首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(5):335-347
The ability of the immature lung to induce antioxidant defences in response to hyperoxic stress was examined. Preterm guinea pigs (65 days gestation, term = 68 d) were exposed to either 21+ O2, 85+ O2 or 95+ O2 for 72 hours. Exposure to 85+ O2 increased lung catalase, glutathione peroxidase and manganese superoxide dismutase activities in comparison to air controls. Exposure to 95+ O2 resulted only in an increase in glutathione peroxidase activity. Bronchoalveolar lavage fluid GSH concentration was increased by a similar amount by both exposure regimes, while lung copper/zinc superoxide dismutase activity was unchanged by either treatment. Comparison of the antioxidant response of term and preterm animals exposed to 85+ O2 for 72 hours indicated a greater response in the lung of the preterm animals. Manganese superoxide dismutase activity was elevated in both term and preterm animals, while catalase and glutathione peroxidase activities were elevated only in preterm animals. The extent of microvascular permeability as indicated by bronchoalveolar lavage fluid protein concentration, was lower in preterm animals than in term animals. We conclude that the immature lung can respond to hyperoxic stress by antioxidant induction and that the nature of the response is dependent, in part, both on the severity of the stress and on the maturity of the lung.  相似文献   

2.
The ability of the immature lung to induce antioxidant defences in response to hyperoxic stress was examined. Preterm guinea pigs (65 days gestation, term = 68 d) were exposed to either 21+ O2, 85+ O2 or 95+ O2 for 72 hours. Exposure to 85+ O2 increased lung catalase, glutathione peroxidase and manganese superoxide dismutase activities in comparison to air controls. Exposure to 95+ O2 resulted only in an increase in glutathione peroxidase activity. Bronchoalveolar lavage fluid GSH concentration was increased by a similar amount by both exposure regimes, while lung copper/zinc superoxide dismutase activity was unchanged by either treatment. Comparison of the antioxidant response of term and preterm animals exposed to 85+ O2 for 72 hours indicated a greater response in the lung of the preterm animals. Manganese superoxide dismutase activity was elevated in both term and preterm animals, while catalase and glutathione peroxidase activities were elevated only in preterm animals. The extent of microvascular permeability as indicated by bronchoalveolar lavage fluid protein concentration, was lower in preterm animals than in term animals. We conclude that the immature lung can respond to hyperoxic stress by antioxidant induction and that the nature of the response is dependent, in part, both on the severity of the stress and on the maturity of the lung.  相似文献   

3.
Rats injected with interleukin-1 (10 g) and tumor necrosis factor (10 g) and then exposed continuously to hyperoxia (> 99% O2, 1 atm) survived longer, had increased lung reduced/oxidized glutathione ratios, smaller pleural effusions, less pulmonary hypertension and improv+++ed arterial blood gases. The percentage of animals surviving for 72 hours in hyperoxia increased from 8% to 94%. Although relatively small increases in glutathione redox cycle enzymes occurred four and sixteen hours following cytokine injection, dramatic increases in all major antioxidant enzymes including superoxide dismutase, glucose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, and catalase had occurred following 72 hours of exposure to hyperoxia. The protective effect of IL-1 + TNF against lethal pulmonary O2 toxicity could be partially inhibited by pre-injection of lysine acetylsalicylate or, less effectively, of ibuprofen.Recent studies have suggested that both IL-1 and TNF can induce manganese (mitochondrial) superoxide dismutase mRNA and protein synthesis in a variety of cell types. Preliminary studies suggest that IL-1 alone, in ample dosage, can provide protection against lethal pulmonary O2 toxicity. Future studies should be directed toward identification of acute phase changes in lung antioxidant enzymes, surfactant proteins and/or lipid components, enzymes needed for synthesis of surfactant phospholipids, and/or other protective proteins. Additional work also needs to be done in identifying the lung cell types in which early enzyme induction occurs. These studies should provide a better understanding of mechanisms whereby protection against pulmonary O2 toxicity can occur. An understanding of the molecular mechanisms inducing protective proteins should lead to more precise pharmacologic control of these processes.  相似文献   

4.
The black swallowtail butterfly larvae, Papilio polyxenes, are specialist feeders that have adapted to feeding on plants containing high levels of prooxidant allelochemicals. Third, fourth, and fifth instar larvae were tested for their antioxidant enzyme activities, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPOX), using 850-g supernatants from whole-body homogenates. The overall antioxidant enzyme profile for P. polyxenes was high compared to other insects, with activities ranging as follows: SOD, 1.1–7.5; CAT, 124–343; GR, 1.0–7.5; and GPOX, 0 units. To determine whether these antioxidant enzymes were inducible, P. poly xenes larvae were given a prooxidant challenge by dipping parsley leaves (their diet in the initial studies) in solutions of quercetin, such that the leaves became coated with this prooxidant flavonoid. Mid-fifth instar larvae fed on quercetin-coated leaves were assayed for antioxidant enzyme activities as was previously done with the larvae fed the standard diet. Food consumption and quercetin intake were monitored. SOD activity was increased almost twofold at the highest quercetin concentration tested. CAT and GR activity, on the other hand, were inhibited by increased quercetin consumption, with GR activity completely inhibited at the highest quercetin concentration after 12 h of feeding. GPOX activity, not present in control insects, was also not inducible by a quercetin challenge. These studies point out the key role that the antioxidant enzymes play in insect defenses against plant prooxidants.  相似文献   

5.

Background

Oxygen may damage the lung directly via generation of reactive oxygen species (ROS) or indirectly via the recruitment of inflammatory cells, especially neutrophils. Overexpression of extracellular superoxide dismutase (EC-SOD) has been shown to protect the lung against hyperoxia in the newborn mouse model. The CXC-chemokine receptor antagonist (Antileukinate) successfully inhibits neutrophil influx into the lung following a variety of pulmonary insults. In this study, we tested the hypothesis that the combined strategy of overexpression of EC-SOD and inhibiting neutrophil influx would reduce the inflammatory response and oxidative stress in the lung after acute hyperoxic exposure more efficiently than either single intervention.

Methods

Neonate transgenic (Tg) (with an extra copy of hEC-SOD) and wild type (WT) were exposed to acute hyperoxia (95% FiO2 for 7 days) and compared to matched room air groups. Inflammatory markers (myeloperoxidase, albumin, number of inflammatory cells), oxidative markers (8-isoprostane, ratio of reduced/oxidized glutathione), and histopathology were examined in groups exposed to room air or hyperoxia. During the exposure, some mice received a daily intraperitoneal injection of Antileukinate.

Results

Antileukinate-treated Tg mice had significantly decreased pulmonary inflammation and oxidative stress compared to Antileukinate-treated WT mice (p < 0.05) or Antileukinate-non-treated Tg mice (p < 0.05).

Conclusion

Combined strategy of EC-SOD and neutrophil influx blockade may have a therapeutic benefit in protecting the lung against acute hyperoxic injury.  相似文献   

6.
During the period of senescence of apricot leaves changes in photosynthetic pigment contents and in the activities of some antioxidant enzymes (superoxide dismutase, catalase, peroxidase and ascorbate peroxidase) were analysed. Significant changes in pigment contents were, in most cases, correlated with changes in activities of the antioxidant enzymes. Modifications in superoxide dismutase and catalase isoform patterns were also observed during the progression of senescence. Both enzyme activities and isoenzyme patterns proved to be genotype-dependent.  相似文献   

7.
The activity of antioxidant and detoxifying enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), glutathione reductase, glutathione-S-transferase (GST), the contents of thiobarbituric acid reactive substances, and the superoxide dismutase and glutathione-S-transferase isoenzyme patterns, were determined in the liver and kidney of pheasants after acute intoxication by herbicides MCPA and ANITEN I. In the liver, the activity of antioxidant enzymes was significantly decreased in the group given ANITEN I. New superoxide dismutase isoforms (pI 6.30, 6.85, 7.00) and higher intensity of isoform with pI 6.60 were observed after isoelectrofocusing in all experimental groups. In the kidney, the activity of superoxide dismutase was significantly decreased, and a higher intensity of superoxide dismutase isoforms (pI 6.00 and 6.60) was observed in all experimental groups. The contents of thiobarbituric acid reactive substances were significantly increased in the group with ANITEN I. The glutathione-S-transferase isoenzyme pattern was studied by using subunit-specific substrates and by Western blotting. The activity of glutathione-S-transferase with ethacrynic acid and cross-reactivity with rat subunit 7 was lower in all experimental groups in the kidney and liver, except in the liver of the group given a higher dose of ANITEN I. In this group, we have found a 2.10-fold higher activity to ethacrynic acid and a strong induction of subunit 7. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 235–244, 1998  相似文献   

8.
《Free radical research》2013,47(5-6):323-334
The protection of human diploid fibroblasts against high oxygen tension was investigated using various combinations of the three major antioxidant enzymes: superoxide dismutase, catalase and gluthathione peroxidase. α-Tocopherol, a well-known hydrophobic antioxidant, was also tested in combination with the different enzymes. Microinjection of solutions containing different combinations of the three enzymes was compared with the injection of each single enzyme. We observed that the protections given by catalase or superoxide dismutase on the one hand, and by glutathione peroxidase on the other hand, were additive. Surprisingly, the combinations of catalase and superoxide dismutase were less effective than catalase alone and was even toxic at low SOD concentrations. Addition of α-tocopherol following the injection of any of the three enzymes was highly beneficial, but the strongest synergistic effect was obtained with glutathione peroxidase. These results stress the importance of membrane protection by α-tocopherol and indirectly by glutathione peroxidase. They also showed that any injection leading to the decrease in the O2?. or H2 O 2 concentration combined with one of these two protectors is very beneficial for the cells probably by decreasing the OH concentration. This is also proven by the very good protective effect obtained with desferrioxamine.  相似文献   

9.
Alloxan is a diabetogenic drug and is known to induce diabetes through generation of free radicals. The toxic oxygen species can be detoxified by antioxidant enzyme system and thus reduce the deleterious effect of lipid peroxidation. Erythrocytes exposed to alloxan induced lipid peroxidationin vivo as well asin vitro. Although alloxan treatment produced a deleterious effect on antioxidant enzymes, pretreatment with glutathione and selenium led to a recovery of the activities of superoxide dismutase and glutathione peroxidase. However, catalase activity increased on alloxan treatment. Alloxan reduced blood glucose level significantly within 60 min but thereafter a slow and steady rise was observed.  相似文献   

10.
In third-, fourth-, and fifth-instar larvae of the cabbage looper moth, Trichoplusia ni, the activities of the antioxidant enzymes, superoxide dismutase (SOD*), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR) were examined using 850 g supernatants of whole-body homogenates. The enzyme activities, expressed as units mg−1 protein min−1 at 25°C ranged as follows: SOD, 0.67-2.13 units; CAT, 180.5-307.5 units; GPOX, none detectable; and GR, 0.40-1.19 units. There was a similar pattern of changes for SOD and CAT activities with larval ontogeny, but not for GR. The cabbage looper apparently uses SOD and CAT to form a “defensive team” effective against endogenously produced superoxide anion (O2⪸). Glutathione may serve as an antioxidant for the destruction of any organic/lipid peroxides formed, and GSH oxidized to glutathione disulfide would be recycled by GR. Bioassays against pro-oxidant compounds exogenous sources of (O2⪸) show high sensitivity of mid-fifth instars to the linear furanocoumarin, 8-methoxypsoralen (xanthotoxin) primarily from photoactivation (320-380 nm), and auto-oxidation of the flavonoid, quercetin. The LC50s are 0.0004 and 0.0045% (w/w) concentration of xanthotoxin and quercetin, respectively. Both pro-oxidants have multiple target sites for lethal action and, in this context, the role of antioxidant enzymes is discussed.  相似文献   

11.
Many secondary plant compounds are capable of photoactivation resulting in the production of toxic species of oxygen. One mechanism of defense for insects feeding on phototoxic plants may be the presence of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR). The activities of these enzymes were examined in larvae of three lepidoptera: Ostrinia nubilalis, Manduca sexta, and Anaitis plagiata. Highest levels of antioxidant enzyme activity were found in A. plagiata, a specialist feeder on Hypericum perforatum, which contains high levels of the phototoxin hypericin. Larvae of A. plagiata fed leaf discs treated with hypericin exhibited a short-term, concentration-dependent decline in enzyme activity. Longer term studies with A. palgiata fed either the photoxic H. perforatum, or the closely related but non-phototoxic H. calycinum, resulted in increased CAT and GR activity in larvae fed the phototoxic plant whereas SOD activity was not significantly different. These results suggest that CAT and GR may be inducible defenses against phototoxins.  相似文献   

12.
Bleomycin (BLM) induces lung inflammation and subsequent fibrosis in human and in animal models. Alveolar epithelial type 2 cells (T2 cells) are known to play a crucial role in the repair process after BLM injury. We hypothesized that resistance of T2 cells to BLM-damage was associated with an increase in their antioxidant system activity. We developed an animal model of lung lesions preceding fibrosis, using daily intraperitoneal administration of BLM (1.5 mg/day over 7 and 14 days). We observed a body weight stablization in BLM-treated rats from the third day. After 14 days of BLM treatment, the number of cells recovered by bronchoalveolar lavage was significantly increased (p<0.05), with a dramatic increase (p<0.01) in the percentage of neutrophils associated with a decrease in macrophage percentage (p<0.01). No evidence of fibrosis was seen by microscopic studies at this time. However, T2 cells in 14-day-treated rats were swollen with enlarged lamellar inclusion bodies. Biochemical study of freshly isolated T2 cells displayed a significant decrease of lactate dehydrogenase (LDH) released by these cells when isolated from 14-day-treated rats as compared with 7-day. By contrast, BLM induced an increase in superoxide dismutase (SOD) and glutathione peroxidase activities. Cell content of glutathione was decreased and -glutamyl transpeptidase activity was markedly increased. These results show that BLM induces changes in the antioxidant system of T2 cells, particularly in the glutathione system.  相似文献   

13.
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular oxidative stress and modulated superoxide dismutase, catalase and glutathione peroxidase activities. Retinol (7 μM) significantly increased TBARS, conjugated dienes, and hydroperoxide-initiated chemiluminescence in cultured Sertoli cells. In response to retinol treatment superoxide dismutase, catalase and glutathione peroxidase activities increased. TBARS content and catalase activities were decreased by a free radical scavenger. These findings suggest that retinol may induce oxidative stress and modulate antioxidant enzyme activities in Sertoli cells.  相似文献   

14.
The oxidation of GSH coupled to the redox transitions of 1, Cnaphthoquinone derivatives during DT-diaphorase catalysis was examined. The quinones studied included 1,4-naphthoquinone and its dimethoxy-and hydroxy derivatives and were selected according to their different ability to undergo nucleophilic addition with GSH and the dual effect of superoxide dismutase on hydroquinone autoxidation

GSH was oxidized to GSSG during the redox transitions of the above quinones, regardless of their substitution pattern. This effect was accompanied by an increase of total O2 consumption, indicating the ability of GSH to support quinone redox cycling. The values for the relationship [O2]consumed[GSSG]formde were, with every quinone examined, above unity. thus pointing to the occurrence of autoxidation reactions other than those involved during GSSG formation

These results are discussed in terms of the functional group chemistry of the quinones and the ther-modynamic properties of the reactions involved in the reduction of the semi- to the hydro-quinone by GSH  相似文献   

15.
The antimalarial properties of azomethine H represent the basis for its use as a chemotherapeutic agent. This work was carried out in order to verify the biological side effects of azomethine H and to clarify the contribution of reactive oxygen species (ROS) in this process. It was shown that azomethine H increased serum activities of amylase, alanine transaminase (ALT) and the TBARS concentrations, in rats. No changes were observed in glutathione peroxidase and catalase activities. The drug-induced tissue damage might be due to superoxide radicals (O2), since Cu-Zn superoxide dis-mutase activities were increased by azomethine H treatment. This study allows tentative conclusions to be drawn regarding which reactive oxygen metabolites play a role in azomethine H activity. We concluded that (O2) maybe produced as a mediator of azomethine H action.  相似文献   

16.
Responses of Camellia sinensis to Drought and Rehydration   总被引:2,自引:1,他引:1  
The effects of drought and rehydration on tea seedlings were significant. After five days of drought imposition the contents of chlorophylls, carotenoids, ascorbate and glutathione, and activities of guaiacol peroxidase and glutathione reductase decreased. Simultaneously, contents of proline, H2O2 and superoxide anion, lipid peroxidation and activities of catalase and superoxide dismutase increased. These parameters recovered to different degrees during subsequent rehydration.  相似文献   

17.
Earlier we reported that probucol treatment subsequent to the induction of diabetes can prevent diabetes-associated changes in myocardial antioxidants as well as function at 8 weeks. In this study, we examined the efficacy of probucol in the reversal of diabetes induced myocardial changes. Rats were made diabetic with a single injection of streptozotocin (65 mg/kg, i.v.). After 4 weeks of induction of diabetes, a group of animals was treated on alternate days with probucol (10 mg/kg i.p.), a known lipid lowering agent with antioxidant properties. At 8 weeks, there was a significant drop in the left ventricle (LVSP) and aortic systolic pressures (ASP) in the diabetic group. Hearts from these animals showed an increase in the thiobarbituric acid reacting substances (TBARS), indicating increased lipid peroxidation. This was accompanied by a decrease in the myocardial antioxidant enzymes activities, superoxide dismutase (SOD) and glutathione peroxidase (GSHPx). Myocardial catalase activity in the diabetic group was higher. In the diabetic + probucol group both LVSP and ASP showed significant recovery. This was also accompanied by an improvement in SOD and GSHPx activities and there was further increase in the catalase activity. Levels of the TBARS were decreased in this group. These data provide evidence that diabetic cardiomyopathy is associated with an antioxidant deficit which can be reversed with probucol treatment. Improved cardiac function with probucol may be due to the recovery of antioxidants in the heart.  相似文献   

18.
Cadmium induced lipid peroxidation (LPO) and the activity of antioxidantenzymes after the administration of a single dose of CdCl 2 (0.4 mg kg body wt, ip) was studied in rat erythrocytes.Cd intoxication increased erythrocyte LPO along with a decrease insuperoxide dismutase (SOD) up to three days of Cd treatment. Thedecrease in erythrocyte catalase (CAT) activity was marked within9 h of Cd intoxication. After three days of Cd treatment, LPOdecreased towards normal, along with an increase in erythrocyteSOC and CAT activity. Blood glutathione (GSH) decreased significantlywithin 24 h of Cd treatment, followed by an increase towards normal.Erythrocyte glutathione S-transferase (GST) activity increased up to10 days of Cd intoxication, probably in an attempt to reduce Cd toxicity.Serum glutamate pyruvate transaminase (SGPT), serum alkaline phosphatase(SALP) and serum bilirubin increased up to 10 days of Cd intoxication.Blood urea increased significantly up to three days, followed by a decreasetowards normal. The results show that Cd induced LPO was associated with adecrease in antioxidant enzymes and GSH in erythrocytes; as these antioxidantsincrease in erythrocytes with recovery from Cd intoxication, the Cd inducedLPO reversed towards normal. The increase in the SGPT, SALP and serum bilirubincorrelated with LPO. The results suggest that Cd intoxication induces oxidativestress and alters the antioxidant system, resulting in oxidative damage torat erythrocytes. © Rapid Science 1998  相似文献   

19.
The 24 h effect of low (20°C) and high (43°C) temperature on the antioxidant enzyme activities and lipid peroxidation was investigated in intact cells of the cyanobacteriumSynechocystis PCC 6803 grown at 36°C. At low temperature treated cells, the superoxide dismutase, catalase and glutathione peroxidase activities were significantly higher and the protein content lower than in high temperature treated cells. The increase of hydroxyl free radical level and malonyldialdehyde formation, when algal cells were exposed to low temperature, were due to the stimulated production of superoxide radicals O2 and hydrogen peroxide (H2O2).  相似文献   

20.
Role of antioxidant enzymes in cell immortalization and transformation   总被引:6,自引:0,他引:6  
Summary The role of antioxidant enzymes, particularly superoxide dismutase (SOD), in immortalization and malignant transformation is discussed. SOD (generally MnSOD) has been found to be lowered in a wide variety of tumor types when compared to an appropriate normal cell control. Levels of immunoreactive MnSOD protein and mRNA for MnSOD also appear to be lowered in tumor cells. Tumor cells have the capacity to produce superoxide radical, the substrate for SOD. This suggests that superoxide production coupled with diminished amounts of MnSOD may be a general characteristic of tumor cells. The levels of MnSOD in certain cells correlates with their degree of differentiation; non-differentiating cells, whether normal or malignant, appear to have lost the ability to undergo MnSOD induction. These observations are used to elucidate a two-step model of cancer. This model involves not only the antioxidant enzymes, but also organelle (particularly mitochondria and peroxisomes) function as a dominant theme in carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号