首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary Mutants of Saccharomyces cerevisiae, described as catalase and cytochromes deficient (Pachecka et al., 1974), have been analyzed for heme biosynthesis ability. Some enzymatic activities involved in protoheme synthesis were measured in acellular extracts, whereas whole cells were analyzed for cytochrome spectra and for possible accumulation of porphyrin synthesis intermediates. A good correlation was found between these in vitro and in vivo studies. Results show that two mutants were impaired in 5-aminolevulinate synthesis, two mutants were devoid of uroporphyrinogen I synthetase activity and one mutant presented defects in coproporphyrinogen III oxidase activity.  相似文献   

2.
Heme administration in vivo results in the suppression of synthesis of rat hepatic δ-aminolevulinic acid (ALA) synthetase and induction of rat hepatic heme oxygenase. Intravenous heme administration in vivo results in the appearance of cyclic progressively damped oscillations of both hepatic ALA synthetase activity and hepatic heme oxygenase activity. Heme oxygenase induction precedes in time the induction of ALA synthetase. ALA synthetase oscillations are observed in hepatic cell cytosol and mitochondrial fractions as well as in the total homogenate. Cycloheximide pretreatment abolishes both the ALA synthetase and heme oxygenase oscillations, while actinomycin D pretreatment has only a minimal effect on the induction of heme oxygenase. These results suggest that hepatic heme metabolism is closely regulated by rapid changes in the capacity to synthesize and catabolize heme, and the cyclic oscillations following intravenous heme may be a manifestation of the feedback regulation processes involved. This regulatory capacity is dependent on protein synthesis, and the primary site of regulation may be at the translational level on the endoplasmic reticulum.  相似文献   

3.
Gabaculine and 4-amino-5-hexynoic acid (AHA) up to 3.0 millimolar concentration strongly inhibited 5-aminolevulinic acid (ALA) synthesis in developing cucumber (Cucumis sativus L. var Beit Alpha) chloroplasts, while they hardly affected protochlorophyllide (Pchlide) synthesis. Exogenous protoheme up to 1.0 micromolar had a similar effect. Exogenous glutathione also exhibited a strong inhibitory effect on ALA synthesis in organello but hardly inhibited Pchlide synthesis. Pchlide synthesis in organello was highly sensitive to inhibition by levulinic acid, both in the presence and in the absence of gabaculine, indicating that the Pchlide was indeed formed from precursor(s) before the ALA dehydratase step. The synthesis of Pchlide in the presence of saturating concentrations of glutamate was stimulated by exogenous ALA, confirming that Pchlide synthesis was limited at the formation of ALA. The gabaculine inhibition of ALA accumulation occurred whether levulinic acid or 4,6-dioxohepatonic acid was used in the ALA assay system. ALA overproduction was also observed in the absence of added glutamate and was noticeable after 10-minute incubation. These observations suggest that although Pchlide synthesis in organello is limited by ALA formation, it does not utilize all the ALA that is made in the in organello assay system. Gabaculine, AHA, and probably also protoheme, inhibit preferentially the formation of that portion of ALA that is not destined for Pchlide. A model proposing a heterogenous ALA pool is described.  相似文献   

4.
A study on hepatic heme metabolism with special emphasis to ALA synthetase, ALA dehydratase and heme oxygenase was carried out in cadmium exposed freshwater fish Channa punctatus to enlighten the mechanism of cadmium induced toxicity. Cadmium exposure (0.5-5.0 mg/1) for 7 days increased the hepatic level of ALA, along with the depletion in heme content, which are characteristic to chemical porphyria. The resultant enhancement in the activities of ALA synthetase and heme oxygenase were further shown to be dose dependent. ALA dehydratase activity on the other hand was enhanced only at higher exposure. Time course studies on the enzyme activities and heme content showed that ALA synthetase started to increase after 24 hrs., reached maximum at 7 days and came back nearly to normal level after 30 days of exposure. Simultaneously maximum depletion in heme level occurred on 7 days of exposure, tending to return to normal on 30 day. In addition, attempt has been made to correlate alterations in heme metabolism due to cadmium with the histopathological manifestations in liver.  相似文献   

5.
BACKGROUND AND AIMS: Trypanosoma cruzi is the causative agent of Chagas disease or American trypanosomiasis. The parasite manifests a nutritional requirement for heme compounds because of its biosynthesis deficiency. The aim of this study has been to investigate the presence of metabolites and enzymes of porphyrin pathway, as well as ALA formation in epimastigotes of T. cruzi, Tulahuén strain, Tul 2 stock. METHODS: Succinyl CoA synthetase, 5-aminolevulinic acid (ALA) synthetase, 4,5-dioxovaleric (DOVA) transaminase, ALA dehydratase and porphobilinogenase activities, as well as ALA, porphobilinogen (PBG), free porphyrins and heme content were measured in a parasite cells-free extract. Extracellular content of these metabolites was also determined. RESULTS: DOVA, PBG, porphyrins and heme were not detected in acellular extracts of T. cruzi. However ALA was detected both intra- and extracellularly This is the first time that the presence of ALA (98% of intracellularly formed ALA) is demonstrated in the extracellular medium of a parasite culture. Regarding the ALA synthesizing enzymes, DOVA transaminase levels found were low (7.13+/-0.49EU/mg protein), whilst ALA synthetase (ALA-S) activity was undetectable. A compound of non-protein nature, low molecular weight, heat unstable, inhibiting bacterial ALA-S activity was detected in an acellular extract of T. cruzi. This inhibitor could not be identified with either ALA, DOVA or heme. CONCLUSIONS: ALA synthesis is functional in the parasite and it would be regulated by the heme levels, both directly and through the inhibitor factor detected. ALA formed can not be metabolized further, because the necessary enzymes are not active, therefore it should be excreted to avoid intracellular cytotoxicity.  相似文献   

6.
Chick embryo liver cells, when cultured for 41 h in the presence of [2-14C]mevalonic acid, took up label and incorporated radioactivity into heme a, but not into protoheme. Incubation of cells with delta-[4-14C]aminolevulinic acid (ALA) resulted in uptake of label and incorporation of radioactivity into both protoheme and heme a. These results show that both protoheme and heme a are synthesized during the incubation period, and that mevalonic acid is a specific precursor of the farnesyl moiety of heme a. Incubation of cells with [1,2-14C]acetate plus N-methyl mesoporphyrin IX, an inhibitor of heme synthesis, resulted in negligible incorporation of label into protoheme and heme a, although cellular lipids were highly labeled. This result indicates that the heme purification methods employed were capable of separating hemes from lipids, and that the measured incorporation of label into hemes from [14C]mevalonic acid and [14C]ALA was not due to lipid contamination.  相似文献   

7.
The activity of the following enzymes involved in the biosynthesis of porphyrins was determined in endosymbiote-free and endosymbiote-containing Crithidia deanei grown in a chemically defined medium: succinyl Coenzyme A synthetase (Suc.CoA-S), 5-aminolevulinate synthetase (ALA-S), 4,5-dioxovaleric acid transaminase (DOVA-T), 5-aminolevulinate dehydratase (ALA-D), porphobilinogenase (PBGase), deaminase and heme synthetase (Heme-S). The amount of 5-aminolevulinic acid (ALA) and porphobilinogen, porphyrins and heme was also determined. ALA and PBG were detected in C. deanei. The levels of free porphyrins was low. Heme concentration was nil. The activity of ALA-D, deaminase and PBGase was not detected in C. deanei. The activity of Suc.CoA-S and ALA-S were twice higher in symbiote-containing than in aposymbiotic C. deanei. Aposymbiotic cells had a higher activity of DOVA-T than symbiote-containing cells. The level of Heme-S, measured using protoporphyrin as substrate, was twice as high in symbiote-containing than in symbiote-free cells.  相似文献   

8.
Addition of hemin (5–200 μM) to a rabbit reticulocyte iron-free incubation medium, resulted in a progressive inhibition of heme synthesis as measured by incorporation of (14C)-glycine. In contrast when (14C) δ-aminolevulinic acid incorporation into heme was studied, significant inhibition below that of the (14C)-glycine control only occurred with hemin concentrations greater than 100 μM. Hemin progressively inhibited cellular and mitochondrialδ-aminolevulinic acid synthetase activity, as well as cellular δ-aminolevulinic acid dehydratase activity. The results indicated that elevated levels of hemin initially control heme synthesis by feedback inhibition at the rate-limiting enzyme of heme synthesis, δ-aminolevulinic acid synthetase. Hemin inhibition of δ-aminolevulinic acid dehydratase is only significant for the entrire heme synthetic pathway when greater than one-third of this enzyme's activity is inhibited.  相似文献   

9.
Two biosynthetic routes to the heme, chlorophyll, and phycobilin precursor, δ-aminolevulinic acid (ALA) are known: conversion of the intact five-carbon skeleton of glutamate, and ALA synthase-catalyzed condensation of glycine plus succinyl-coenzyme A. The existence and physiological roles of the two pathways in Cyanidium caldarium were assessed in vivo by determining the relative abilities of [2-14C]glycine and [1-14C]glutamate to label protoheme and heme a. Glutamate was incorporated to a much greater extent than glycine into both protoheme and heme a, even in cells that were unable to form chlorophyll and phycobilins. The small incorporation of glycine could be accounted for by transfer of label to intracellular glutamate pools, as determined from amino acid analysis. It thus appears that C. caldarium makes all tetrapyrroles, including mitochondrial hemes, solely from glutamate, and there is no contribution by ALA synthase in this organism.  相似文献   

10.
delta-Aminolevulinic acid (ALA), the first committed precursor to the tetrapyrrole components of hemes and chlorophylls, is synthesized by two different routes in the photosynthetic phytoflagellate Euglena gracilis: directly from glutamate, mediated by a 5-carbon pathway, and via condensation of glycine and succinyl-CoA, catalyzed by the enzyme ALA synthase. The physiological roles of the two pathways were determined by administration of specifically 14C-labeled ALA precursors to cultures growing under different physiological conditions. Relative activities of the ALA synthase and 5-carbon pathways were monitored by incorporation of radioactivity from [2-14C] glycine and [1-14C]glutamate into highly purified protoheme, heme a and chlorophyll a derivatives. Wild type cells grown photoautotrophically or photoheterotrophically synthesized chlorophyll and incorporated radioactivity from [1-14C]glutamate into the tetrapyrrole nucleus of the pigment. [2-14C]Glycine was incorporated primarily into the nontetrapyrrole-derived portions of chlorophyll. In the same cultures both [2-14C]glycine and [1-14C]glutamate were efficiently incorporated into protoheme, while only [2-14C] glycine was incorporated into heme a. In dark-grown wild type or light-grown aplastidic cells, no chlorophyll was formed, and both protoheme and heme a were labeled exclusively from [2-14C]glycine. These results indicate: (a) ALA synthase and the 5-carbon pathway operate simultaneously in growing green cells; (b) the 5-carbon pathway provides ALA for chloroplast protoheme and chlorophyll, and is associated with chloroplast development; (c) ALA synthase provides ALA only for nonplastid heme biosynthesis; and (d) the two ALA pathways are separately compartmentalized along with complete sets of enzymes for subsequent tetrapyrrole synthesis from each ALA pool. The protoheme that was synthesized from [1-14C] glutamate had a higher specific radioactivity than chlorophyll synthesized from the same precursor. This result together with calculated specific radioactivities of the products synthesized during the incubation period, suggest that both protoheme and heme a undergo metabolic turnover.  相似文献   

11.
4,6-Dioxoheptanoic acid (succinylacetone, SA) was examined with regard to its ability to a) inhibit the second enzyme of the heme pathway, δ-aminolevulinic acid (ALA) dehydratase, b) lower the heme concentration, and c) inhibit cell growth of murine erythroleukemia (MEL) cells in culture. SA profoundly inhibited ALA dehydratase in broken cell preparations at concentrations as low as 10?7 M. The stimulation of hemoglobin production by DMSO and butyrate in MEL cells was inhibited by the addition of SA to the cell medium. When 1 mM SA was added to the medium, there was a profound inhibition of ALA dehydratase activity, and the heme concentration of cells declined progressively with each cell division. Cell growth was markedly inhibited after two cell divisions.  相似文献   

12.
The Bradyrhizobium japonicum hemA gene product delta-aminolevulinic acid (ALA) synthase is not required for symbiosis of that bacterium with soybean. Hence, the essentiality of the subsequent heme synthesis enzyme, ALA dehydratase, was examined. The B. japonicum ALA dehydratase gene, termed hemB, was isolated and identified on the basis of its ability to confer hemin prototrophy and enzyme activity on an Escherichia coli hemB mutant, and it encoded a protein that was highly homologous to ALA dehydratases from diverse organisms. A novel metal-binding domain in the B. japonicum ALA dehydratase was identified that is a structural composite of the Mg(2+)-binding domain found in plant ALA dehydratases and the Zn(2+)-binding region of nonplant ALA dehydratases. Enzyme activity in dialyzed extracts of cells that overexpressed the hemB gene was reconstituted by the addition of Mg2+ but not by addition of Zn2+, indicating that the B. japonicum ALA dehydratase is similar to the plant enzymes with respect to its metal requirement. Unlike the B. japonicum hemA mutant, the hemB mutant strain KP32 elicited undeveloped nodules on soybean, indicated by the lack of nitrogen fixation activity and plant hemoglobin. We conclude that the hemB gene is required for nodule development and propose that B. japonicum ALA dehydratase is the first essential bacterial enzyme for B. japonicum heme synthesis in soybean root nodules. In addition, we postulate that ALA is the only heme intermediate that can be translocated from the plant to the endosymbiont to support bacterial heme synthesis in nodules.  相似文献   

13.
1. Growth rates, morphology, plasma protein synthesis and the level of heme pathway enzymes were examined in six sublines of HepG2 cells obtained from various laboratories. 2. Five sublines represented by G2a display the known characteristics of HepG2 cell type, including morphology, plasma protein synthesis and an increase in delta-aminolevulinic acid (ALA) dehydratase activities in response to Me2SO treatment. 3. In contrast, cells of the G2f subline failed to secrete significant quantities of plasma proteins. There was also no increase in ALA dehydratase activity following Me2SO treatment. These findings suggest that G2f cells represent a variant of HepG2 cells with an altered phenotype.  相似文献   

14.
While a continuous ingestion of lead acetate added in drinking water suppressed the rat growth, depressing in some degree the level of hepatic δ-aminolevulinate (ALA) dehydratase, a very small amount of sclerin (SCL) added simultaneously in the water restored the growth and dehydratase level. Moreover, subcutaneous injection of SCL to the rat not only maintained the ALA dehydratase level, but prevented a marked depression of the level of mitochondrial ALA synthetase in liver caused by intraperitoneal injection of lead acetate. Injection of SCL alone increased tolerably (about 1.8 times) the mitochondrial ALA synthetase, but little the extramitochondrial synthetase. The treatment by SCL was attended by a initial decrease, then a gradual increase in the activity of microsomal drug metabolizing enzyme.  相似文献   

15.
We isolated a soybean (Glycine max) cDNA encoding the heme and chlorophyll synthesis enzyme delta-aminolevulinic acid (ALA) dehydratase by functional complementation of an Escherichia coli hemB mutant, and we designated the gene Alad. ALA dehydratase was strongly expressed in nodules but not in uninfected roots, although Alad mRNA was only 2- to 3-fold greater in the symbiotic tissue. Light was not essential for expression of Alad in leaves of dark-grown etiolated plantlets as discerned by mRNA, protein, and enzyme activity levels; hence, its expression in subterranean nodules was not unique in that regard. The data show that soybean can metabolize the ALA it synthesizes in nodules, which argues in favor of tetrapyrrole formation by the plant host in that organ. Molecular phylogenetic analysis of ALA dehydratases from 11 organisms indicated that plant and bacterial enzymes have a common lineage not shared by animals and yeast. We suggest that plant ALA dehydratase is descended from the bacterial endosymbiont ancestor of chloroplasts and that the Alad gene was transferred to the nucleus during plant evolution.  相似文献   

16.
The rate limiting enzyme of heme biosynthesis, δ-aminolevulinic acid synthetase (ALA synthetase), and the second enzyme in the heme biosynthetic pathway, δ-aminolevulinic acid dehydrase (ALA dehydrase), were inhibited by the olefinic amino acid L-2-amino-4-methoxy - trans-3-butenoic acid (AMTB). Administration of AMTB (20 mg/kg; i.p.) to rats inhibited ALA synthetase and ALA dehydrase in control animals and in animals with markedly elevated activity of ALA synthetase which resulted from the administration of 3,5-dicarbethoxy-1,4-dimethyl-collidine (DDC, 200 mg/kg, i.p.) or allylisopropylacetamide (200 mg/kg, s.c.). AMTB also blocked the synthesis of rat hepatic porphyrins and inhibited the increase in the urinary excretion of δ-aminolevulinic acid and porphobilinogen following DDC (150 mg/kg, p.o.) administration. Preincubation of AMTB with liver mitochondria or a soluble fraction of liver decreased the activity of mitochondrial ALA synthetase and soluble ALA dehydrase, respectively.  相似文献   

17.
Rice (Oryza sativa L. cv. Yamabiko) seedlings germinated underwater for 5 days contained small amounts of heme a and protohemebut no protochlorophyll(ide) [Pchl(ide)]. Levels of hemes andPchl(ide) increased rapidly upon transfer to air. When expressedin terms of fresh weight of tissue, hemes reached the levelsin aerobic controls after 24 h of contact with air, but Pchl(ide)did not. A comparison of the increases during 24-h adaptationto air in levels of heme a and Pchl(ide), which are specificto mitochondria and plastids, respectively, suggested that thedevelopment of mitochondria preceded that of plastids. The rateof synthesis of 5-aminolevulinic acid (ALA) was low in submergedseedlings, as compared to the rate in aerobic controls, butit increased during air adaptation. The sum of the amounts ofheme a, protoheme and Pchl(ide) increased in parallel with theamount of porphyrins, equivalent to the amount of ALA synthesizedduring the experimental period. When submerged seedlings thathad been pretreated with levulinic acid were exposed to air,no Pchl(ide) was formed. In contrast, Pchl(ide) accumulatedunder water when submerged seedlings were fed with ALA. Theseresults indicate that the synthesis of ALA, the limiting stepin the synthesis of Pchl(ide), is repressed under hypoxic conditions. 1 Present address: KRI International, Inc., Kyoto Research Park17, Chudoji Minami-machi, Shimogyo-ku, Kyoto, 600 Japan. 2 Present address: Research Institute for Bioresources, OkayamaUniversity, Kurashiki, 710 Japan.  相似文献   

18.
Hemin treatment of mouse Friend virus-transformed cells in cultured caused a dose-dependent increase in hemoglobin synthesis. By the addition of radioactively labeled hemin and by the analysis of the radioactive heme in hemoglobin, only 60 to 70% of heme in the newly synthesized hemoglobin was accounted for by the exogenously added hemin. In keeping with this finding, hemin treatment increased the activity of two enzymes in the heme biosynthetic activity, i.e. delta-aminolevulinate (ALA) dehydratase and uroporphyrinogen-I (URO) synthase in these cells. Incorporation of [2(-14C)]glycine, [14C]ALA, and 59Fe into heme was also significantly increased in the cells treated with hemin, suggesting that essentially all enzyme activities in the heme biosynethetic pathway were increased after hemin treatment. These results indicate that heme in the newly synthesized hemoglobin in hemin-treated Friend cells derives both from hemin added to the culture and from heme synthesized intracellularly. In addition, these results suggest that the stimulation of heme biosynthesis by hemin in Friend virus-transformed cells is in contrast to the hemin repression of heme biosynthesis in liver cells.  相似文献   

19.
5-Aminolevulinic acid (ALA) synthesis has been shown to be the rate limiting step of tetrapyrrole biosynthesis. Glutamyl-tRNA reductase (GluTR) is the first committed enzyme of plant ALA synthesis and is controlled by interacting regulators, such as heme and the FLU protein. Induced inactivation of the HEMA1 gene encoding GluTR by RNAi expression in tobacco resulted in a reduced activity of Mg chelatase and Fe chelatase indicating a feed-forward regulatory mechanism that links ALA synthesis posttranslationally with late enzymes of tetrapyrrole biosynthesis (Hedtke et al., 2007). Here, the regulatory impact of GluTR was investigated by overexpression of AtHEMA1 in Arabidopsis and tobacco plants. Light-dependent ALA synthesis cannot benefit from an up to 7-fold induced expression of GluTR in Arabidopsis. While constitutive AtHEMA1 overexpression in tobacco stimulates ALA synthesis by 50-90% during light-exposed growth of seedlings, no increase in heme and chlorophyll contents is observed. HEMA1 overexpression in etiolated and dark-grown Arabidopsis and tobacco seedlings leads to additional accumulation of protochlorophyllide. As excessive accumulation of GluTR does not correlate with increased ALA formation, it is hypothesized that ALA synthesis is additionally limited by other effectors that balance the allocation of ALA with the activity of enzymes of chlorophyll and heme biosynthesis.  相似文献   

20.
N.J. Jacobs  J.M. Jacobs 《BBA》1976,449(1):1-9
Nitrate can serve as anaerobic electron acceptor for the oxidation of protoporphyrinogen to protoporphyrin in cell-free extracts of Escherichia coli grown anaerobically in the presence of nitrate. Two kinds of experiments indicated this: anaerobic protoporphyrin formation from protoporphyrinogen, followed spectrophotometrically, was markedly stimulated by addition of nitrate; and anaerobic protoheme formation from protoporphyrinogen, determined by extraction procedures, was markedly stimulated by addition of nitrate. In contrast, anaerobic protoheme formation from protoporphyrin was not dependent upon addition of nitrate. This was the first demonstration of the ability of nitrate to serve as electron acceptor for this late step of heme synthesis. Previous studies with mammalian and yeast mitochondria had indicated an obligatory requirement for molecular oxygen at this step.In confirmation of our previous preliminary report, fumarate was also shown to be an electron acceptor for anaerobic protoporphyrinogen oxidation in extracts of E. coli grown anaerobically on fumarate. For the first time, anaerobic protoheme formation from protoporphyrinogen, but not from protoporphyrin, was shown to be dependent upon the addition of fumarate.The importance of these findings is 2-fold. First, they establish that enzymatic protoporphyrinogen oxidation can occur in the absence of molecular oxygen, in contrast to previous observations using mammalian and yeast mitochondria. Secondly, these findings help explain the ability of some facultative and anaerobic bacteria to form very large amounts of heme compounds, such as cytochrome pigments, when grown anaerobically in the presence of nitrate or fumarate. In fact, denitrifying bacteria are known to form more cytochromes when grown anaerobically than during aerobic growth.An unexpected finding was that extracts of another bacterium, Staphylococcus epidermidis, exhibited very little ability to oxidize protoporphyrinogen to protoporphyrin as compared to E. coli extracts. This finding suggests some fundamental differences in these two organisms in this key step in heme synthesis. It is known that these two facultative organisms also differ in that E. coli synthesizes cytochrome during both aerobic and anaerobic growth, while Staphylococcus only synthesizes cytochromes when grown aerobically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号