首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Summary Effects of hyperthermia-induced seizures (HS) on GABAA and benzodiazepine (BDZ) receptor binding in immature rat brain were evaluated using in vitro autoradiography. HS were induced in 10-day-old rats by a regulated stream of moderately heated air directed 50 cm above the animals. Rats were killed 30 min, 24 h, or 20 days after HS and their brains were used for in vitro autoradiography experiments to determine GABAA and BDZ receptor binding. GABAA binding was significantly enhanced in all brain areas evaluated 30 min after HS, an effect that endures 24 h and 20 days after seizures. Concerning BDZ receptor binding, a significant increase was detected in entorhinal and perirhinal cortices and decreased in basolateral amygdala 30 min following HS. One day after HS, animals demonstrated enhanced BDZ binding in the cingulate, frontal, posterior parietal, entorhinal, temporal, and perirhinal cortices; striatum, accumbens, substantia nigra pars compacta, and amygdala nuclei. Twenty days after HS enhanced BDZ binding was restricted in the cingulated, frontal, anterior and posterior parietal cortices, as well as in substantia nigra pars reticulata, whereas decreased values were found in accumbens nucleus and substantia nigra pars compacta. Our data indicate differential effects of HS in GABAA and BDZ binding in immature brain. HS-induced GABAA and BDZ changes are different from those previously described in experimental models of temporal lobe epilepsy in adult animals.  相似文献   

2.
The nigral GABAergic regulation of striatal dopamine release was investigated using voltammetry in freely moving rats. The local administration of muscimol (1 nM) in the substantia nigra pars compacta, but not in the substantia nigra pars reticulata, increased the striatal dopamine release. In contrast, the administration of baclofen (10 nM) in the substantia nigra pars reticulata, but not in the substantia nigra pars compacta, produced a decrease of the striatal dopamine release. Opposite effects were respectively observed after administration of GABAA and GABAB antagonists. These data lead us to suggest a differential presynaptic GABAergic control of the dopaminergic neurotransmission through GABAA receptors in the substantia nigra pars compacta, and GABAB receptors in the substantia nigra pars reticulata.  相似文献   

3.
Summary 1. Tardive dyskinesia is more important in postmenopausal women than men of comparable age and a peak of first episodes of schizophrenia is observed in postmenopausal women. The effect of ovariectomy (2 weeks or 3 months) in rats was investigated as a model of decreased gonadal function associated with menopause.2. Frontal cortex D1 receptor density and affinity were similar in intact male compared to intact female rats and progressively decreased in density with time after ovariectomy, with no change of affinity. Striatal D1 and D2 receptors also decreased in density after ovariectomy for both receptor subtypes, with no change of affinity. Striatal D1 receptor density and affinity were similar in intact male and female rats, whereas the density of D2 receptors was higher in females. Treatment with estradiol for 2 weeks restored the D2 but not the D1 receptor changes.3. In the substantia nigra pars reticulata, striatum, nucleus accumbens, and entopeduncular nucleus, a progressive increase in [3H]flunitrazepam specific binding associated with GABAA receptors was observed as a function of time following ovariectomy; this was corrected with estradiol treatment. In contrast, the opposite was observed for [3H] flunitrazepam binding in the globus pallidus, where ovariectomy decreased binding, which was corrected with estradiol replacement therapy.4. Low prefrontal cortex dopamine activity with implications of D1 receptors in negative symptoms of schizophrenia is hypothesized. Furthermore, GABAergic overactivity in the internal globus pallidus-substantia nigra pars reticulata complex is hypothesized in tardive dyskinesia.5. The present data suggest that gonadal hormone withdrawal by reducing brain dopamine receptors and producing an imbalance of GABAA receptors in the output pathways of the striatum may predispose to schizophrenia and dyskinesia.  相似文献   

4.
Abstract: Specific [3H]strychnine binding was used to identify the glycine receptor macromolecular complex in human spinal cord, substantia nigra, inferior olivary nucleus, and cerebral cortex. In material from control patients a high-affinity K d (3–8 n m ) was observed in the spinal cord and the substantia nigra, both the pars compacta and the pars reticulata. This is very similar to the values observed in the rat and bovine spinal cord (8 and 3 n m , respectively) and rat substantia nigra (12 n m ). In the human brain the distribution of [3H]strychnine binding (at 10 n m ) was: spinal cord – substantia nigra, pars compacta > substantia nigra, pars reticulata = inferior olivary nucleus > cerebral cortex. The binding capacity ( B max) of the rat brain (substantia nigra or spinal cord) was approximately 10-fold that of the human brain. [ 3 H]Strychnine binding was significantly decreased in the substantia nigra from Parkinson's disease patients, both in the pars compacta (67% of control) and the pars reticulata (50% of control), but not in the inferior olivary nucleus. The results were reproduced in a preliminary experiment in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. In the substantia nigra from patients who died with Huntington's disease, [3H]strychnine binding tended to be high (150% of control, NS) in both the pars compacta and the reticulata. [3H]Strychnine binding was unaltered in the substantia nigra of patients with senile dementia. Together with previous neurophysiological and neuropharmacological findings, those results support the hypothesis of glycine receptors occurring on dopamine cell bodies and/or dendrites in the substantia nigra.  相似文献   

5.
[35S]TBPS binding to the GABAA receptor ionophore binding site is anion dependent. Using autoradiography on rat brain sections, we show that permeabilities of anions through the receptor channel correlate with their efficiencies to promote basal [35S]TBPS binding. Phosphate made an exception as it induced more binding than expected from its permeability. Well-permeable anions (chloride, nitrate, formate) allowed [35S]TBPS binding to be effectively displaced by 1 mM GABA, whereas low-permeable anions (acetate, phosphate, propionate) markedly prevented this GABA effect, especially in the thalamus, the transition from the high to the low GABA effect being between formate and acetate. In the presence of phosphate, GABA enhanced [3H]flunitrazepam binding to benzodiazepine site of recombinant α1β2γ2 receptors with the same efficacy but lower potency as compared to the presence of chloride, whereas [35S]TBPS binding was abnormally modulated by GABA. These results suggest that inorganic phosphate affects coupling between agonist and ionophore sites in GABAA receptors. Special issue dedicated to Simo S. Oja  相似文献   

6.
Abstract: Dopamine released from brain nerve terminals is mainly removed from the synaptic cleft by an uptake mechanism. Despite their functional importance, modulation of the dopamine uptake sites is still not well known. Steroid hormones were shown to modulate brain dopamine transmission. The aim of this study was thus to investigate in ovariectomized rats the effects of 17β-estradiol and progesterone treatments on brain dopamine uptake sites. Treatments consisted of 17β-estradiol (10 μg/0.2 ml), progesterone (0.72 mg/0.2 ml). 17β-estradiol + progesterone, or the vehicle (0.3% gelatin in saline solution) twice daily for 2 weeks. The steroid treatments left the affinity of [3H]GBR 12935 binding to striatal homogenates unchanged (ovariectomized rats, 0.823 ± 0.028 nM), whereas the density was increased by these steroids alone or in combination to a similar extent of 16-23%. Chronic treatment of ovariectomized rats with 17β-estradiol progesterone, or their combination increased to the same extent and uniformly [3H]-GBR 12935 binding in the striatum as measured by autoradiography; the increase was similar in the substantia nigra pars compacta, whereas no steroid effect was observed in the nucleus accumbens and in the substantia nigra pars reticulata. In summary, chronic exposure to 17β-estradiol and/ or progesterone increased dopamine uptake site density in the nigrostriatal dopaminergic system, whereas the nucleus accumbens and the substantia nigra pars reticulata were unaffected.  相似文献   

7.
Abstract: Expression of rat brain γ-aminobutyric acid type A (GABAA) receptors in Xenopus laevis oocytes can be achieved by injection of the oocytes with synaptosomes. This approach has now been applied to evaluate changes in the function of nigral GABAA receptors after degeneration of the striatonigral GABAergic pathway induced by the unilateral infusion of kainic acid into the rat striatum. Ten days after striatal injection, synaptosomal membranes were prepared from the substantia nigra and introduced into oocytes. Nigral GABAA receptors incorporated into the oocyte cell membrane were then characterized electrophysiologically under voltage-clamp conditions. The maximal amplitude of GABA-induced Cl? currents in oocytes injected with synaptosomes from denervated substantia nigra was twice that observed in oocytes injected with synaptosomes from control substantia nigra. The concentration of GABA required for the half-maximal response did not differ between the two groups of oocytes. In addition, the potentiation of GABA-induced currents by the benzodiazepine diazepam (1 µM) and the steroid derivative allopregnanolone (3 µM) was increased by ~65 and 60%, respectively, in oocytes injected with synaptosomes from denervated substantia nigra compared with those injected with control synaptosomes. The concentrations of diazepam and allopregnanolone giving half-maximal responses were not affected by denervation. In contrast, the inhibitory effects of the benzodiazepine receptor inverse agonists FG 7142 (10 µM) and 6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylic acid ethyl ester (1 µM) were reduced by 48 and 38%, respectively, after denervation. These results indicate that the up-regulation of nigral GABAA receptors induced by degeneration of the striatonigral GABAergic pathway is associated with an increased efficacy of positive allosteric modulators, such as benzodiazepines and steroids, and with a reduced efficacy of negative allosteric modulators such as β-carbolines.  相似文献   

8.
The flunitrazepam sensitive-GABAA receptor density was increased by cytochalasins C and D at 37°C suggesting that microfilament depolymerization induces exposure to the radioligand of a GABAA receptor in synaptosomes (Pharm Biochem Behav 72 (2002) 497). Similarly, phosphatidylinositol-4,5-bisphosphate (1–5 μM), but not a mixture of phospholipids, induced an increase of GABAA receptors in synaptosomes. Furthermore, N-ethyl maleimide, an inactivator of the sensitive fusion protein, which interacts with GABAA receptor, abolished the receptor increase induced by phosphatidylinositol-4,5-bisphosphate. Together, the results suggest that phosphatidylinositol-4,5-bisphosphate, acts via microfilament depolymerization increasing the binding of the radioligand to receptors possibly by modulation of their interaction with proteins involved in trafficking and docking mechanisms.  相似文献   

9.
Gamma-amino butyric acid (GABA), in addition to being a metabolic intermediate and the main inhibitory neurotransmitter in the synaptic cleft, is postulated as a neurohormone, a paracrine signaling molecule, and a trophic factor. It acts through pre- and post-synaptic receptors, named GABAA and GABAC (ionotropic receptors) and GABAB (metabotropic receptor). Here we reviewed the participation of GABAB receptors in the regulation of the hypothalamic-pituitary-gonadal axis, using physiological, biochemical, and pharmacological approaches in rats, as well as in GABAB1 knock-out mice, that lack functional GABAB receptors. Our general conclusion indicates that GABAB receptors participate in the regulation of pituitary hormone secretion acting both in the central nervous system and directly on the gland. PRL and gonadotropin axes are affected by GABAB receptor activation, as demonstrated in the rat and also in the GABAB1 knock-out mouse. In addition, hypothalamic and pituitary GABAB receptor expression is modulated by steroid hormones. GABA participation in the brain control of pituitary secretion through GABAB receptors depends on physiological conditions, being age and sex critical factors. These results indicate that patients receiving GABAB agonists/antagonists should be monitored for possible endocrine side effects.  相似文献   

10.
Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinsons and Alzheimers disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different.  相似文献   

11.
The distribution of a dopamine D2 receptor mRNA in rat brain   总被引:4,自引:0,他引:4  
D M Weiner  M R Brann 《FEBS letters》1989,253(1-2):207-213
Based on the recently reported sequence of a dopamine D2 receptor cloned from rat brain, we prepared a series of cDNA probes to determine the distribution of mRNA encoding this receptor. Within the forebrain, D2 receptor mRNA is abundant in the caudate-putamen, accumbens nucleus and olfactory tubercle. Moderate to low levels of mRNA are observed in the medial habenular nucleus, diagonal band, lateral septal nucleus, claustrum, dorsal endopiriform nucleus, and entorhinal cortex. In the mesencephalon, D2 receptor mRNA is abundant within the substantia nigra, pars compacta, and the ventral tegmental area. Comparison of the distribution of the mRNA and ligand binding indicates that both presynaptic and postsynaptic D2 receptors of the nigrostriatal, mesolimbic and mesocortical pathways are derived from the same mRNA.  相似文献   

12.
In Wistar rats, after 6 h of sleep deprivation and subsequent 2 h postdeprivation sleep, we found significant changes in optical density of CART peptide in neurons of nucleus accumbens and hypothalamic nucleus arcuatus as well as in processes coming into substantia nigra from nucleus accumbens. The obtained data revealed unidirectional changes of optical density of CART and tyrosine hydroxylase in the studied structures: a decrease after sleep deprivation (p < 0.05) and, on the contrary, an increase after postdeprivation sleep (p < 0.05). Confocal laser microscopy showed morphological connections of CART and dopaminergic neurons and possible colocalization of these both substances in the same neuron at the postdeprivation sleep. In experiments in vitro, after 1 h of incubation of surviving brain sections from the substantia nigra area in the medium with CART peptide there was revealed a rise of optical density of tyrosine hydroxylase in the substantia nigra pars compacta by 55% (p < 0.05). The obtained data indicate an activating effect of CART peptide on brain dopaminergic neurons and its role as a modulator of their functional activity.  相似文献   

13.
It has been documented that ethanol can potentiate brain -aminobutyric acid (GABA)ergic function, and there is a close link between the GABAA receptor complex and effects of ethanol, including reinforcement of alcohol which is a fundamental element of alcohol preference. However, it is unknown in what discrete brain regions GABAA receptors might be associated with alcohol preference. In the present study, [35S]t-butylbicyclophosphorothionate ([35S]TBPS) was used to localize GABAA receptors in high-alcohol-drinking (HAD) rats and low-alcohol-drinking (LAD) rats which were selectively bred for high and low alcohol preference, respectively. Initial qualitative observations indicated that [35S]TBPS binding sites were abundant in many brain areas including the cerebral cortex, hypothalamus and amygdala of HAD and LAD rats. Furthermore, the quantitative autoradiographic analysis revealed fewer [35S]TBPS binding sites of GABAA receptors in the amygdaloid complex, central medial thalamic nucleus, lateral hypothalamic nucleus and anterior hypothalamic nucleus of HAD rats than LAD rats. Collectively, this study has indicated that HAD rats selectively bred for high alcohol preference possess lower [35S]TBPS binding in the brain. Since lower TBPS binding has been proposed to reflect enhanced GABAergic function, as evidenced in rats with seizure or under alcohol withdrawal, the results from the present study suggest that HAD rats might have an enhanced GABAergic function. It is thus likely that enhanced GABAergic function in the brain might be related to high alcohol preference which is characteristic in HAD rats. In addition, the present result showing no difference of [35S]TBPS binding in the nucleus accumbens is also in agreement with a notion that [35S]TBPS binding may represent only a small spectrum of the GABAA receptor complex which is constituted of a sophisticated subunit combination whose functional compositions are still unknown. In conclusion, the present study supports the working hypothesis that GABAA receptors are involved in alcohol preference in HAD rats.  相似文献   

14.
Cupello A 《Amino acids》2003,24(4):335-346
Summary.  It has long been accepted that GABA is the main inhibitory neurotransmitter in the mammalian brain, acting via GABAA or GABAB receptors. However, new evidences have shown that it may work as an excitatory transmitter, especially in the brain of newly-born animals and acting via GABAA receptors. The difference in the end results of GABAA receptors activation in the two cases is not due to the receptor associated channels, which in both cases are chloride channels. The different physiological effect in the two cases is due to different electrochemical gradients for chloride. When GABA acting via GABAA receptors is inhibitory, either there is no transmembrane electrochemical gradient for chloride or there is one forcing such negative ions into the nerve cell, once chloride channels are open. Viceversa, GABA is excitatory when the electrochemical gradient is such to make chloride ions flow outside the cell, upon opening of the GABA activated chloride channels. In this review this concept is discussed in details and evidence in the scientific literature for the existence of different types of chloride pumps (either internalizing or extruding chloride) is compiled. Received August 5, 2002 Accepted October 30, 2002 Published online March 17, 2003 Acknowledgement The author thanks Dr. Simona Scarrone, Genova, for helping him with the schemes in Fig. 1. Author's address: Dr. Aroldo Cupello, Istituto di Bioimmagini e Fisiologia Molecolare, Via De Toni 5, I-16132 Genova, Italy, Fax: 39-010354180, E-mail: dcupel@neurologia.unige.it  相似文献   

15.
The binding of monoiodo [125I-Tyr3]-neurotensin to human brain was characterized and visualized using radioreceptorassay and autoradiographic techniques. Specific binding to homogenates of human substantia nigra at 25 degrees C was maximal at 20 min, reversible and saturable. Scatchard analysis of equilibrium data indicated the existence of two populations of binding sites with Kd values of 0.26 nM and 4.3 nM. Corresponding binding capacities were 26 and 89 fmol/mg of protein. Neurotensin analogs inhibited the binding of iodinated neurotensin with relative potencies that demonstrated the crucial role of the C-terminal hexapeptide portion of neurotensin for binding to its receptors. Autoradiography of human substantia nigra sections incubated with iodinated neurotensin revealed high levels of specific binding in the nucleus paranigralis and substantia nigra, pars compacta, and low levels in the substantia nigra, pars reticulata.  相似文献   

16.
Alteration of neurotensin receptors in MPTP-treated mice.   总被引:1,自引:0,他引:1  
We examined the sequential changes in neurotensin receptors in the striatum and substantia nigra of mouse brains lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by receptor autoradiography, in comparison with the alterations in dopamine uptake sites. The mice received four intraperitoneal injections of MPTP (10 mg/kg) at 1-h intervals and then the brains were analyzed at 6 h and 1, 3, 7, and 21 days after the treatments. [3H]Neurotensin and [3H]mazindol were used to label neurotensin receptors and dopamine uptake sites, respectively. [3H]Neurotensin binding was significantly decreased in the striatum from 6 h to 21 days after MPTP treatment. In the substantia nigra, pars reticulata also showed a significant decrease in [3H]neurotensin binding from 3 to 21 days post-MPTP treatment. However, no significant change in [3H]neurotensin binding was observed in the pars compacta even after 21 days. On the other hand, [3H]mazindol binding was markedly decreased in the striatum and substantia nigra from 6 h to 21 days after MPTP treatment. These results indicate that neurotoxin MPTP can produce a severe decrease in neurotensin receptors and dopamine uptake sites in the striatum and substantia nigra of mice. Thus, our findings provide evidence that the dysfunction in neurotensin receptors may be involved in the degenerative processes causing Parkinson's disease.  相似文献   

17.
Anorectic drugs such as mazindol bind to a class of low-affinity, sodium-sensitive sites in the brain which are affected by ambient glucose concentrations and a predisposition to develop diet-induced obesity (DIO). This study used quantitative autoradiography of 10 nM 3H-mazindol binding to identify the cellular location of these putative anorectic binding sites in the brain and to assess the way in which the development of DIO affected their binding. We previously showed that chow-fed, obesity-prone rats have widespread increases in brain 3H-mazindol binding to these low-affinity sites as compared with diet-resistant (DR) rats. Here, low-affinity 3H-mazindol binding was assessed in the brains of eight rats which developed DIO vs. eight which were DR after three months on a high-energy diet. DIO rats gained 89% more weight and had 117% higher plasma insulin levels but no difference in plasma glucose levels compared with DR rats. Along with these differences, low-affinity 3H-mazindol binding in DIO rats was identical to that in DR rats in all of the 23 brain areas assessed. This suggested that this binding was downregulated by the development of obesity in DIO rats. In other chow-fed rats, stereotaxic injections of 5,7-dihydroxytrypta-mine and 6-hydroxydopamine (60HDA) to ablate serotonin and catecholamine nerve terminals in the ventromedial nucleus of the hypothalamus (VMN) had no effect on 3H-mazindol binding. However, ibotenic acid injected into the VMN, substantia nigra, pars reticulata, and pars compacta destroyed intrinsic neurons and/or their local processes and decreased low-affinity 3H-mazindol binding by 13%-22%. Destruction of dopamine neurons in the substantia nigra, pars compacta, and noradrenergic neurons in the locus ceruleus with 60HDA also reduced 3H-mazindol binding in those areas by 9% and 12%, respectively. This suggested that up to 22% of putative anorectic binding sites may be located on the cell bodies of dopamine, norepinephrine, and other neurons, but not on serotonin or catecholamine nerve terminals in the brain. Binding to these sites may be downregulated by the development of DIO, possibly as a result of the concomitant hyperinsulinemia.  相似文献   

18.
Abstract

The distribution of kappa opioid receptors in guinea pig brain was measured by in vitro receptor autoradiography using [3H]dynorphin A1–9, [3H]dynorphin A1–8 and [3H]bremazocine as ligands. The sites labelled by the two dynorphins had identical, heterogeneous distributions in brain sections. High levels of kappa receptors were seen in striatum, claustrum, nucleus accumbens and laminae V and VI of the cerebral cortex. The substantia nigra and superior colliculus also had high dynorphin binding levels. The [3H]dynorphin autoradiographs were closely similar to those obtained using [3H]bremazocine in the presence of mu and delta receptor displacers. It is concluded that tritiated dynorphin A fragments can be used for autoradiographic studies of kappa opioid receptors in brain.  相似文献   

19.
This study describes a direct comparison of dopamine transporter (DAT) mRNA and protein, as well as its binding sites, in tissue from the same animals after chronic cocaine administration. Rats were treated twice daily with 25 mg/kg cocaine or with saline. After 8 days of cocaine administration, changes in DAT mRNA levels in the substantia nigra pars compacta and ventral tegmental area were measured by in situ hybridization, and DAT protein in the striatum was quantified by immunoblotting. Whereas chronic cocaine treatment significantly reduced levels of DAT mRNA in the substantia nigra pars compacta and ventral tegmental area as compared with vehicle-treated controls, cocaine treatment did not alter DAT protein levels in the striatum. Furthermore, the density of DAT binding sites was also measured in the striatum by quantitative autoradiography using two DAT radioligands, 33-(4-[125I]iodophenyl)tropane-2-carboxylic acid methyl ester ([125I]RTI-55) and [3H]propanoyl-3beta-(4-tolyl)tropane ([3H]PTT). Similar to the results of immunoblotting of DAT protein, [1251]RTI-55 and [3H]PTT binding site levels also remained unaltered. These results indicate a dissociation in the regulation of DAT mRNA and its protein levels as a result of cocaine administration in rats. This study also indicates that the DAT ligands [3H]PTT and [125I]RTI-55 provide an accurate assessment of DAT protein levels.  相似文献   

20.

Background

Taurine is one of the most abundant free amino acids especially in excitable tissues, with wide physiological actions. Chronic supplementation of taurine in drinking water to mice increases brain excitability mainly through alterations in the inhibitory GABAergic system. These changes include elevated expression level of glutamic acid decarboxylase (GAD) and increased levels of GABA. Additionally we reported that GABAA receptors were down regulated with chronic administration of taurine. Here, we investigated pharmacologically the functional significance of decreased / or change in subunit composition of the GABAA receptors by determining the threshold for picrotoxin-induced seizures. Picrotoxin, an antagonist of GABAA receptors that blocks the channels while in the open state, binds within the pore of the channel between the β2 and β3 subunits. These are the same subunits to which GABA and presumably taurine binds.

Methods

Two-month-old male FVB/NJ mice were subcutaneously injected with picrotoxin (5 mg kg-1) and observed for a) latency until seizures began, b) duration of seizures, and c) frequency of seizures. For taurine treatment, mice were either fed taurine in drinking water (0.05%) or injected (43 mg/kg) 15 min prior to picrotoxin injection.

Results

We found that taurine-fed mice are resistant to picrotoxin-induced seizures when compared to age-matched controls, as measured by increased latency to seizure, decreased occurrence of seizures and reduced mortality rate. In the picrotoxin-treated animals, latency and duration were significantly shorter than in taurine-treated animas. Injection of taurine 15 min before picrotoxin significantly delayed seizure onset, as did chronic administration of taurine in the diet. Further, taurine treatment significantly increased survival rates compared to the picrotoxin-treated mice.

Conclusions

We suggest that the elevated threshold for picrotoxin-induced seizures in taurine-fed mice is due to the reduced binding sites available for picrotoxin binding due to the reduced expression of the beta subunits of the GABAA receptor. The delayed effects of picrotoxin after acute taurine injection may indicate that the two molecules are competing for the same binding site on the GABAA receptor. Thus, taurine-fed mice have a functional alteration in the GABAergic system. These include: increased GAD expression, increased GABA levels, and changes in subunit composition of the GABAA receptors. Such a finding is relevant in conditions where agonists of GABAA receptors, such as anesthetics, are administered.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号