metabolites allopregnanolone and allotetrahydrodeoxycorticosterone were increased on day 18 of pregnancy and had returned to control values 2 days after delivery. Transgene expression in the medial amygdala was also increased on day 18 of pregnancy and had returned to control values 2 days after delivery. Similar results were obtained after analysis of Y1R mRNA levels in the medial amygdala of pregnant mice by in situ hybridization. Administration of the 5alpha-reductase inhibitor finasteride to pregnant mice prevented both the increase in the cerebrocortical concentrations of neuroactive steroids as well as the increase in transgene expression. These data suggest that fluctuations in the brain concentrations of endogenous neuroactive steroids during pregnancy are associated with changes in Y1 receptor gene expression in the medial amygdala, further supporting a functional interaction between the GABAergic and NPY-Y1 receptor systems.  相似文献   

16.
Adiponectin, a fat-derived factor, is downregulated in insulin resistance and obesity; insulin resistance has been demonstrated during late pregnancy in both humans and in rodents. The present study examines the physiological change of adiponectin gene expression as well as the circulating levels of adiponectin during pregnancy. We examined the relative quantity of adiponectin mRNA produced in the adipose tissues of pregnant compared to virgin mice. We also measured serum adiponectin levels and parametrial adipocyte size in mice throughout pregnancy. Adiponectin mRNA was significantly reduced by 74 +/- 8 % and 63 +/- 4 % at days 15 and 18 of pregnancy, respectively, compared to virgin mice. Serum adiponectin concentration decreased on days 15 (30.7 +/- 8.5 microg/ml) and 18 (27.9 +/- 8.7 microg/ml) of pregnancy, and the values were significantly lower than that of virgin mice (56.8 +/- 6.6 microg/ml). Parametrial adipocytes from mice on days 15 and 18 of pregnancy were significantly larger than in virgin mice or during early pregnancy. Fat-cell size was closely correlated to degradation of adiponectin gene expression and serum adiponectin levels. These results suggest that changes of adiponectin expression affect metabolic status in pregnant mice.  相似文献   

17.
Progesterone action contributes to the signaling of many growth factor pathways relevant to breast cancer tumor biology, including the insulin-like growth factor (IGF) system. Previous work has shown that insulin receptor substrate-2 (IRS-2) but not IRS-1 levels were regulated by progestin in progesterone receptor-B (PR-B) isoform expressing MCF-7 cells (C4-12 PR-B). Furthermore, type 1 IGF receptor (IGF1R) signaling via IRS-2 correlated with the increased cell migration observed in a number of breast cancer cell lines. Consequently, in this study, we examined whether the elevation of IRS-2 protein induced by progestin was sufficient to promote IGF-I-stimulated cell motility. Treatment of C4-12 PR-B cells with progestin shifted the balance of phosphorylation from IRS-1 to IRS-2 in response to IGF-I. This shift in IRS-2 activation was associated with enhanced migration in C4-12 PR-B cells pretreated with progestin, but had no effect on cell proliferation or survival. Treatment of C4-12 PR-B cells with RU486, an antiprogestin, inhibited IGF-induced cell migration. Attenuation of IRS-2 expression using small interfering RNA resulted in decreased IGF-stimulated motility. In addition, IRS-2 knockdown resulted in an abrogation of PKB/Akt phosphorylation but not mitogen-activated protein kinase. Consequently, LY294002, a phosphoinositide-3-kinase inhibitor, abolished IGF-induced cell motility in progestin-treated C4-12 PR-B cells. These data show a role for the PR in functionally promoting growth factor signaling, showing that levels of IRS proteins can determine IGF-mediated biology, PR-B signaling regulates IRS-2 expression, and that IRS-2 can mediate IGF-induced cell migration via phosphoinositide-3-kinase in breast cancer cells.  相似文献   

18.
19.
Regulation of blood platelet levels involves an array of cytokines, including the placental hormone PRL-like protein E (PLP-E). The PLP-E receptor is present on megakaryocytes in pregnant mice, nonpregnant female mice, and male mice. Other known megakaryocytic cytokines do not share the PLP-E receptor, and thus the presence of this receptor in nonpregnant animals suggests that PLP-E may be expressed in tissues other than the placenta. Consistent with this prediction, PLP-E is produced in thrombocytopenic mouse bone marrow, primarily in granulocytes, but not in normal mouse bone marrow. Serum from thrombocytopenic mice, purified thrombopoietin or IL-6, or pregnancy can induce bone marrow cell expression of PLP-E. The induction of PLP-E gene expression in response to thrombocytopenia is physiologically significant, as injection of PLP-E into thrombocytopenic mice restores normal platelet levels with no effect on granulocytes, erythrocytes, and total white blood cell counts. We conclude that inducible expression of PLP-E in bone marrow is part of the mechanism of recovery from thrombocytopenia. These results also suggest a more general concept: that the endocrine program of pregnancy, which in mammals has evolved to support the intrauterine growth and development of the fetus, can also be harnessed to respond to pathophysiology.  相似文献   

20.
Treatment of pregnant rats with human chorionic gonadotrophin, luteotrophin (luteinizing hormone), luteotrophin-releasing hormone, prostaglandin F2alpha, aminoglutethimide, or by foetoplacental removal or hysterectomy achieved a common multiple-response pattern, namely increased activity of luteal 20alpha-hydroxy steroid dehydrogenase with decreased activity of delta5-3beta-hydroxy steriod dehydrogenase and release of delta4-3-oxo steroids in vitro. 2. Similar effects of foetoplacental removal are noted in pregnant mice. 3. Gonadotrophin induced lower activities of 20alpha-hydroxy steroid dehydrogenase, except at the very end of pregnancy, and partly inhibited the induction caused by foetoplacental removal. 4. The results suggest that existence of a placental factor that restrains these changes until the end of normal pregnancy, which is produced in amounts proportional to the number of placentae and is conveyed to the ovary via the blood. 5. This factor was not replaced by prolactin. 6. It is argued that neither placental lactogen nor pituitary luteotrophin participate in the induction of 20alpha-hydroxy steroid dehydrogenase at late pregnancy in the rat. 7. Aminoglutethimide induced 20alpha-hydroxy steroid dehydrogenase only in late pregnancy. This was partly reversed by progesterone, wholly reversed by progesterone plus oestrogen, and did not involve the pituitary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号