首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A defatted fraction obtained from the hexane extract of the fruits of Melia azedarach L. (chinaberry tree; Meliaceae) exhibited cytotoxic activities against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines with IC50 values in the range of 2.9–21.9 μg/ml. Three new limonoids, 3‐deacetyl‐4′‐demethylsalannin ( 5 ), 3‐deacetyl‐28‐oxosalannin ( 14 ), and 1‐detigloylohchinolal ( 17 ), along with 16 known limonoids, 1 – 4, 6 – 13, 15, 16, 18 , and 19 , and one known triterpenoid, 20 , were isolated from the fraction. The structures of new compounds were elucidated on the basis of extensive spectroscopic analyses and comparison with literature. These compounds were evaluated for their cytotoxic activities against the four cancer cell lines mentioned above. 3‐Deacetyl‐4′‐demethyl‐28‐oxosalannin ( 16 ), which exhibited potent cytotoxicity against AZ521 (IC50 3.2 μM ) cells, induced typical apoptotic cell death in AZ521 cells upon evaluation of the apoptosis‐inducing activity by flow cytometry. This work provided, furthermore, valuable information on the structural features of limonoids of the fruits and/or seeds of Melia azedarach and related Meliaceae plants, M. toosendan and Azadirachta indica.  相似文献   

2.
A new limonoid, 7‐O‐acetyl‐7‐O‐debenzoyl‐22‐hydroxy‐21‐methoxylimocinin ( 2 ), and two new flavonoids, 3′‐(3‐hydroxy‐3‐methylbutyl)naringenin ( 7 ) and 4′‐O‐methyllespedezaflavanone C ( 9 ), along with nine known compounds, including two limonoids, 1 and 3 , and seven flavonoids, 4 – 6, 8 , and 10 – 12 , were isolated from a MeOH extract of the flowers of Azadirachta indica A.Juss. var. siamensis Valeton (Siamese neem tree; Meliaceae). The structures of new compounds were elucidated on the basis of extensive spectroscopic analysis and comparison with literature data. All of these compounds were evaluated for their melanogenesis‐inhibitory activities in B16 melanoma cells induced with α‐melanocyte‐stimulating hormone (α‐MSH). Compound 2 (16.9% melanin content at 30 μM ), 6‐deacetylnimbin ( 3 ; 49.6% melanin content at 100 μM ), and kaempferide ( 10 ; 41.7% melanin content at 10 μM ) exhibited inhibitory effects with no, or almost no, toxicity to the cells (81.0–111.7% cell viability). In addition, evaluation of their cytotoxic activities against HL60, A549, AZ521, and SK‐BR‐3 human cancer cell lines, isoazadironolide ( 1 ), 4′‐O‐methyl‐8‐prenylnaringenin ( 5 ), euchrestaflavanone A ( 8 ), 9 , and 3‐methoxy‐3′‐prenylnaringenin ( 12 ) revealed potent cytotoxicities against one or more cell lines with IC50 values in the range of 4.5–9.9 μM .  相似文献   

3.
Two new limonoids, trichilinin M ( 1 ) and ohchinin benzoate ( 2 ), along with two known limonoids, 12-hydroxyamoorastatone ( 3 ) and mesendanin H ( 4 ), were isolated from the fruits of Melia azedarach Linn. The structures of new limonoids were determined by analyses of HR-ESI-MS, 1D and 2D NMR (HSQC, HMBC and NOESY) data. All compounds were evaluated against human pancreatic cancer PANC1 cells and the results showed that compounds 3 – 4 exhibited substantial cytotoxic activity ( 3 : IC50=4.55 μM; 4 : IC50=7.54 μM), and compounds 1 – 2 exhibited moderate cytotoxicity ( 1 : IC50=27.06 μM; 2 : IC50=21.17 μM).  相似文献   

4.
5.
Nine limonoids, 1 – 9 , one apocarotenoid, 11 , one alkaloid, 12 , and one steroid, 13 , from the leaf extract; and one triterpenoid, 10 , five steroids, 14 – 18 , and two flavonoids, 19 and 20 , from the bark extract of Melia azedarach L. (Chinaberry tree; Meliaceae) were isolated. Among these compounds, three compounds, 4 – 6 , were new, and their structures were established as 3‐deacetyl‐28‐oxosalannolactone, 3‐deacetyl‐28‐oxosalanninolide, and 3‐deacetyl‐17‐defurano‐17,28‐dioxosalannin, respectively, on the basis of extensive spectroscopic analyses and comparison with literature data. All of the isolated compounds were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines. 3‐Deacetyl‐4′‐demethyl‐28‐oxosalannin ( 3 ) against HL60 and AZ521 cells, and methyl kulonate ( 10 ) against HL60 cells exhibited potent cytotoxicities with IC50 values in the range of 2.8–5.8 μM . In addition, upon evaluation of compounds 1 – 13 against production of nitric oxide (NO) in mouse macrophage RAW 264.7 cells induced by lipopolysaccharide (LPS), seven, i.e., trichilinin B ( 1 ), 4 , ohchinin ( 7 ), 23‐hydroxyohchininolide ( 8 ), 21‐hydroxyisoohchininolide ( 9 ), 10 , and methyl indole 3‐carboxylate ( 12 ), inhibited production of NO with IC50 values in the range of 4.6–87.3 μM with no, or almost no, toxicity to the cells (IC50 93.2–100 μM ). Western blot analysis revealed that compound 7 reduced the expression levels of the inducible NO synthase (iNOS) and COX‐2 proteins in a concentration‐dependent manner. Furthermore, compounds 5, 6, 13 , and 18 – 20 exhibited potent inhibitory effects (IC50 299–381 molar ratio/32 pmol TPA) against Epstein? Barr virus early antigen (EBV‐EA) activation induced by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) in Raji cell line.  相似文献   

6.
Treatment of eight C‐seco limonoids including six of salannin‐type, 1 – 6 , and two of nimbin‐type, 7 and 8 , with a combination of BF3 · Et2O and iodide ion yielded the isomeric C‐seco derivatives, i.e., six isosalannins, 1a – 6a , and two isonimbins, 7a and 8a , respectively. Ohchinin ( 1 ) was further subjected to LiAlH4 reduction which yielded a deesterified trihydroxy limonoid, nimbidinol ( 9 ). In addition, ten limonoids including seven of azadirone‐type, 10 – 16 , and three of gedunin‐type, 17 – 19 , all of which possess no ester functionality in the molecule, were obtained from the neutral fraction of Azadirachta indica seed extract after alkaline hydrolysis. Among the above, twelve compounds, i.e., 1a – 4a , 6a , 9 , 13 – 16 , 18 , and 19 , were new compounds, and their structures were elucidated on the basis of extensive spectroscopic analysis and comparison with literature data. Upon evaluation of all these limonoids for their inhibitory activities against melanogenesis in B16 melanoma cells induced with α‐melanocyte‐stimulating hormone (α‐MSH), five structurally modified limonoids, 3‐deacetyl‐28‐oxosalannin ( 6a ), 9 , 17‐epi‐17‐hydroxynimbocinol ( 14 ), 17‐epi‐17‐hydroxy‐15‐methoxynimbocinol ( 15 ), and 7‐deacetyl‐17‐epinimolicinol ( 18 ), in addition to a natural limonoid, 1 , exhibited potent inhibitory activities with 26 – 66% reduction of melanin content at 100 μm concentration with almost no or low toxicity to the B16 melanoma cells (70 – 99% cell viability at 100 μm ).  相似文献   

7.
Introduction – Melia azedarach adapted to cool climates was selected as rootstocks for vegetative propagation of Azadirachta indica. Cleft grafting of A. indica on M. azedarach rootstock showed excellent survival. Little is known about the chemistry of grafting. Objective – The roots, stems, leaves and seeds of this graft were examined in order to verify if grafted A. indica would produce limonoids different from those found in non‐grafted plants. Intact matured fruits were also studied to verify if they were free of meliatoxins. Methodology – After successive chromatographic separations the extracts afforded several limonoids. HPLC‐MS/MS and MALDI‐MS were used to develop sensitive methods for detecting azadirachtin on all aerial parts of this graft and meliatoxins in fruits, respectively. Results – The stem afforded the limonoid salannin, which was previously found in the oil seeds of A. indica. Salannin is also found in the root bark of M. azedarach. Thus, the finding of salannin in this study suggests that it could have been translocated from the M. azedarach rootstock to the A. indica graft. HPLC‐MS/MS analyses showed that azadirachtin was present in all parts of the fruits, stem, flowers and root, but absent in the leaves. The results of MALDI‐MS analyses confirmed the absence of meliatoxins in graft fruits. Conclusion – This study showed that A. indica grafted onto M. azedarach rootstock produces azadirachtin, and also that its fruits are free of meliatoxins from rootstocks, confirming that this graft forms an excellent basis for breeding vigorous Neem trees in cooler regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Antimalarial activity of anthothecol, a limonoid of Khaya anthotheca (Meliaceae) against Plasmodium falciparum was tested using a [3H]-hypoxanthine and 48 h culture assay in vitro. Anthotechol showed potent antimalarial activity against malaria parasites with IC50 values of 1.4 and 0.17 μM using two different assays. Also, gedunin had antimalarial activity with IC50 values of 3.1 and 0.14 μM. However, the citrus limonoids, limonin and obacunone did not show any antimalarial activity. The antimalarial activities were compared with the three currently used antimalarial medicines quinine, chloroquinine and artemisinin.  相似文献   

9.
10.
New naphthalene derivatives ( 1 and 2 ) and a new isomer ( 3 ) of ventilagolin, together with known anthraquinones, chrysophanol ( 4 ), physcion or emodin 3‐methyl ether ( 5 ), and emodin ( 6 ), were isolated from vines of Ventilago denticulata. The isolated compounds exhibited cytotoxic activity with IC50 values of 1.15 – 40.54 μg/ml. Compounds 1 – 3 selectively exhibited weak antibacterial activity (MIC values of 200.0 – 400.0 μg/ml), while emodin ( 6 ) displayed moderate antibacterial activity with MIC value of 25.0 μg/ml. The isolated compounds showed nitric oxide and DPPH radical scavenging activities. Compounds 1 – 3 and 6 exhibited weak xanthine oxidase inhibitory activity, while emodin ( 6 ) acted as an aromatase inhibitor with the IC50 value of 10.1 μm . Compounds 1 and 2 exhibited phosphodiesterase 5 inhibitory activity with IC50 values of 8.28 μm and 6.48 μm , respectively.  相似文献   

11.
Two new compounds, fuscaxanthones J ( 1 ) and K ( 2 ), together with eight known xanthones ( 3 – 10 ) were isolated from an ethyl acetate extract of the roots of Garcinia fusca. Their structures were determined using spectroscopic methods, mainly 1D‐ and 2D‐NMR. α‐Glucosidase inhibitory activity of the isolated compounds was evaluated and fuscaxanthone J ( 1 ) showed the most significant effect with an IC50 value of 8.3 ± 1.8 μm (compared with acarbose, IC50 = 214.5 ± 2.3 μm ).  相似文献   

12.
A series of new chiral thiosemicarbazones derived from homochiral amines in both enantiomeric forms were synthesized and evaluated for their in vitro antiproliferative activity against A549 (human alveolar adenocarcinoma), MCF‐7 (human breast adenocarcinoma), HeLa (human cervical adenocarcinoma), and HGC‐27 (human stomach carcinoma) cell lines. Some of compounds showed inhibitory activities on the growth of cancer cell lines. Especially, compound 17b exhibited the most potent activity (IC50 4.6 μM) against HGC‐27 as compared with the reference compound, sindaxel (IC50 10.3 μM), and could be used as a lead compound to search new chiral thiosemicarbazone derivatives as antiproliferative agents. Chirality 27:177–188, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Two new sesquiterpene lactones, artelavanolides A ( 1 ) and B ( 2 ), and four known sesquiterpene lactones ( 3 – 6 ) were isolated from the leaves of Artemisia lavandulaefolia. Their structures were elucidated based on the analysis of spectroscopic data (1D, 2D‐NMR and HR‐ESI‐MS). The absolute configuration of 1 was determined by the analysis of single‐crystal X‐ray diffraction data. Artelavanolide A ( 1 ) is a rare sesquiterpene lactone possessing an unusual skeleton with the linkage of Me(14)–C(1) that is probably formed through a rearrangement of the guaiane‐type sesquiterpenoids. Artelavanolide B ( 2 ) is a new highly unsaturated guaianolide. Compounds 1 – 6 were tested for activities on the inhibition of COX‐2 enzyme in vitro. All of compounds exhibited inhibitory activity against COX‐2 with IC50 values ranging from 43.29 to 287.07 μm compared with the positive control, celecoxib (IC50 = 18.10 μm ). Among them, 3 showed the best COX‐2 inhibitory activity with an IC50 value of 43.29 μm .  相似文献   

14.
Melia azedarach is a common tree used in the traditional medicine of Nepal. In this work, leaves were considered as source of bioactive constituents and composition of methanol extract was evaluated and compared with starting plant material. Flavonoid glycosides and limonoids were identified and quantified by HPLC-DAD-MSn approaches in dried leaves and methanolic extract, while HPLC-APCI-MSn and GC/MS analysis were used to study phytosterol and lipid compositions. β-Sitosterol and rutin were the most abundant constituents. HPLC-APCI-MSn and HPLC-DAD-MSn analysis revealed high levels of phytosterols and flavonoids in methanolic extract accounting 9.6 and 7.5 % on the dried weight, respectively. On the other hand, HPLC/MSn data revealed that limonoid constituents were in minor amount in the extract <0.1 %, compared with leaves (0.7 %) indicating that degradation occurred during extraction or concentration procedures. The methanol extract was subjected to different bioassays, and antioxidant activity was evaluated. Limited inhibitory activity on acetyl and butyryl cholinesterase, as well as on amylase were detected. Moreover, tyrosinase inhibition was significant resulting in 131.57±0.51 mg kojic acid equivalents/g of dried methanol extract, suggesting possible use of this M. azedarach extract in skin hyperpigmentation conditions. Moderate cytotoxic activity, with IC50 of 26.4 μg/mL was observed against human ovarian cancer cell lines (2008 cells). Our findings indicate that the Nepalese M. azedarach leaves can be considered as valuable starting material for the extraction of phenolics and phytosterols, yielding extracts with possible cosmetic and pharmaceutical applications.  相似文献   

15.
Preliminary screening of extracts of the leaves and stems of four Turraea plant species (Meliaceae) on second instar larvae of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) showed that the methanolic extract of Turraea abyssinica leaves possess good toxic potential with LD50 of 270.7 ppm. Fractionation of this extract led to isolation of a new limonoid derivative, 12α‐diacetoxywalsuranolide (1) and three other known limonoids [1α,7α,12α‐triacetoxy‐4α‐carbomethoxy‐11β‐hydroxy‐14β,15β‐epoxyhavanensin (2), 11‐epi‐21‐hydroxytoonacilide (3), 11β,12α‐diacetoxycedrelone (4)]. The structures of the compounds were established by IR, UV, mass spectrometry and 1D/2D NMR analyses, and in the case of the known compounds, also by comparison with reported data. All the isolates were tested for their larvicidal activities at different dose range against second instar larvae of T. absoluta. They were found to be more active (with LD50 < 7.0 ppm) compared to the reference compound azadirachtin (LD50 value of 7.8 ppm).  相似文献   

16.
Seventeen limonoids (tetranortriterpenoids), 1 – 17 , including three new compounds, i.e., 17‐defurano‐17‐(2,5‐dihydro‐2‐oxofuran‐3‐yl)‐28‐deoxonimbolide ( 14 ), 17‐defurano‐17‐(2ξ‐2,5‐dihydro‐2‐hydroxy‐5‐oxofuran‐3‐yl)‐28‐deoxonimbolide ( 15 ), and 17‐defurano‐17‐(5ξ‐2,5‐dihydro‐5‐hydroxy‐2‐oxofuran‐3‐yl)‐2′,3′‐dehydrosalannol ( 17 ), were isolated from an EtOH extract of the leaf of neem (Azadirachta indica). The structures of the new compounds were elucidated on the basis of extensive spectroscopic analyses and comparison with literature. Upon evaluation of the cytotoxic activities of these compounds against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines, seven compounds, i.e., 1 – 3, 12, 13, 15 , and 16 , exhibited potent cytotoxicities with IC50 values in the range of 0.1–9.9 μM against one or more cell lines. Among these compounds, cytotoxicity of nimonol ( 1 ; IC50 2.8 μM ) against HL60 cells was demonstrated to be mainly due to the induction of apoptosis by flow cytometry. Western blot analysis suggested that compound 1 induced apoptosis via both the mitochondrial and death receptor‐mediated pathways in HL60 cells. In addition, when compounds 1 – 17 were evaluated for their inhibitory activities against melanogenesis in B16 melanoma cells, induced with α‐melanocyte‐stimulating hormone (α‐MSH), seven compounds, 1, 2, 4 – 6, 15 , and 16 , exhibited inhibitory activities with 31–94% reduction of melanin content at 10 μM concentration with no or low toxicity to the cells (82–112% of cell viability at 10 μM ). All 17 compounds were further evaluated for their inhibitory effects against the Epstein? Barr virus early antigen (EBV‐EA) activation induced by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) in Raji cells.  相似文献   

17.
Limonoids are a group of chemically related bitter tetranortriterpene derivatives found predominantly in Rutaceae and Meliaceae plants (Ourison et al., 1964). Interest in the Rutaceae limonoids has centered around limonoid removal from consumable citrus products. For example, bitterness in citrus juices (as well as in other citrus products) due to limonoids has become an increasingly serious economic problem (Wilson & Crutchfield, 1968; Sinclair, 1972). Interest in the Meliaceae limonoids, on the other hand, has centered on their efficacy as pest control and/or antitumor agents (Kubo & Klocke, 1981, 1982; Nakanishi, 1977, 1980). For example, azadirachtin, isolated from several Meliaceae trees, has proven to be a potent natural product against a myriad of insect and nematode pests (Warthen, 1979). In fact, we have isolated azadirachtin from the fresh fruit of Azadirachta indica as a potent insect ecdysis inhibitor against four agricultural pest insects with artificial diet feeding assay (Kubo & Klocke, in litt).  相似文献   

18.
Twelve 3,8‐epoxy iridoids, including four new compounds, jatamanins R–U ( 1 – 4 ), and eight known compounds ( 5 – 12 ), were obtained from the roots and rhizomes of Valeriana jatamansi. The structures were elucidated from analysis of spectroscopic data. The absolute configurations of 1 – 4 were determined by comparison of experimental and literature ECD spectra. Moreover, the compounds were evaluated for cytotoxic effects against glioma stem cells, inhibition of NO production, activity against influenza A virus and reversal of multidrug resistance of HepG2/ADR cells. Compounds 9 and 12 showed significant cytotoxic potency against GSC‐18# (IC50=1.351 and 4.439 μg ml?1, respectively) and GSC‐3# (IC50=10.88 and 6.348 μg ml?1, respectively) glioma stem cells, while compound 12 was also slightly less potent against GSC‐12# (IC50=13.45 μg ml?1) glioma stem cell growth. In addition, compounds 9 and 12 displayed obvious inhibition of NO production (IC50=4.6 and 15.8 μm , respectively).  相似文献   

19.
The fruits of Melia toosendan Sieb . et Zucc . (Meliaceae) are a source of bioactive limonoids that can be used as effective pesticides. In this study, two novel limonoids, 6‐acetylsendanal and 6‐ketocinamodiol, were isolated together with fourteen known compounds, namely four protolimonoids, six trichilin‐class limonoids, and four C‐seco limonoids. The structures of the new compounds were determined by extensive spectroscopic analyses (HR‐ESI‐MS, UV, IR, 1D and 2D NMR). The bioassay results revealed that eleven of the extracted limonoids exhibited interesting antifeedant activities against the larvae of Pieris rapae with AFC50 values in the range of 0.11–1.79 mm . Particularly, mesendanin H, with an AFC50 value of 0.11 mm , exhibited a higher activity than the positive control toosendanin. Information on new bioactive limonoids may provide further insight into M. toosendan as a source of bioactive components.  相似文献   

20.
Activity guided isolation of a MeOH extract of the aerial plant parts of Wulfenia carinthiaca Jacq . (Plantaginaceae), using a mushroom tyrosinase assay, resulted in the isolation of five phenylethanoid glucosides and four iridoid glycosides. Two of them, 2′‐O‐acetylisoplantamajoside and 2′,6″‐O‐diacetylisoplantamajoside, represent new natural products. Evaluation of the inhibitory activity of all isolated compounds revealed that the observed activity is not related to the isolated phenylethanoid glycosides but mainly due to the presence of the iridoid glycoside globularin (IC50 41.94 μm ; CI95% ± 16.61/11.89 μm ). Interestingly, structurally close related compounds (globularicisin, baldaccioside, and isoscrophularioside) showed no or only a weak tyrosinase inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号