首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
从典型硝化细菌到全程氨氧化微生物:发现及研究进展   总被引:3,自引:1,他引:3  
生物硝化过程在全球氮循环中起关键性作用,被认为由氨氮氧化成亚硝酸盐和亚硝酸盐氧化成硝酸盐两个步骤组成,分别由氨氧化微生物(Ammonia oxidizing microorganisms,AOM)和硝化细菌(Nitrite oxidizing bacteria,NOB)催化完成。AOM包括氨氧化细菌(Ammonia oxidizing bacteria,AOB)和氨氧化古菌(Ammonia oxidizing archaea,AOA),AOB与AOA分布广泛,两者的相对丰度和氨氮浓度密切相关。2015年底,3个硝化螺菌属(Nitrospira)谱系Ⅱ的NOB被证实含有AOM的特征功能酶,包括氨单加氧酶(AMO)和羟胺脱氢酶(HAO),并证明NOB同时具有氨氧化和亚硝酸盐氧化的能力,命名为全程氨氧化微生物(Complete ammonia oxidizer,Comammox)。根据AMO的α亚基基因amoA的相似性将Comammox分为两大分支clade A和clade B。它们广泛分布于自然环境和人工系统,包括土壤(稻田、森林)、淡水(湿地、河流、湖泊沉积物、蓄水层)、污水处理厂和自来水厂等。本文综述了Comammox的发现及其最新的研究进展,并展望了Comammox作为氮循环关键功能菌群的研究方向和应用前景。  相似文献   

2.
Changes in the fractions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in two laboratory-scale reactors were investigated using 16S rRNA probe hybridizations. The reactors were operated in intermittent aeration mode and different aeration cycles to treat anaerobically digested swine wastewater with ammonia concentrations up to 175 mg NH(3)-N/L. High ammonia removals (>98.8%) were achieved even with increased nitrogen loads and lower aeration: non-aeration time ratios of 1h:3h. Nitrosomonas/Nitrosococcus mobilis were the dominant ammonia-oxidizing bacteria in the reactors. Nitrospira-like organisms were the dominant nitrite-oxidizing bacteria during most of the investigation, but were occasionally outcompeted by Nitrobacter. High levels of nitrifiers were measured in the biomass of both reactors, and ammonia-oxidizing bacteria and nitrite-oxidizing bacterial levels adjusted to changing aeration: non-aeration time ratios. Theoretical ammonia-oxidizer fractions, determined by a mathematical model, were comparable to the measured values, although the measured biomass fractions were different at each stage while the theoretical values remained approximately constant. Stable ammonia removals and no nitrite accumulation were observed even when rRNA levels of ammonia oxidizers and nitrite-oxidizers reached a minimum of 7.2% and 8.6% of total rRNA, respectively. Stable nitrogen removal performance at an aeration: non-aeration ratio of 1h:3h suggests the possibility of significant savings in operational costs.  相似文献   

3.
CARD-FISH研究食细菌线虫对氨氧化细菌(AOB)数量的影响   总被引:1,自引:0,他引:1  
土壤动物与微生物的取食与反馈之间的关系是土壤生态学研究的核心内容之一。通过接种原位的食细菌线虫和微生物群落模拟土壤真实环境,采用CARD-FISH方法来观察食细菌线虫的不同取食密度下,氨氧化细菌(ammonia oxidizing bacteria)数量的动态变化,以揭示土壤食细菌线虫对AOB数量的影响及AOB的反馈强度。结果表明:与单独接种细菌的处理(SB)相比,接种食细菌线虫显著地增加了土壤中AOB的数量,3个不同线虫接种密度处理中AOB数量表现为接种20条g-1干土的处理(SBN20)接种10条g-1干土的处理(SBN10)接种40条g-1干土的处理(SBN40)。由于过度取食,SBN40处理中AOB的数量在培养了14d后低于SB处理,且在第28天时显著低于SB处理。接种食细菌线虫显著增加了土壤中NH4+-N和NO3-N的含量,表明食细菌线虫促进了N的矿化和硝化作用。矿化作用增强使得硝化作用的底物NH4+-N显著增加可能是AOB数量显著增多的重要原因之一。  相似文献   

4.
5.
利用荧光定量PCR、末端限制性片段长度多样性(T-RFLP)和基因克隆文库技术,比较了4种施氮水平(不施氮肥,0 kg N/hm~2,CK;施低水平氮肥,75 kg N/hm~2,N1;施中水平氮肥,150 kg N/hm~2,N2;施高水平氮肥,225 kg N/hm~2,N3)下华北平原地区小麦季表层(0—20 cm)土壤总细菌、氨氧化细菌(AOB)和氨氧化古菌(AOA)的丰度和群落结构。结果表明,土壤总细菌、AOB和AOA数量分别在每克干土5.74×10~9—7.50×10~9、8.89×10~6—2.66×10~7和3.83×10~8—7.78×10~8之间。不同施氮量土壤AOA数量均高于AOB数量,AOA/AOB值在81.72—14.38之间。增施氮肥显著显著提高AOB数量(P0.05),对总细菌和AOA数量的影响不显著(P0.05)。与CK相比,处理N1、N2和N3中AOB数量分别提高了0.64、1.50和1.99倍。增施氮肥显著改变了AOB和AOA的群落结构,且不同施氮量处理中AOB群落结构差异更大。系统进化分析显示,施氮肥小麦土壤AOB主要为Nitrosospira属类群,分布在Cluster 3的两个分支中;AOA分布在Cluster S的4个分支中。相关性分析显示,AOB数量与全氮和铵态氮含量呈显著正相关关系,与土壤pH和碳氮比呈显著负相关关系(P0.05);AOA数量与硝态氮含量和土壤pH呈显著正相关关系,与铵态氮含量呈显著负相关关系(P0.05)。研究结果表明:增施氮肥可显著改变华北平原地区碱性土壤AOB数量与群落结构,该地区小麦土壤中AOB比AOA对氮肥响应更敏感。  相似文献   

6.
A numerical simulation model was constructed for electrochemical cultivation of iron oxidizing bacterium, Thiobacillus ferrooxidans, based on Monod's dual limitation equation. In this model, two limiting factors were examined, low supply of Fe(II) ion and dissolved oxygen, from empirical viewpoints. The simulation model was constructed taking into consideration the energy balance based on the amount of the electronic flow from the electrode to bacteria via an iron ion, and then to oxygen. The model consisted of a logarithmic bacterial growth phase during the first three days, followed by a plateau and growth limitation thereafter. The predicted results were in agreement with the actual growth under electrochemical cultivation. It was predicted the growth limiting factor would be changed from insufficient supply of Fe(II) ions to that of oxygen by decreasing the value of oxygen transfer constant K, which correlated with the aeration rate. The optimum aeration rate was determined for the ideal electrochemical cultivation. The algorithm described here can be used in any electrochemical cultivation by modifying the parameters for each system.  相似文献   

7.
For biological nitrification, a set of experiments were carried out to approximate the response of lag period along with ammonia oxidation rate with respect to different concentrations of cyanide (CN) and ammonia-oxidizing bacteria (AOB), and temperature variation in laboratory-scale batch reactors. The effects of simultaneous changes in these three factors on ammonia oxidation were quantitatively estimated and modeled using response surface analysis. The lag period and the ammonia oxidation rate responded differently to changes in the three factors. The lag period and the ammonia oxidation rate were significantly affected by the CN and AOB concentrations, while temperature changes only affected the ammonia oxidation rate. The increase of AOB concentration and temperature alleviated the inhibition effect of cyanide on ammonia oxidation. The statistical method used in this study can be extended to estimate the quantitative effects of other environmental factors that can change simultaneously.  相似文献   

8.
It is generally accepted that iron‐oxidizing bacteria, Thiobacillus ferrooxidans, enhance chalcopyrite leaching. However, this article details a case of the bacteria suppressing chalcopyrite leaching. Bacterial leaching experiments were performed with sulfuric acid solutions containing 0 or 0.04 mol/dm3 ferrous sulfate. Without ferrous sulfate, the bacteria enhance copper extraction and oxidation of ferrous ions released from chalcopyrite. However, the bacteria suppressed chalcopyrite leaching when ferrous sulfate was added. This is mainly due to the bacterial consumption of ferrous ions which act as a promoter for chalcopyrite oxidation with dissolved oxygen. Coprecipitation of copper ions with jarosite formed by the bacterial ferrous oxidation also causes the bacterial suppression of copper extraction. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 478–483, 1999.  相似文献   

9.
10.
In grazed, grassland soils, sheep urine generates heterogeneity in ammonia concentrations, with potential impact on ammonia oxidizer community structure and soil N cycling. The influence of different levels of synthetic sheep urine on ammonia oxidizers was studied in grassland soil microcosms. 'Total' and active ammonia oxidizers were distinguished by comparing denaturing gradient gel electrophoresis (DGGE) profiles following PCR and RT-PCR amplification of 16S rRNA gene fragments, targeting DNA and RNA, respectively. The RNA-based approach indicated earlier, more reproducible and finer scale qualitative shifts in ammonia oxidizing communities than DNA-based analysis, but led to amplification of a small number of nonammonia oxidizer sequences. Qualitative changes in RNA-derived DGGE profiles were related to changes in nitrate accumulation. Sequence analysis of excised DGGE bands revealed that ammonia oxidizing communities in synthetic sheep urine-treated soils consisted mainly of Nitrosospira clusters 2, 3 and 4. Nitrosospira cluster 2 increased in relative abundance in microcosms treated with all levels of synthetic sheep urine. Low levels additionally led to increased relative abundance of Nitrosospira cluster 4 and medium and high levels increased relative abundance of cluster 3. Synthetic sheep urine is therefore likely to influence the spatial distribution and composition of ammonia oxidizer communities, with consequent effects on nitrate accumulation.  相似文献   

11.
The controversial arguments on the true substrate in nitritation kinetics might be due to the cells' dual substrate-transport system. Our experiments revealed that, under ammonia-rich environments, it diffused into the membrane (ammonia was the direct substrate); but, under oligotrophic, ammonium ion was actively transported (ammonium was the direct substrate). Facilitating this change-over, the bacterial composition in the sludge was altered, although the predominant was Nitrosomonas eutropha in most of the six chemostats. Also, the substrate affinity constant (Ks) fell resulting in partial compensation for the reduced availability of substrate. When the environmental ammonia concentration was lower than the cytoplasmic one, a backward diffusion appeared to take place, which probably had the cells accelerate its energy-consuming ammonium transport. The % ammonium oxidizing bacteria (AOB) to the total number of bacteria in the sludge remarkably decreased when cells were grown under oligotrophic environments. This could be evidence of the cellular energy dissipation caused by ammonia loss and recovery. Intracellular total ammonium nitrogen (TAN) accumulations were observed, which gradually increased from a basal value of ∼1 M (for AOB grown under copious environments) to much higher values (grown under oligotrophic environment). It did not affect the reaction kinetics but potentially served as a reserve against famine.  相似文献   

12.
一株嗜盐嗜碱硫氧化菌的筛选、鉴定及硫氧化特性   总被引:1,自引:0,他引:1  
【背景】沼气和天然气等清洁能源中往往会含有一定量的硫化氢,硫化氢的存在不仅污染环境,而且对人类危害很大。【目的】以硫代硫酸钠为唯一硫源从巴丹吉林沙漠盐碱湖岸边沉积物中分离筛选得到一株硫氧化菌BDL05,并研究其硫氧化特性。【方法】通过形态观察、生理生化特征及16S rRNA基因序列分析对硫氧化菌BDL05进行鉴定。【结果】菌株BDL05为革兰氏阴性菌,弧状,其16S rRNA基因序列与Thiomicrospira microaerophila ASL 8-2的相似性达99.8%,将其命名为Thiomicrospira microaerophila BDL05。该菌氧化硫代硫酸盐的最适pH为9.3,最适总钠盐浓度为0.8mol/L,在以硫化钠为硫源的气升式反应器中单质硫的生成率为94.7%,生成速率为3.0 mmol/(L·h)。【结论】菌株Thiomicrospira microaerophila BDL05为嗜盐嗜碱硫氧化菌,其耐盐耐碱性较强,比生长速率快,硫化钠氧化能力较强,是一株在气体生物脱硫方面具有应用价值的菌株。  相似文献   

13.
14.
严程  梅娟  赵由才 《生物工程学报》2022,38(4):1322-1338
好氧甲烷氧化菌能以甲烷作为碳源和能源,对全球甲烷消除的贡献率高达10%–20%,还能有效地合成有价值的甲烷来源生物产品。文中介绍了好氧甲烷氧化菌的甲烷氧化代谢机理,总结了好氧甲烷氧化菌在填埋场甲烷减排、煤矿通风气治理、合成生物产品、油气藏勘探等领域的实际应用功效和研究热点,即污染物去除和产品合成效率的影响因素。基于对甲烷氧化菌规模化培养方法的研究,本文认为加强培养过程中代谢产物对甲烷氧化菌活性和种群结构影响的研究,以及开发经济高效的替代培养基和培养技术的研究将有利于好氧甲烷氧化菌生物技术的应用推广。  相似文献   

15.
There is increasing evidence showing that ammonia‐oxidizing bacteria (AOB) are major contributors to N2O emissions from wastewater treatment plants (WWTPs). Although the fundamental metabolic pathways for N2O production by AOB are now coming to light, the mechanisms responsible for N2O production by AOB in WWTP are not fully understood. Mathematical modeling provides a means for testing hypotheses related to mechanisms and triggers for N2O emissions in WWTP, and can then also become a tool to support the development of mitigation strategies. This study examined the ability of four mathematical model structures to describe two distinct mechanisms of N2O production by AOB. The production mechanisms evaluated are (1) N2O as the final product of nitrifier denitrification with NO as the terminal electron acceptor and (2) N2O as a byproduct of incomplete oxidation of hydroxylamine (NH2OH) to NO. The four models were compared based on their ability to predict N2O dynamics observed in three mixed culture studies. Short‐term batch experimental data were employed to examine model assumptions related to the effects of (1) NH concentration variations, (2) dissolved oxygen (DO) variations, (3) NO accumulations and (4) NH2OH as an externally provided substrate. The modeling results demonstrate that all these models can generally describe the NH, NO, and NO data. However, none of these models were able to reproduce all measured N2O data. The results suggest that both the denitrification and NH2OH pathways may be involved in N2O production and could be kinetically linked by a competition for intracellular reducing equivalents. A unified model capturing both mechanisms and their potential interactions needs to be developed with consideration of physiological complexity. Biotechnol. Bioeng. 2013; 110: 153–163. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
硝化作用是氨被微生物氧化为硝酸盐的过程,分别由氨氧化微生物(AOB和AOA)和亚硝酸盐氧化细菌(NOB)主导完成.一个世纪以来,我们把这个分步硝化过程当成唯一的硝化途径来学习和研究.虽然根据动力学理论推测,环境中应该存在单步硝化作用,即由一种微生物单独完成整个硝化过程,将NH3氧化为NO3-,但一直没有研究能直接证明该种微生物的存在.直到2015年底,3个科研团队分别在不同环境中发现了3种不同的经过纯培养的细菌(Candidatus Nitrospira nitrosaCandidatus Nitrospira nitrificansCandidatus Nitrospira inopinata)和一种未经过纯培养的细菌(类Nitrospira),它们都具备单独将氨氧化为硝酸盐的能力,这些微生物被定义为全程氨氧化微生物(Comammox).单步硝化作用和全程氨氧化微生物的发现终结了传承百年的理论,并引发了众多关于全球氮素循环的重要科学问题,如这些微生物在环境中的生态位点及其在硝化作用中的相对贡献等.本文就单步硝化作用及全程氨氧化微生物的发现作了简要概述.  相似文献   

17.
Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.  相似文献   

18.
锰氧化细菌的生理生态功能与作用机制研究进展   总被引:1,自引:2,他引:1  
锰的生物地球化学循环过程与全球尺度的营养元素循环紧密联系,是影响全球生态平衡及气候变化的重要因素之一。在自然界中,锰元素主要以氧化锰和含氧酸盐的矿物形式存在,近年来的研究观点普遍认为细菌介导的氧化作用是自然环境中锰氧化物形成的主要原因。锰氧化细菌广泛分布于海洋、锰矿土壤等生态系统,近期在植物微生态系统中也被发现,其生理生态功能未知。细菌的锰氧化过程是一个复杂的过程,多铜氧化酶和过氧化物(氢)酶是参与该过程的主要酶类,但关于其催化机制的认识尚不成熟。本综述系统探讨锰氧化细菌的种类和分布、细菌锰氧化作用的生理生态功能、参与细菌锰氧化作用的功能酶及其分子机制,总结这一研究领域所取得的成果和仍未解决的科学问题,并对今后的发展方向进行展望。  相似文献   

19.
褐煤腐植酸对土壤氨氧化古菌群落结构的影响   总被引:2,自引:0,他引:2  
【目的】研究腐植酸(HA)对土壤氨氧化古菌(AOA)的影响,进而探讨HA对土壤氮循环的作用。【方法】采用末端标记限制性多态性分析(T-RFLP)和实时定量PCR技术,研究了两种腐植酸(原生腐植酸-cHA和降解后的腐植酸-bHA)与尿素一同施加于土壤中的氨氧化古菌(AOA)和古菌的群落结构及数量的变化。【结果】只加尿素的处理AOA数量明显增加,其群落结构也发生明显变化,而加入尿素和两种腐植酸(HA)的处理土壤中,AOA数量增加得到明显的抑制,且典范对应分析(canonical correspondence analysis,CCA)表明尿素是影响AOA群落结构的最大因素,而HA可以缓冲尿素对AOA群落结构的影响,从而可以稳定AOA的群落结构。只加入尿素的处理还导致了古菌数量降低,而两种HA均抑制古菌数量的降低,表明HA可以缓冲尿素对古菌的影响。CCA分析表明时间是影响古菌群落结构的最重要因素,将时间作为共变量的部分典范对应分析(partial canonical correspondence analysis,pCCA)表明除时间外古菌的群落结构对cHA也比较敏感。【结论】这些结果表明HA通过抑制AOA数量而调控其与植物竞争氨来减少氨的损失,从而提高尿素利用率。  相似文献   

20.

Aims

To investigate community shifts of amoA‐encoding archaea (AEA) and ammonia‐oxidizing bacteria (AOB) in biofilter under nitrogen accumulation process.

Methods and Results

A laboratory‐scale rockwool biofilter with an irrigated water circulation system was operated for 436 days with ammonia loading rates of 49–63 NH3 g m?3 day?1. The AEA and AOB communities were investigated by denaturing gradient gel electrophoresis, sequencing and real‐time PCR analysis based on amoA genes. The results indicated that changes in abundance and community compositions occurred in a different manner between archaeal and bacterial amoA during the operation. However, both microbial community structures mainly varied when free ammonia (FA) concentrations in circulation water were increasing, which caused a temporal decline in reactor performance. Dominant amoA sequences after this transition were related to Thaumarchaeotal Group I.1b, Nitrosomonas europaea lineages and one subcluster within Nitrosospira sp. cluster 3, for archaea and bacteria, respectively.

Conclusions

The specific FA in circulation water seems to be the important factor, which relates to the AOB and AEA community shifts in the biofilter besides ammonium and pH.

Significance and Impact of the Study

One of the key factors for regulating AEA and AOB communities was proposed that is useful for optimizing biofiltration technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号