首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
Bacterial spores are surrounded by a multilayered proteinaceous shell called the coat. In Bacillus subtilis, a coat protein called CotE guides the assembly of a major subset of coat proteins. To understand how CotE carries out its role in coat morphogenesis, we subjected its gene to mutagenesis and studied the effects of altered versions of CotE on coat formation. We identified regions within the C-terminal 28 amino acids that direct the deposition of the coat proteins CotA, CotB, CotG, CotSA, CotS and 35 kDa and 49 kDa proteins likely to be the spore proteins CotR (formerly known as YvdO) and YaaH respectively. The timing and genetic dependency of CotR accumulation are consistent with control of its gene by sigmaK and GerE. In addition, we identified a 35-amino-acid internal region involved in targeting of CotE to the forespore. Finally, we found that sequences within this 35-amino-acid region as well as within an 18-amino-acid stretch in the N-terminus of CotE direct the formation of CotE multimers, most probably homooligomers. These results suggest that: (i) most interactions between CotE and the coat proteins assembled under CotE control take place at the CotE C-terminus; (ii) an internal region of CotE connects it with the forespore surface; and (iii) interactions between CotE molecules depend on residues within an 18-amino-acid region in the N-terminal half of CotE.  相似文献   

3.
4.
We report evidence that CotC and CotU, two previously identified components of the Bacillus subtilis spore coat, are produced concurrently in the mother cell chamber of the sporulating cell under the control of σK and GerE and immediately assembled around the forming spore. In the coat, the two proteins interact to form a coat component of 23 kDa. The CotU-CotC interaction was not detected in two heterologous hosts, suggesting that it occurs only in B. subtilis. Monomeric forms of both CotU and CotC failed to be assembled at the surface of the developing spore and accumulated in the mother cell compartment of cells mutant for cotE. In contrast, neither CotU nor CotC accumulated in the mother cell compartment of cells mutant for cotH. These results suggest that CotH is required to protect both CotU and CotC in the mother cell compartment of the sporangium and that CotE is needed to allow their assembly and subsequent interaction at the spore surface.  相似文献   

5.
The nef gene of human and simian immunodeficiency viruses is critical for AIDS pathogenesis. Its function in vivo is unknown, but in vitro natural isolates of Nef down-regulate expression of the cell surface CD4 molecule, a component of the T cell antigen receptor and the viral receptor, by accelerating its endocytosis. We have used chimeric proteins comprised of the natural HIV-1 NA7 Nef fused to a strongly fluorescing mutant of green fluorescent protein (GFP) to correlate Nef function with intracellular localization in human CD4-positive Jurkat T cells. The NA7-GFP fusion protein co-localizes with components of the clathrin coat, including clathrin and the beta-subunit of the AP-2 adaptor protein complex, at discrete locations that are consistent with the normal cellular distribution of clathrin coats at the plasma membrane. The NA7-GFP protein is also found in the perinuclear region of the cell, which is likely to reflect the Golgi apparatus. Evidence from a CD4-negative fibroblast cell line indicates that co-localization of NA7-GFP with components of the clathrin coat does not require expression of the CD4 molecule. Analysis of a large panel of chimeric molecules containing mutant Nef moieties demonstrated that the N-terminal membrane targeting signal cooperates with additional element(s) in the disordered loops in the Nef molecule to co-localize the Nef protein with AP-2 adaptor complexes at the cell margin. This localization of NA7-GFP correlates with, but is not sufficient for, down-regulation of surface CD4 and at least one additional function of Nef is required. In T cells co-expressing CD4 and NA7-GFP, CD4 at the cell surface is redistributed into a discrete pattern that co-localizes with that of NA7-GFP. Our observations place NA7-GFP in physical proximity to AP-2-containing clathrin coat at the plasma membrane and imply that Nef interacts, either directly or indirectly, with a component of the AP-2-containing coat at this location. This evidence supports a model whereby Nef recruits CD4 to the endocytic machinery via AP-2-containing clathrin coats at the plasma membrane.  相似文献   

6.
We previously isolated a soybean (Glycine max (L.) Merr.) flavonoid 3'-hydroxylase (F3'H) gene (sf3'h1) corresponding to the T locus, which controls pubescence and seed coat color, from two near-isogenic lines (NILs), To7B (TT) and To7G (tt). The T allele is also associated with chilling tolerance. Here, Western-blot analysis shows that the sf3'h1 protein was predominantly detected in the hilum and funiculus of the immature seed coat in To7B, whereas sf3'h1 was not detected in To7G. A truncated sf3'h1 protein isolated from To7G was detected only upon enrichment by immunoprecipitation. An analysis using diphenylboric acid 2-aminoethyl ester (DBPA) staining revealed that flavonoids accumulated in the hilum and the funiculus in both To7B and To7G. Further, the scavenging activity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in methanol extracts from the funiculus and hilum of To7B was higher than that of To7G. Moreover, the enzymatic activity of F3'H was detected using microsomal fractions from yeast transformed with sf3'h1 from To7B, but not from To7G. These results indicate that sf3'h1 is involved in flavonoid biosynthesis in the seed coat and affects the antioxidant properties of those tissues. As shown by immunofluorescence microscopy, the sf3'h1 protein was detected primarily around the vacuole in the parenchymatic cells of the hilum in To7B. Further immunoelectron microscopy detected sf3'h1 protein on the membranous structure of the vacuole. Based on these observations, we conclude that F3'H, which is a cytochrome P450 monooxygenase and has been found to be localized to the ER in other plant systems, is localized in the tonoplast in soybean.  相似文献   

7.
Bacillus subtilis FtsY is a homolog of the alpha-subunit of mammalian signal recognition particle (SRP) receptor, and is essential for protein translocation and vegetative cell growth. An FtsY conditional null mutant (strain ISR39) can express ftsY during the vegetative stage but not during spore formation. Spores of ISR39 have the same resistance to heat and chloroform as the wild-type, while their resistance to lysozyme is reduced. Electron microscopy showed that the outer coat of spores was incompletely assembled. The coat protein profile of the ftsY mutant spores was different from that of wild-type spores. The amounts of CotA, and CotE were reduced in spore coat proteins of ftsY mutant spores and the molecular mass of CotB was reduced. In addition, CotA, CotB, and CotE are present in normal form at T(8) of sporulation in ftsY mutant cells. These results suggest that FtsY has a pivotal role in assembling coat proteins onto the coat layer during spore morphogenesis.  相似文献   

8.
We examined the effects of host mutations affecting "SOS"-mediated UV light reactivation on the survival of bacteriophage T7 damaged by UV light or methyl methanesulfonate (MMS). Survival of T7 alkylated with MMS was not affected by the presence of plasmid pKM101 or by a umuC mutation in the host. The survival of UV light-irradiated T7 was similar in umuC+ and umuC strains but was slightly enhanced by the presence of pKM101. When phage survival was determined on host cells preirradiated with a single inducing dose of UV light, these same strains permitted higher survival than that seen with noninduced cells for both UV light- and MMS-damaged phage. The extent of T7 reactivation was approximately proportional to the UV light inducing dose inflicted upon each bacterial strain and was dependent upon phage DNA damage. Enhanced survival of T7 after exposure to UV light or MMS was also observed after thermal induction of a dnaB mutant. Thus, lethal lesions introduced by UV light or MMS are apparently repaired more efficiently when host cells are induced for the SOS cascade, and this inducible reactivation of T7 is umuC+ independent.  相似文献   

9.
A BALB/c 3T3 cell mutant (3T3-E12) was isolated by its ability to survive at a low extracellular K+ concentration (0.14 mM). The growth rate of mutant cells was less dependent on external K+ than parental cells. Analysis of potassium transport revealed that 3T3-E12 cells have a decreased activity of the furosemide-sensitive Na+K+Cl- cotransport system, both in the efflux and influx modes. This is shown to be a result of a decrease in the apparent affinity of the transport system for K+ and Na+, but not Cl-. Upon exposure to the phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate (TPA), BALB/c 3T3 cells exhibited a maximal volume decrease of 20%, while mutant cells shrunk by only 7%, suggesting that regulation of cell volume, at least four exposure to a tumor promoter, is impaired in mutant cells compared to parental 3T3 cells.  相似文献   

10.
Eph receptor tyrosine kinases are expressed by T lineage cells, and stimulation with their ligands, the ephrins, has recently been shown to modulate T cell behavior. We show that ephrin-A1 stimulation of Jurkat T cells induces tyrosine phosphorylation of EphA3 receptors and cytoplasmic proteins, including the c-cbl proto-oncogene. Cbl phosphorylation was also observed in peripheral blood T cells. In contrast, stimulation of Jurkat cells with the EphB receptor ligand ephrin-B1 does not cause Cbl phosphorylation. EphA activation also induced Cbl association with Crk-L and Crk-II adapters, but not the related Grb2 protein. Induction of Cbl phosphorylation upon EphA activation appeared to be dependent upon Src family kinase activity, as Cbl phosphorylation was selectively abrogated by the Src family inhibitor 4-amino-5(4-chlorophenyl-7-(tert-butyl)pyrazolo[3,4-d]pyrimidine, while EphA phosphorylation was unimpaired. Ephrin-A1 stimulation of Jurkat cells was also found to cause down-regulation of endogenous EphA3 receptors from the cell surface and their degradation. In accordance with the role of Cbl as a negative regulator of receptor tyrosine kinases, overexpression of wild-type Cbl, but not its 70-Z mutant, was found to down-regulate EphA receptor expression. Receptor down-regulation could also be inhibited by blockage of Src family kinase activity. Our findings show that EphA receptors can actively signal in T cells, and that Cbl performs multiple roles in this signaling pathway, functioning to transduce signals from the receptors as well as regulating activated EphA receptor expression.  相似文献   

11.
12.
Exosporium and Spore Coat Formation in Bacillus cereus T   总被引:8,自引:3,他引:5       下载免费PDF全文
The exosporium of Bacillus cereus T was first observed as a small lamella in the cytoplasm in proximity to the outer forespore membrane (OFSM) near the middle of the sporangium. Serial sections, various staining methods, and enzyme treatments failed to show any connections between the small lamella and the OFSM. The advancing edge of the exosporium moved toward the polar end of the cell until the spore was completely enveloped. The middle coat was formed between the exosporium and the OFSM from a three-layered single plate or "belt," consisting of two electron-dense layers separated by an electron-transparent layer. This "belt," usually first observed toward the center of the sporangium, developed without changing thickness or appearance over the surface of the forespore. Between the middle coat and the OFSM, a layer of cytoplasm about 50-nm thick was enclosed by the developing coat; this became the inner coat. Electron-dense material was deposited on the outer surface of the middle coat to form the outer coat.  相似文献   

13.
During Bacillus subtilis endospore formation, a complex protein coat is assembled around the maturing spore. The coat is made up of more than two dozen proteins that form an outer layer, which provides chemical resistance, and an inner layer, which may play a role in the activation of germination. A third, amorphous layer of the coat occupies the space between the inner coat and the cortex, and is referred to as the undercoat. Although several coat proteins have been characterized, little is known about their interactions during assembly of the coat. We show here that at least two open reading frames of the cotJ operon ( cotJA and cotJC ) encode spore coat proteins. We suggest that CotJC is a component of the undercoat, since we found that its assembly onto the forespore is not prevented by mutations that block both inner and outer coat assembly, and because CotJC is more accessible to antibody staining in spores lacking both of these coat layers. Assembly of CotJC into the coat is dependent upon expression of cotJA . Conversely, CotJA is not detected in the coats of a cotJC insertional mutant. Co-immunoprecipitation was used to demonstrate the formation of complexes containing CotJA and CotJC 6 h after the onset of sporulation. Experiments with the yeast two-hybrid system indicate that CotJC may interact with itself and with CotJA. We suggest that interaction of CotJA with CotJC is required for the assembly of both CotJA and CotJC into the spore coat.  相似文献   

14.
The interaction of T lymphocytes with tumor cells, a key step in the antitumor immune response, is suppressed by adenosine, a nucleoside produced at increased levels within the hypoxic tumor environment. We have explored the mechanism by which adenosine interferes with the lymphocyte:tumor cell interaction. The adhesion of anti-CD3-stimulated T cells to syngeneic MCA-38 mouse colon adenocarcinoma cells did not involve LFA-1 (alpha(L)beta(2)) or VLA-5 (alpha(5)beta(1)). However, antibodies against either lymphocyte alpha(4) or beta(7) (but not beta(1)) integrin subunits, or against VCAM-1 on the tumor cells, significantly suppressed adhesion, showing that the recognition of MCA-38 cells by T cells is strongly dependent upon the association of alpha(4)beta(7) on the effector cells with VCAM-1 on the tumor targets. This association is modulated by adenosine: The ability of adenosine to suppress T cell adhesion to MCA-38 cells was lost if alpha(4)beta(7) was functionally blocked with anti-alpha(4) antibodies (i) prior to or (ii) during the adhesion assay or if (iii) alpha(+)(4) cells were depleted from the T lymphocyte population. The binding of T cells to fibronectin through alpha(4)beta(1) was not suppressed by adenosine. We conclude that adenosine partially inhibits the interaction of T lymphocytes with tumor cells by blocking the function of integrin alpha(4)beta(7).  相似文献   

15.
The growth of adeno-associated virus (AAV) is dependent upon helper functions provided by adenovirus. We investigated the role of adenovirus early gene region 1 in the AAV helper function by using six adenovirus type 5 (Ad5) host range mutants having deletions in early region 1. These mutants do not grow in human KB cells but are complemented by and grow in a line of adenovirus-transformed human embryonic kidney cells (293 cells); 293 cells contain and express the Ad5 early region 1 genes. Mutants having extensive deletions of adenovirus early region 1a (dl312) or regions 1a and 1b (dl313) helped AAV as efficiently as wild-type adenovirus in 293 cells, but neither mutant helped in KB cells. No AAV DNA, RNA, or protein synthesis was detected in KB cells in the presence of the mutant adenoviruses. Quantitative blotting experiments showed that at 20 h after infection with AAV and either dl312 or dl313 there was less than one AAV genome per cell. In KB cells infected with AAV alone, the unreplicated AAV genomes were detected readily. Apparently, infection with adenovirus mutant dl312 or dl313 results in degradation of most of the infecting AAV genomes. We suggest that at least an adenovirus region 1b product (and perhaps a region 1a product also) is required for AAV DNA replication. This putative region 1b function appears to protect AAV DNA from degradation by an adenovirus-induced DNase. We also tested additional Ad5 mutants (dl311, dl314, sub315, and sub316). All of these mutants were inefficient helpers, and they showed varying degrees of multiplicity leakiness. dl312 and dl313 complemented each other for the AAV helper function, and each was complemented by Ad5ts125 at the nonpermissive temperature. The defect in region 1 mutants for AAV helper function acts at a different stage of the AAV growth cycle than the defect in the region 2 mutant ts125.  相似文献   

16.
Vesicle-mediated traffic between compartments of the yeast secretory pathway involves recruitment of multiple cytosolic proteins for budding, targeting, and membrane fusion events. The SEC7 gene product (Sec7p) is a constituent of coat structures on transport vesicles en route to the Golgi complex in the yeast Saccharomyces cerevisiae. To identify mammalian homologs of Sec7p and its interacting proteins, we used a genetic selection strategy in which a human HepG2 cDNA library was transformed into conditional-lethal yeast sec7 mutants. We isolated several clones capable of rescuing sec7 mutant growth at the restrictive temperature. The cDNA encoding the most effective suppressor was identified as human ADP ribosylation factor 4 (hARF4), a member of the GTPase family proposed to regulate recruitment of vesicle coat proteins in mammalian cells. Having identified a Sec7p-interacting protein rather than the mammalian Sec7p homolog, we provide evidence that hARF4 suppressed the sec7 mutation by restoring secretory pathway function. Shifting sec7 strains to the restrictive temperature results in the disappearance of the mutant Sec7p cytosolic pool without apparent changes in the membrane-associated fraction. The introduction of hARF4 to the cells maintained the balance between cytosolic and membrane-associated Sec7p pools. These results suggest a requirement for Sec7p cycling on and off of the membranes for cell growth and vesicular traffic. In addition, overexpression of the yeast GTPase-encoding genes ARF1 and ARF2, but not that of YPT1, suppressed the sec7 mutant growth phenotype in an allele-specific manner. This allele specificity indicates that individual ARFs are recruited to perform two different Sec7p-related functions in vesicle coat dynamics.  相似文献   

17.
In simian virus 40-transformed cells, simian virus 40 large T antigen can be detected in different forms separable by sucrose density gradient centrifugation. In our experiments, light forms sedimented around 5 to 7S, oligomers such as tetramers were detected around 16S, and higher aggregates sedimented in a broad distribution reaching above 23S. The oligomers sedimenting at and above 16S could be disassembled into the slowly sedimenting 5 to 7S forms by chelating agents [EDTA or ethylene bis(oxonitrilo)tetraacetate]. After the addition of divalent cations (CaCl2 or MgCl2) in excess of chelating agents, oligomeric forms reassembled and appeared in a sedimentation pattern resembling that observed before treatment with chelating agents. Time course studies permitted the identification of the 5 to 7S forms as precursors upon pulse-labeling (15 min); the 16S and higher oligomers were identified as the successors after a 14-h chase. Treatment of extracts of pulse-chase-labeled cells with chelating agents again disassembled the oligomers, whereas pulse-labeled precursors did not change their 5 to 7S sedimentation pattern. Adding an excess of divalent cations reassembled the pulse-chase-labeled T antigen to oligomers but did not influence the sedimentation behavior of pulse-labeled 5 to 7S precursors. It is therefore reasonable to assume that a posttranslational modulation induces divalent cation binding, leading finally to the oligomerization of T antigen. Thus, some of the multifunctional activities of T antigen can be dictated by divalent cation binding properties.  相似文献   

18.
IL-1 is a potent pro-inflammatory cytokine that activates intracellular signaling cascades some of which may involve IL-1 receptor associated kinase-1 (IRAK1). Psoriasis is a T cell dependent chronic inflammatory condition of the skin of unknown cause. IL-1 has been implicated in psoriasis pathology, but the mechanism has not been elucidated. Interestingly, expression of IRAK1 is elevated in psoriatic skin. To identify a potential link between IL-1, keratinocytes and T cells in skin inflammation we employed pathway-focused microarrays to evaluate IL-1 dependent gene expression in keratinocytes. Several candidate mRNAs encoding known T cell chemoattractants were identified in primary keratinocytes and the stable keratinocyte cell line HaCaT. CCL5 and CCL20 mRNA and protein levels were confirmed up-regulated by IL-1 in concentration and time-dependent manners. Furthermore IL-1 synergized with IFN-γ and TNF-α. Expression of CXCL9, CXCL10 and CXCL11 mRNAs was also increased in response to IL-1, but protein could only be detected in medium from cells treated with IFN-γ alone or in combination with IL-1. Over-expression of IRAK1 led to increased constitutive and cytokine induced production of CCL5 and CCL20. Inhibition of IRAK1 activity through RNAi or expression of a dominant negative mutant blocked production of CCL5 and CCL20 but had no effect upon the IL-1 enhancement of IFN-γ induced CXCL9, CXCL10 and CXCL11 production. In conclusion IL-1 regulates T cell targeting chemokine production in keratinocytes through IRAK1 dependent and independent pathways. These pathways may contribute to acute and chronic skin inflammation.  相似文献   

19.
We find that the peripheral ER in Saccharomyces cerevisiae forms a dynamic network of interconnecting membrane tubules throughout the cell cycle, similar to the ER in higher eukaryotes. Maintenance of this network does not require microtubule or actin filaments, but its dynamic behavior is largely dependent on the actin cytoskeleton. We isolated three conditional mutants that disrupt peripheral ER structure. One has a mutation in a component of the COPI coat complex, which is required for vesicle budding. This mutant has a partial defect in ER segregation into daughter cells and disorganized ER in mother cells. A similar phenotype was found in other mutants with defects in vesicular trafficking between ER and Golgi complex, but not in mutants blocked at later steps in the secretory pathway. The other two mutants found in the screen have defects in the signal recognition particle (SRP) receptor. This receptor, along with SRP, targets ribosome-nascent chain complexes to the ER membrane for protein translocation. A conditional mutation in SRP also disrupts ER structure, but other mutants with translocation defects do not. We also demonstrate that, both in wild-type and mutant cells, the ER and mitochondria partially coalign, and that mutations that disrupt ER structure also affect mitochondrial structure. Our data suggest that both trafficking between the ER and Golgi complex and ribosome targeting are important for maintaining ER structure, and that proper ER structure may be required to maintain mitochondrial structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号