首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth factors, hormones, and neurotransmitters have been implicated in the regulation of stem cell fate. Since various neural precursors express functional neurotransmitter receptors, which include G protein-coupled receptors, it is anticipated that they are involved in cell fate decisions. We detected mu-opioid receptor (MOR-1) and kappa-opioid receptor (KOR-1) expression and immunoreactivity in embryonic stem (ES) cells and in retinoic acid-induced ES cell-derived, nestin-positive, neural progenitors. Moreover, these G protein-coupled receptors are functional, since [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin, a MOR-selective agonist, and U69,593, a KOR-selective agonist, induce a sustained activation of extracellular signal-regulated kinase (ERK) signaling throughout a 24-h treatment period in undifferentiated, self-renewing ES cells. Both opioids promote limited proliferation of undifferentiated ES cells via the ERK/MAP kinase signaling pathway. Importantly, biochemical and immunofluorescence data suggest that [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin and U69,593 divert ES cells from self-renewal and coax the cells to differentiate. In retinoic acid-differentiated ES cells, opioid-induced signaling features a biphasic ERK activation profile and an opioid-induced, ERK-independent inhibition of proliferation in these neural progenitors. Collectively, the data suggest that opioids may have opposite effects on ES cell self-renewal and ES cell differentiation and that ERK activation is only required by the latter. Finally, opioid modulation of ERK activity may play an important role in ES cell fate decisions by directing the cells to specific lineages.  相似文献   

2.
The number of distinct signaling pathways that can transactivate the epidermal growth factor receptor (EGFR) in a single cell type is unclear. Using a single strain of human mammary epithelial cells, we found that a wide variety of agonists, such as lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factor-alpha, require EGFR activity to induce ERK phosphorylation. In contrast, hepatocyte growth factor can stimulate ERK phosphorylation independent of the EGFR. EGFR transactivation also correlated with an increase in cell proliferation and could be inhibited with metalloprotease inhibitors. However, there were significant differences with respect to transactivation kinetics and sensitivity to different inhibitors. In particular, IGF-1 displayed relatively slow transactivation kinetics and was resistant to inhibition by the selective ADAM-17 inhibitor WAY-022 compared with LPA-induced transactivation. Studies using anti-ligand antibodies showed that IGF-1 transactivation required amphiregulin production, whereas LPA was dependent on multiple ligands. Direct measurement of ligand shedding confirmed that LPA treatment stimulated shedding of multiple EGFR ligands, but paradoxically, IGF-1 had little effect on the shedding rate of any ligand, including amphiregulin. Instead, IGF-1 appeared to work by enhancing EGFR activation of Ras in response to constitutively produced amphiregulin. This enhancement of EGFR signaling was independent of both receptor phosphorylation and PI-3-kinase activity, suggestive of a novel mechanism. Our studies demonstrate that within a single cell type, the EGFR autocrine system can couple multiple signaling pathways to ERK activation and that this modulation of EGFR autocrine signaling can be accomplished at multiple regulatory steps.  相似文献   

3.
Many G protein-coupled receptors (GPCRs) activate MAP kinases by stimulating tyrosine kinase signaling cascades. In some systems, GPCRs stimulate tyrosine phosphorylation by inducing the "transactivation" of a receptor tyrosine kinase (RTK). The mechanisms underlying GPCR-induced RTK transactivation have not been clearly defined. Here we report that GPCR activation mimics growth factor-mediated stimulation of the epidermal growth factor receptor (EGFR) with respect to many facets of RTK function. beta(2)-Adrenergic receptor (beta(2)AR) stimulation of COS-7 cells induces EGFR dimerization, tyrosine autophosphorylation, and EGFR internalization. Coincident with EGFR transactivation, isoproterenol exposure induces the formation of a multireceptor complex containing both the beta(2)AR and the "transactivated" EGFR. beta(2)AR-mediated EGFR phosphorylation and subsequent beta(2)AR stimulation of extracellular signal-regulated kinase (ERK) 1/2 are sensitive to selective inhibitors of both EGFR and Src kinases, indicating that both kinases are required for EGFR transactivation. beta(2)AR-dependent signaling to ERK1/2, like direct EGF stimulation of ERK1/2 activity, is sensitive to inhibitors of clathrin-mediated endocytosis, suggesting that signaling downstream of both the EGF-activated and the GPCR-transactivated EGFRs requires a productive engagement of the complex with the cellular endocytic machinery. Thus, RTK transactivation is revealed to be a process involving both association of receptors of distinct classes and the interaction of the transactivated RTK with the cells endocytic machinery.  相似文献   

4.
The specific delta-opioid receptor agonist [D-Ala(2)-D-Leu(5)]enkephalin (DADLE) protects against infarction in the heart when given before ischemia. In rabbit, this protection leads to phosphorylation of the pro-survival kinases Akt and extracellular signal-regulated kinase (ERK) and is dependent on transactivation of the epidermal growth factor receptor (EGFR). DADLE reportedly protects rat hearts at reperfusion. We therefore tested whether DADLE at reperfusion could protect isolated rabbit hearts subjected to 30 min of regional ischemia and 120 min of reperfusion and whether this protection is dependent on Akt, ERK, and EGFR. DADLE (40 nM) was infused for 1 h starting 5 min before reperfusion and reduced infarct size from 31.0 +/- 2.3% in the control group to 14.6 +/- 1.6% (P = 0.01). This protection was abolished by cotreatment of the metalloproteinase inhibitor (MPI) and the EGFR inhibitor AG1478. In contrast, 20 nM DADLE, although known to be protective before ischemia, failed to protect. Western blotting revealed that DADLE's protection was correlated to increase in phosphorylation of the kinases Akt and ERK1 and -2 in reperfused hearts (2.5 +/- 0.5, 1.6 +/- 0.2, and 2.3 +/- 0.7-fold of baseline levels, P < 0.05 vs. control). The DADLE-dependent increases in Akt and ERK1/2 phosphorylation were abolished by either MPI or AG1478, confirming a signaling through the EGFR pathway. Additionally, DADLE treatment increased phosphorylation of EGFR (1.4 +/- 0.2-fold, P = 0.03 vs. control). Thus the delta-opioid agonist DADLE protects rabbit hearts at reperfusion through activation of the pro-survival kinases Akt and ERK and is dependent on the transactivation of the EGFR.  相似文献   

5.
Agonist-mediated activation of the type 1 parathyroid hormone receptor (PTH1R) results in several signaling events and receptor endocytosis. It is well documented that arrestins contribute to desensitization of both G(s)- and G(q)-mediated signaling and mediate PTH1R internalization. However, whether PTH1R trafficking directly contributes to signaling remains unclear. To address this question, we investigated the role of PTH1R trafficking in cAMP signaling and activation of extracellular signal-regulated kinases ERK1/2 in HEK-293 cells. Dominant negative forms of dynamin (K44A-dynamin) and beta-arrestin1 (beta-arrestin1-(319-418)) abrogated PTH1R internalization but had no effect on cAMP signaling; neither acute cAMP production by PTH nor desensitization and resensitization of cAMP signaling were affected. Therefore, PTH1R trafficking is not necessary for regulation of cAMP signaling. PTH-(1-34) induced rapid and robust activation of ERK1/2. A PTHrP-based analog ([p-benzoylphenylalanine1, Ile5,Arg(11,13),Tyr36]PTHrP-(1-36)NH2), which selectively activates the G(s)/cAMP pathway without inducing PTH1R endocytosis, failed to stimulate ERK1/2 activity. Inhibition of PTH1R endocytosis by K44A-dynamin dampened ERK1/2 activation in response to PTH-(1-34) by 69%. Incubation with the epidermal growth factor receptor inhibitor AG1478 reduced ERK1/2 phosphorylation further. In addition, ERK1/2 phosphorylation occurred following internalization of a PTH1R mutant induced by PTH-(7-34) in the absence of G protein signaling. Collectively, these data indicate that PTH1R trafficking and G(q) (but not G(s)) signaling independently contribute to ERK1/2 activation, predominantly via transactivation of the epidermal growth factor receptor.  相似文献   

6.
Exposure of MDA-MB-468 cells to ionizing radiation (IR) caused biphasic activation of ERK as indicated by its phosphorylation at Thr202/Tyr204. Specific epidermal growth factor receptor (EGFR) inhibitor AG1478 and specific Src inhibitor PP2 inhibited IR-induced ERK1/2 activation but phosphatidylinositol-3 kinase inhibitor wortmannin did not. IR caused EGFR tyrosine phosphorylation, whereas it did not induce EGFR autophosphorylation at Tyr992, Tyr1045, and Tyr1068 or Src-dependent EGFR phosphorylation at Tyr845. SHP-2, which positively regulates EGFR/Ras/ERK signaling cascade, became activated by IR as indicated by its phosphorylation at Tyr542. This activation was inhibited by PP2 not by AG1478, which suggests Src-dependent activation of SHP-2. Src and PTPalpha, which positively regulates Src, became activated as indicated by phosphorylation at Tyr416 and Tyr789, respectively. These data suggest that IR-induced ERK1/2 activation involves EGFR through a Src-dependent pathway that is distinct from EGFR ligand activation.  相似文献   

7.
Communication between receptor tyrosine kinase and G protein-coupled receptor (GPCR)-mediated signaling is recognized as a common integrator linking diverse aspects of intracellular signaling systems. Here, we report that G protein-coupled beta-adrenergic receptor activation leading to stimulation of salivary phospholipid release occurs with the involvement of epidermal growth factor receptor (EGFR). Using sublingual gland acinar cells, we show that prosecretory effect of isoproterenol on phospholipid release was subjected to suppression by EGFR kinase inhibitor, PD153035, and wortmannin, an inhibitor of PI3K, but not by PD98059, an inhibitor of extracellular signal regulated kinase (ERK). Furthermore, wortmannin, but not the ERK inhibitor, caused the reduction in the acinar cell secretory responses to beta-adrenergic agonist-generated cAMP as well as adenyl cyclase activator, forskolin. The acinar cell phospholipid secretory responses to isoproterenol, moreover, were inhibited by PP2, a selective inhibitor of tyrosine kinase Src responsible for ligand-independent EGFR phosphorylation. Taken together, our data are the first to demonstrate the requirement for Src kinase-dependent EGFR transactivation in regulation of salivary phospholipid secretion in response to beta-adrenergic GPCR activation.  相似文献   

8.
Galpha(i)-coupled receptor stimulation results in epidermal growth factor receptor (EGFR) phosphorylation and MAPK activation. Regulators of G protein signaling (RGS proteins) inhibit G protein-dependent signal transduction by accelerating Galpha(i) GTP hydrolysis, shortening the duration of G protein effector stimulation. RGS16 contains two conserved tyrosine residues in the RGS box, Tyr(168) and Tyr(177), which are predicted sites of phosphorylation. RGS16 underwent phosphorylation in response to m2 muscarinic receptor or EGFR stimulation in HEK 293T or COS-7 cells, which required EGFR kinase activity. Mutational analysis suggested that RGS16 was phosphorylated on both tyrosine residues (Tyr(168) Tyr(177)) after EGF stimulation. RGS16 co-immunoprecipitated with EGFR, and the interaction did not require EGFR activation. Purified EGFR phosphorylated only recombinant RGS16 wild-type or Y177F in vitro, implying that EGFR-mediated phosphorylation depended on residue Tyr(168). Phosphorylated RGS16 demonstrated enhanced GTPase accelerating (GAP) activity on Galpha(i). Mutation of Tyr(168) to phenylalanine resulted in a 30% diminution in RGS16 GAP activity but completely eliminated its ability to regulate G(i)-mediated MAPK activation or adenylyl cyclase inhibition in HEK 293T cells. In contrast, mutation of Tyr(177) to phenylalanine had no effect on RGS16 GAP activity but also abolished its regulation of G(i)-mediated signal transduction in these cells. These data suggest that tyrosine phosphorylation regulates RGS16 function and that EGFR may potentially inhibit Galpha(i)-dependent MAPK activation in a feedback loop by enhancing RGS16 activity through tyrosine phosphorylation.  相似文献   

9.
The receptor for insulin-like growth factor 1 (IGF-1) mediates multiple cellular responses, including stimulation of both proliferative and anti-apoptotic pathways. We have examined the role of cross talk between the IGF-1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR) in mediating responses to IGF-1. In COS-7 cells, IGF-1 stimulation causes tyrosine phosphorylation of the IGF-1R beta subunit, the EGFR, insulin receptor substrate-1 (IRS-1), and the Shc adapter protein. Shc immunoprecipitates performed after IGF-1 stimulation contain coprecipitated EGFR, suggesting that IGF-1R activation induces the assembly of EGFR.Shc complexes. Tyrphostin AG1478, an inhibitor of the EGFR kinase, markedly attenuates IGF-1-stimulated phosphorylation of EGFR, Shc, and ERK1/2 but has no effect on phosphorylation of IGF-1R, IRS-1, and protein kinase B (Akt). Cross talk between IGF-1 and EGF receptors is mediated through an autocrine mechanism involving matrix metalloprotease-dependent release of heparin-binding EGF (HB-EGF), because IGF-1-mediated ERK activation is inhibited both by [Glu(52)]Diphtheria toxin, a specific inhibitor of HB-EGF, and the metalloprotease inhibitor 1,10-phenanthroline. These data demonstrate that IGF-1 stimulation of the IRS-1/PI3K/Akt pathway and the EGFR/Shc/ERK1/2 pathway occurs by distinct mechanisms and suggest that IGF-1-mediated "transactivation" of EGFR accounts for the majority of IGF-1-stimulated Shc phosphorylation and subsequent activation of the ERK cascade.  相似文献   

10.
Prostaglandins (PGs) such as PGE2 enhance proliferation in many cells, apparently through several distinct mechanisms, including transactivation of the epidermal growth factor (EGF) receptor (EGFR) as well as EGFR-independent pathways. In this study we found that in primary cultures of rat hepatocytes PGE2 did not induce phosphorylation of the EGFR, and the EGFR tyrosine kinase blockers gefitinib and AG1478 did not affect PGE2-stimulated phosphorylation of ERK1/2. In contrast, PGE2 elicited EGFR phosphorylation and EGFR tyrosine kinase inhibitor-sensitive ERK phosphorylation in MH1C1 hepatoma cells. These findings suggest that PGE2 elicits EGFR transactivation in MH1C1 cells but not in hepatocytes. Treatment of the hepatocytes with PGE2 at 3 h after plating amplified the stimulatory effect on DNA synthesis of EGF administered at 24 h and advanced and augmented the cyclin D1 expression in response to EGF in hepatocytes. The pretreatment of the hepatocytes with PGE2 resulted in an increase in the magnitude of EGF-stimulated Akt phosphorylation and ERK1/2 phosphorylation and kinase activity, including an extended duration of the responses, particularly of ERK, to EGF in PGE2-treated cells. Pertussis toxin abolished the ability of PGE2 to enhance the Akt and ERK responses to EGF. The results suggest that in hepatocytes, unlike MH1C1 hepatoma cells, PGE2 does not transactivate the EGFR, but instead acts in synergism with EGF by modulating mitogenic mechanisms downstream of the EGFR. These effects seem to be at least in part G(i) protein-mediated and include upregulation of signaling in the PI3K/Akt and the Ras/ERK pathways.  相似文献   

11.
In this study, we present multiple lines of evidence to support a critical role for heparin-bound EGF (epidermal growth factor)-like growth factor (HB-EGF) and tumor necrosis factor-alpha-converting enzyme (TACE) (ADAM17) in the transactivation of EGF receptor (EGFR), ERK phosphorylation, and cellular proliferation induced by the 5-HT(2A) receptor in renal mesangial cells. 5-hydroxy-tryptamine (5-HT) resulted in rapid activation of TACE, HB-EGF shedding, EGFR activation, ERK phosphorylation, and longer term increases in DNA content in mesangial cells. ERK phosphorylation was attenuated by 1) neutralizing EGFR antibodies and the EGFR kinase inhibitor, AG1478, 2) neutralizing HB-EGF, but not amphiregulin, antibodies, heparin, or CM197, and 3) pharmacological inhibitors of matrix-degrading metalloproteinases or TACE small interfering RNA. Exogenously administered HB-EGF stimulated ERK phosphorylation. Additionally, TACE was co-immunoprecipitated with HB-EGF. Small interfering RNA against TACE also blocked 5-HT-induced increases in ERK phosphorylation, HB-EGF shedding, and DNA content. In aggregate, this work supports a pathway map that can be depicted as follows: 5-HT --> 5-HT(2A) receptor --> TACE --> HB-EGF shedding --> EGFR --> ERK --> increased DNA content. To our knowledge, this is the first time that TACE has been implicated in 5-HT-induced EGFR transactivation or in proliferation induced by a G protein-coupled receptor in native cells in culture.  相似文献   

12.
Ca(2+)-dependent agonists, such as carbachol (CCh), stimulate epidermal growth factor receptor (EGFR) transactivation and mitogen-activated protein kinase activation in T(84) intestinal epithelial cells. This pathway constitutes an antisecretory mechanism by which CCh-stimulated chloride secretion is limited. Here, we investigated mechanisms underlying CCh-stimulated epidermal growth factor receptor (EGFR) transactivation. Thapsigargin (TG, 2 microM) stimulated EGFR and extracellular signal-regulated kinase (ERK) phosphorylation in T(84) cells. Inhibition of either EGFR or ERK activation, with tyrphostin AG1478 (1 microM) and PD 98059 (20 microM), respectively, potentiated chloride secretory responses to TG, as measured by changes in short-circuit current (I(sc)) across T(84) cells. CCh (100 microM) stimulated tyrosine phosphorylation and association of the Ca(2+)-dependent tyrosine kinase, PYK-2, with the EGFR, which was inhibited by the Ca(2+) chelator, BAPTA (20 microM). The calmodulin inhibitor, fluphenazine (50 microM) inhibited CCh-stimulated PYK-2 association with the EGFR and phosphorylation of EGFR and ERK. CCh also induced tyrosine phosphorylation of p60(src) and association of p60(src) with both PYK-2 and the EGFR. The Src family kinase inhibitor, PP2 (20 nM-20 microM) attenuated CCh-stimulated EGFR and ERK phosphorylation and potentiated chloride secretory responses to CCh. We conclude that CCh-stimulated transactivation of the EGFR is mediated by a pathway involving elevations in intracellular Ca(2+), calmodulin, PYK-2, and p60(src). This pathway represents a mechanism that limits CCh-stimulated chloride secretion across intestinal epithelia.  相似文献   

13.
Thrombin activates protease-activated receptor-1 (PAR-1) and engages signaling pathways that influence the growth and survival of cardiomyocytes as well as extracellular matrix remodeling by cardiac fibroblasts. This study examines the role of Shc proteins in PAR-1-dependent signaling pathways that influence ventricular remodeling. We show that thrombin increases p46Shc/p52Shc phosphorylation at Tyr(239)/Tyr(240) and Tyr(317) (and p66Shc-Ser(36) phosphorylation) via a pertussis toxin-insensitive epidermal growth factor receptor (EGFR) transactivation pathway in cardiac fibroblasts; p66Shc-Ser(36) phosphorylation is via a MEK-dependent mechanism. In contrast, cardiac fibroblasts express beta(2)-adrenergic receptors that activate ERK through a pertussis toxin-sensitive EGFR transactivation pathway that does not involve Shc isoforms or lead to p66Shc-Ser(36) phosphorylation. In cardiomyocytes, thrombin triggers MEK-dependent p66Shc-Ser(36) phosphorylation, but this is not via EGFR transactivation (or associated with Shc-Tyr(239)/Tyr(240) and/or Tyr(317) phosphorylation). Importantly, p66Shc protein expression is detected in neonatal, but not adult, cardiomyocytes; p66Shc expression is induced (via a mechanism that requires protein kinase C and MEK activity) by Pasteurella multocida toxin, a Galpha(q) agonist that promotes cardiomyocyte hypertrophy. These results identify novel regulation of individual Shc isoforms in receptor-dependent pathways leading to cardiac hypertrophy and the transition to heart failure. The observations that p66Shc expression is induced by a Galpha(q) agonist and that PAR-1 activation leads to p66Shc-Ser(36) phosphorylation identifies p66Shc as a novel candidate hypertrophy-induced mediator of cardiomyocyte apoptosis and heart failure.  相似文献   

14.
Previous studies showed that the epidermal growth factor receptor (EGFR) can be transactivated by platelet-derived growth factor (PDGF) stimulation and that EGFR transactivation is required for PDGF-stimulated cell migration. To investigate the mechanism for cross talk between the PDGF beta receptor (PDGFbetaR) and the EGFR, we stimulated rat aortic vascular smooth muscle cells (VSMC) with 20 ng of PDGF/ml. Transactivation of the EGFR, defined by receptor tyrosine phosphorylation, occurred with the same time course as PDGFbetaR activation. Basal formation of PDGFbetaR-EGFR heterodimers was shown by coimmunoprecipitation studies, and interestingly, disruption of this receptor heterodimer abolished EGFR transactivation. Breakdown of the heterodimer was observed when VSMC were pretreated with antioxidants or with a Src family kinase inhibitor. Disruption of heterodimers decreased ERK1 and ERK2 activation by PDGF. Although PDGF-induced PDGFbetaR activation was abolished after pretreatment with 1 microM AG1295 (a specific PDGF receptor kinase inhibitor), EGFR transactivation was still observed, indicating that PDGFbetaR kinase activity is not required. In conclusion, our data demonstrate that the PDGFbetaR and the EGFR form PDGFbetaR-EGFR heterodimers basally, and we suggest that heterodimers represent a novel signaling complex which plays an important role in PDGF signal transduction.  相似文献   

15.
Many G protein coupled receptors (GPCRs) cause phosphorylation of MAP kinases through transactivation of the epidermal growth factor receptor (EGF-R), leading to increased cell survival and growth, motility, and migration. Phosphoinositide 3-kinase (PI3K) is one of the important cell survival signaling molecules activated by EGF-R stimulation. However, the extent to which EGF-R transactivation is essential for GPCR agonist-stimulated PI3K activation is not known. Here we examined the mechanism of PI3K activation that elicits GPCR-mediated ERK1/2 activation by pathways dependent and/or independent of EGF-R transactivation in specific cell types. Immortalized hypothalamic neurons (GT1-7 cells) express endogenous gonadotropin-releasing hormone receptors (GnRH-R) and their stimulation causes marked phosphorylation of ERK1/2 and Akt (Ser 473) through transactivation of the EGF-R and recruitment of PI3K. In C9 hepatocytes, agonist activation of AT1 angiotensin II (AT1-R), lysophosphatidic acid (LPA), and EGF receptors caused phosphorylation of Akt through activation of the EGF-R in a PI3K-dependent manner. However, ERK1/2 activation by these agonists in these cells was independent of PI3K activation. In contrast, agonist stimulation of HEK 293 cells stably expressing AT1-R caused ERK1/2 phosphorylation that was independent of EGF-R transactivation but required PI3K activation. LPA signaling in these cells showed partial and complete dependence on EGF-R and PI3K, respectively. These data indicate that GPCR-induced ERK1/2 phosphorylation is dependent or independent of PI3K in specific cell types, and that the involvement of PI3K during ERK1/2 activation is not dependent solely on agonist-induced transactivation of the EGF-R.  相似文献   

16.
The aryl hydrocarbon receptor (AhR) mediates many toxic effects of environmental pollutants. AhR also interacts with multiple growth factor-driven signaling pathways. In the course of examining effects of growth factors on proliferation of human colon cancer cells, we identified cross talk between AhR and the epidermal growth factor receptor (EGFR). In the present work, we explored underlying signal transduction mechanisms and functional consequences of this interaction. With the use of two human colon cancer cell lines, H508 and SNU-C4, we examined the effects of AhR ligands including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on cell proliferation and activation of EGFR, ERK1/2, and Src kinases. In colon cancer cells, 5-day incubation with TCDD stimulated a twofold dose-dependent increase in cell proliferation that was detectable with 1 nM and maximal with 30 nM TCDD. TCDD induced dose- and time-dependent phosphorylation of EGFR (Tyr845) and ERK1/2; maximal phosphorylation was observed 5 to 10 min after addition of 30 nM TCDD. Both TCDD-induced ERK1/2 phosphorylation and cell proliferation were abolished by AhR small interfering RNA, AhR-specific inhibitor CH223191, Src kinase inhibitor PP2, neutralizing antibodies against matrix metalloproteinase 7, heparin-binding-EGF-like growth factor and EGFR, EGFR inhibitors (AG1478 and PD168393), and MEK1 inhibitor PD98059. Coimmunoprecipitation experiments revealed that AhR forms a protein complex with Src and regulates Src activity by phosphorylating Src (Tyr416) and dephosphorylating Src (Tyr527). These data support novel observations that, in human colon cancer cells, Src-mediated cross talk between aryl hydrocarbon and EGFR results in ERK1/2 activation, thereby stimulating cell proliferation.  相似文献   

17.
The epidermal growth factor receptor (EGFR) is an integral regulator of many cellular functions. EGFR also acts as a central conduit for extracellular signals involving direct activation of the receptor by EGFR ligands or indirect activation by G protein-coupled receptor (GPCR)-stimulated transactivation of the EGFR. We have previously shown that EGFR negatively regulates epithelial chloride secretion as a result of transforming growth factor-alpha-mediated EGFR transactivation in response to muscarinic GPCR activation. Here we show that direct activation of the EGFR by EGFR ligands produces a different pattern of EGFR tyrosine phosphorylation and downstream phosphatidylinositol 3-kinase recruitment than GPCR-stimulated transactivation of the EGFR occurring via paracrine EGFR ligand release. Moreover, we demonstrate that this differential signaling and its consequences depend on protein-tyrosine phosphatase 1B activity. Thus protein-tyrosine phosphatase 1B governs differential recruitment of signaling pathways involved in EGFR regulation of epithelial ion transport. Our findings furthermore establish how divergent signaling outcomes can arise from the activation of a single receptor.  相似文献   

18.
Matrix metalloproteinases (MMPs) have been implicated in the transactivation of the epidermal growth factor receptor (EGFR) induced by G-protein coupled receptor (GPCR) agonists. Although EGFR phosphorylation and downstream signaling have been shown to be dependent on MMP activity in many systems, a role for MMPs in GPCR-induced DNA synthesis has not been studied in any detail. In this study we utilized the broad-spectrum matrix metalloproteinase inhibitor, galardin (Ilomastat, GM 6001), to study the mechanism of bombesin- or LPA-induced EGFR transactivation and the role of MMPs in early and late response mitogenic signaling in Rat-1 cells stably transfected with the bombesin/GRP receptor (BoR-15 cells). Addition of galardin to cells stimulated with bombesin or LPA specifically inhibited total EGFR phosphorylation, as well as site-specific phosphorylation of tyrosine 845, a putative Src phosphorylation site, and tyrosine 1068, a typical autophosphorylation site. Galardin treatment also inhibited extracellular signal-regulated kinase (ERK) activation induced by bombesin or LPA, but not by EGF. In addition, galardin inhibited bombesin- or LPA-induced DNA synthesis in a dose dependent manner, when stimulated by increasing concentrations of bombesin, and when added after bombesin stimulation. Furthermore, addition of galardin post-bombesin stimulation indicated that by 3 h sufficient accumulation of EGFR ligands had occurred to continue to induce transactivation despite an inhibition of MMP activity. Taken together, our results suggest that MMPs act as early as 5 min, and up to around 3 h, to mediate GPCR-induced EGFR transactivation, ERK activation, and stimulation of DNA synthesis.  相似文献   

19.
Proximal events in signaling by plasma membrane estrogen receptors   总被引:18,自引:0,他引:18  
Estradiol (E2) rapidly stimulates signal transduction from plasma membrane estrogen receptors (ER) that are G protein-coupled. This is reported to occur through the transactivation of the epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor, similar to other G protein-coupled receptors. Here, we define the signaling events that result in EGFR and ERK activation. E2-stimulated ERK required ER in breast cancer and endothelial cells and was substantially prevented by expression of a dominant negative EGFR or by tyrphostin AG1478, a specific inhibitor for EGFR tyrosine kinase activity. Transactivation/phosphorylation of EGFR by E2 was dependent on the rapid liberation of heparin-binding EGF (HB-EGF) from cultured MCF-7 cells and was blocked by antibodies to this ligand for EGFR. Expression of dominant negative mini-genes for Galpha(q) and Galpha(i) blocked E2-induced, EGFR-dependent ERK activation, and Gbetagamma also contributed. G protein activation led to activation of matrix metalloproteinases (MMP)-2 and -9. This resulted from Src-induced MMP activation, implicated using PP2 (Src family kinase inhibitor) or the expression of a dominant negative Src protein. Antisense oligonucleotides to MMP-2 and MMP-9 or ICI 182780 (ER antagonist) each prevented E2-induced HB-EGF liberation and ERK activation. E2 also induced AKT up-regulation in MCF-7 cells and p38beta MAP kinase activity in endothelial cells, blocked by an MMP inhibitor, GM6001, and tyrphostin AG1478. Targeting of only the E domain of ERalpha to the plasma membrane resulted in MMP activation and EGFR transactivation. Thus, specific G proteins mediate the ability of E2 to activate MMP-2 and MMP-9 via Src. This leads to HB-EGF transactivation of EGFR and signaling to multiple kinase cascades in several target cells for E2. The E domain is sufficient to enact these events, defining additional details of the important cross-talk between membrane ER and EGFR in breast cancer.  相似文献   

20.
Our previous studies indicated that opioid-induced cardioprotection occurs via activation of mitochondrial ATP-sensitive K(+) (K(ATP)) channels. However, other elements of the Met(5)-enkephalin (ME) cardioprotection pathway are not fully characterized. In the present study, we investigated the role of tyrosine kinase, MAPK, and phosphatidylinositol 3-kinase (PI3K) signaling in ME-induced protection. Ca(2+)-tolerant, adult rabbit cardiomyocytes were isolated by collagenase digestion and subjected to simulated ischemia for 180 min. ME was administered 15 min before the 180 min of simulated ischemia; blockers were administered 15 min before ME. Cell death was assessed by trypan blue as a function of time. The epidermal growth factor receptor (EGFR) kinase inhibitor AG-1478 (250 nM) blocked ME-induced protection, but the inactive analog AG-9 (100 microM) did not. Treatment with herbimycin (1 microM) completely eliminated ME-induced protection. To verify that ME activates EGFR and to determine the involvement of Src, Western blotting of EGFR was performed after ME administration with and without herbimycin A. ME resulted in herbimycin-sensitive robust phosphorylation of EGFR at Tyr(992) and Tyr(1068). Administration of the selective MAPK inhibitor PD-98059 (10 nM) and the specific MEK1/2 inhibitor U-0126 (10 microM) also inhibited ME-induced cardioprotection. ME-induced ERK1/2 phosphorylation was significantly reduced by PD-98059, the EGFR kinase inhibitor PD-153035 (10 microM), and chelerythrine (2 microM). The PI3K inhibitor LY-294002 (20 microM) abrogated ME-induced protection, and ME-induced Akt phosphorylation at Ser(473) was suppressed by LY-294002, PD-153035, and chelerythrine. We conclude that ME-induced cardioprotection is mediated via Src-dependent EGFR transactivation and activation of the PI3K and MAPK pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号