首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective predation by planktivore fish appears to be an important regulatory factor of zooplankton communities, potentially causing large changes in species composition and size distributions within populations. In this study, prey preferences and size-selective predation on zooplankton by Arctic charr were examined in six subarctic lakes with Arctic charr as the dominant pelagic fish species. Most of the lakes had a zooplankton community dominated by copepods (Cyclops scutifer and Eudiaptomus graciloides), but the pelagic charr evidently selected cladoceran species (Bythotrephes longimanus, Daphnia sp. and Bosmina sp.), likely because the copepods have a higher mobility and evasiveness than the cladocerans. Furthermore, a strong size selection was also revealed for both Bosmina sp. and Daphnia sp., as individual prey from Arctic charr stomachs were exclusively larger than individuals sampled in the environment. Additionally, visibility due to size, morphology and pigmentation (egg-carrying females) was also a major factor for the selection of zooplankton prey. In conclusion, Arctic charr was found to be highly selective on zooplankton both in respect to species composition and individual size of Bosmina sp. and Daphnia sp.  相似文献   

2.
To elucidate the possibilities of using zooplankton remains in the surface sediment to describe present-days community structure and population dynamics of zooplankton, fish abundance and temperature, we compared contemporary data sampled in the pelagial during summer with the sediment record from the upper 1 cm of the sediment in 135 lakes covering a latitude gradient from Greenland in the north to New Zealand in the south. The abundance of three genera Bosmina, Daphnia and Ceriodaphnia of the total pool of ephippia was significantly related to the total abundance of the same taxa in the pelagic zone. However, in most lakes the abundance of Ceriodaphnia was higher in the sediment than in the water, which may be attributed to the overall preference by this genus for the littoral habitat. Using contemporary data from 27 Danish lakes sampled fortnightly during summer for 10 years, we found substantial inter-annual variations in the abundance of Daphnia spp., Ceriodaphnia spp., B. longirostris and B. coregoni. Yet, the sediment record mimicked the medium level well for most of the lakes, which suggests that the sediment record provides an integrated picture of the pelagic cladoceran community, which otherwise can be obtained only by long-term frequent contemporary sampling for several years. The contribution of Daphnia to the sum of Daphnia and Bosmina ephippia was negatively correlated with the abundance of fish expressed as catch per night in multi-mesh sized gill nets (CPUE). Yet, region-specific differences occurred, which partly could be eliminated by including nutrient state expressed as total phosphorus (TP) in a multiple regression. The average ratio of ephippia to the sum of ephippia and carapaces of Bosmina varied 40-fold between the sampling regions and was significantly negatively related to summer mean air temperature, and for Danish lakes also, albeit weakly, to fish CPUE but not to chlorophyll a. Apparently, temperature is the most important factor determining the ratio of parthenogenetic to ephippia producing specimens of Bosmina. We conclude that the sediment record of cladocerans is a useful indicator of community structure of pelagic cladocerans and the abundance of fish and temperature.  相似文献   

3.
Cyanobacterial chemical warfare affects zooplankton community composition   总被引:5,自引:0,他引:5  
1. Toxic algal blooms widely affect our use of water resources both with respect to drinking water and recreation. However, it is not only humans, but also organisms living in freshwater and marine ecosystems that may be affected by algal toxins. 2. In order to assess if cyanobacterial toxins affect the composition of natural zooplankton communities, we quantified the temporal fluctuations in microcystin concentration and zooplankton community composition in six lakes. 3. Microcystin concentrations generally showed a bimodal pattern with peaks in early summer and in autumn, and total zooplankton biomass was negatively correlated with microcystin concentrations. Separating the zooplankton assemblages into finer taxonomic groups revealed that high microcystin concentrations were negatively correlated with Daphnia and calanoid copepods, but positively correlated with small, relatively inefficient phytoplankton feeders, such as cyclopoid copepods, Bosmina and rotifers. 4. In a complementary, mechanistic laboratory experiment using the natural phytoplankton communities from the six lakes, we showed that changes in in situ levels of microcystin were coupled with reduced adult size and diminished juvenile biomass in Daphnia. 5. We argue that in eutrophic lakes, large unselective herbivores, such as Daphnia, are ‘sandwiched’ between high fish predation and toxic food (cyanobacteria). In combination, these two mechanisms may explain why the zooplankton community in eutrophic lakes generally comprise small forms (e.g. rotifers and Bosmina) and selective raptorial feeders, such as cyclopoid copepods, whereas large, unselective herbivores, such as Daphnia, are rare. Hence, this cyanobacterial chemical warfare against herbivores may add to our knowledge on population and community dynamics among zooplankton in eutrophic systems.  相似文献   

4.
1. Return of large‐bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear‐water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear‐water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake, the zooplankton (primarily Daphnia) were mainly found in the pelagic area in spring, but from mid‐May they were particularly abundant in the APB and almost exclusively so in mid‐June and July, where they appeared in extremely high densities during day (up to 2600 ind. L−1). During night Daphnia densities were overall more equally distributed between the five habitats. Ceriodaphnia was proportionally more abundant in the APB during most of the season. Cyclopoids were more abundant in the high APB during day but were equally distributed between the five habitats during night. 4. In the turbid lake, however, no clear aggregation was observed in the APB for either of the pelagic genera (Daphnia and Bosmina). This may reflect a higher refuge effect in the open water due to the higher turbidity, reduced ability to orient to plant beds and a significantly higher fish density (mainly of roach, Rutilus rutilus, and perch, Perca fluviatilis) in the plant beds than in the clear lake. Chydorus was found in much higher proportions among the plants, while cyclopoids, particularly the pelagic Cyclops vicinus, dominated in the pelagic during day and in the pelagic and high density plants during night. 5. Our results suggest that water clarity is decisive for the habitat choice of large‐bodied zooplankton and that introduction of APB as a restoration measure to enhance zooplankton survival is only a useful tool when water clarity increases following loading reduction. Our results indicate that dense APB will be the most efficient.  相似文献   

5.
Synopsis We examined the feeding behaviors and selectives of two common planktivorous fishes, pumpkinseeds Lepomis gibbosa and fathead minnows Pimephales promelas in the laboratory. Ingestion rates for both pumpkinseeds and fathead minnows feeding on zooplankton increased as a function of fish length. Pumpkinseeds fed on zooplankton strictly as particulate feeders, with preferences increasing as a function of zooplankton body size regardless of taxonomic identity. Preferences were highest for large Daphnia, intermediate for intermediate-sized copepods, and lowest for small Ceriodaphnia. Fathead minnows displayed the ability to use both particulate-feeding and filter-feeding behaviors. Differential preferences tended to reflect both zooplankton size and taxon, being highest for large, slow-swimming Daphnia, intermediate for small Ceriodaphnia, and lowest for faster-swimming copepods. These differences in prey capture behaviors and preferences of the two fishes are reflected in the zooplankton taxonomic composition of small ponds containing each fish type. The crustacean zooplankton assemblages in ponds containing both pumpkinseeds and fathead minnows were dominated by copepods. Cladocerans were rare. In ponds containing pumpkinseeds, but no fathead minnows, cladocerans were abundant, generally accounting for up to 80% of total crustacean zooplankton biomass. These results suggest that the type of planktivore, and not simply the presence or abundance of planktivores in a system, can determine zooplankton community structure.  相似文献   

6.
7.
Irvine  K.  Moss  B.  Stansfield  J. 《Hydrobiologia》1990,200(1):379-389
The Norfolk Broads are a series of shallow lakes which are highly eutrophic and typified by dense populations of phytoplankton and an absence of submerged aquatic plants. The zooplankton community is subject to intense predation pressure by young fish and is dominated by small-bodied organisms which have a low potential for reducing phytoplankton populations through grazing. Various designs and densities of artificial refugia for zooplankton against fish predation were established in Hoveton Great Broad in order to enhance populations of large-bodied Cladocera. Initially some of the refuges contained higher densities and larger individuals ofDaphnia andCeriodaphnia than the surrounding open water. However, towards the end of the first season and throughout the subsequent two years, population densities and size-structure were similar both within and outside the refuges, although there was still evidence of enhanced body-size ofDaphnia within the refuges compared with the open water. The provision of habitat structures designed as refugia from fish predation did not enhance large-bodied cladoceran populations enough to promote this restoration strategy as feasible for eutrophic and shallow lakes.  相似文献   

8.
1. Analyses of zooplankton fatty acid (FA) composition in laboratory experiments and samples collected from lakes in New Zealand spanning a wide gradient of productivity were used to assess the extent to which FAs might infer their diet. We used the cladocerans, Daphnia and Ceriodaphnia, and the calanoid copepod, Boeckella, as test organisms, and monocultures of cryptophytes, chlorophytes and cyanobacteria as food. Based on reproductive success, cryptophytes were the highest food quality, chlorophytes were intermediate and cyanobacteria the poorest. 2. Several FA groups were highly correlated between zooplankton and their diets. They were monounsaturated fatty acids (MUFAs), and ω3 and ω6 polyunsaturated fatty acids (PUFAs) for cladocerans, and saturated fatty acids (SAFAs) and ω3 PUFAs for copepods. Several FAs varied significantly less in the zooplankton than in their monoculture diets, e.g. MUFAs in Daphnia, and ω3 and ω6 PUFAs in Ceriodaphnia, despite clear dietary dependency for these FAs. 3. Zooplankton collected from lakes in New Zealand had more eicosapentaenoic acid (EPA) (Daphnia), more highly unsaturated ω3 and ω6 FAs (C20, C22; Daphnia, Ceriodaphnia, Boeckella) and less ω3 C18 PUFAs (Daphnia, Ceriodaphnia, Boeckella) and ω6 C18 PUFAs (Daphnia, Ceriodaphnia) than measured in the same species reared on phytoplankton in the laboratory. 4. Analyses of FA composition of seston and freshwater zooplankton globally showed that, in general, zooplankton had a significantly higher proportion of arachidonic acid and EPA than seston, and copepods also had a higher percentage of docosahexaenoic acid than seston. 5. These results suggest that zooplankton selectively incorporate the most physiologically important FAs. This could be a consequence of preferential assimilation, selective feeding on more nutritious cells or locating and feeding within higher food quality food patches.  相似文献   

9.
Several studies have shown that submerged macrophytes provide a refuge for zooplankton against fish predation, whereas the role of emergent and floating-leaved species, which are often dominant in eutrophic turbid lakes, is far less investigated. Zooplankton density in open water and amongst emergent and floating-leaved vegetation was monitored in a small, eutrophic lake (Frederiksborg Slotssø) in Denmark during July–October 2006. Emergent and floating-leaved macrophytes harboured significantly higher densities of pelagic as well as plant-associated zooplankton species, compared to the open water, even during periods where the predation pressure was presumably high (during the recruitment of 0+ fish fry). Zooplankton abundance in open water and among vegetation exhibited low values in July and peaked in August. Bosmina and Ceriodaphnia dominated the zooplankton community in the littoral vegetated areas (up to 4,400 ind l?1 among Phragmites australis and 11,000 ind l?1 between Polygonum amphibium stands), whereas the dominant species in the pelagic were Daphnia (up to 67 ind l?1) and Cyclops (41 ind l?1). The zooplankton density pattern observed was probably a consequence of concomitant modifications in the predation pressure, refuge availability and concentration of cyanobacteria in the lake. It is suggested that emergent and floating-leaved macrophytes may play an important role in enhancing water clarity due to increased grazing pressure by zooplankton migrating into the plant stands. As a consequence, especially in turbid lakes, the ecological role of these functional types of vegetation, and not merely that of submerged macrophyte species, should be taken into consideration.  相似文献   

10.
Empirical models based on zooplankton biomass were used to predict mean summer chlorophyll a (Chl a) and to examine how zooplankton influenced the total phosphorus (TP) - Chl a relationship. Four years of data were analyzed for three lakes having similar TP concentrations but varied abundances of Daphnia and Ceriodaphnia. Mean TP did not correlate significantly with mean Chl a during the study period, although mean Daphnia density was a good predictor of Chl a concentration (p > 0.001). Both residuals from the TP - Chl a relationship (p > 0.001) and Secchi depth (p > 0.007) were negatively correlated with Daphnia abundance. Ceriodaphnia abundance was positively correlated with Chl a (p > 0.002) and Secchi depth (p > 0.001). Mean size of Daphnia during spring was the best predictor of the Daphnia-Ceriodaphnia shift in mid-summer. Early establishment of a large-sized Daphnia cohort may prevent their summer elimination by Chaoborus and intensify competition with Ceriodaphnia. These results imply an important link between Daphnia and Ceriodaphnia thereby limiting the utility of Chl a - TP model predictions in these small, urban lakes. This linkage and the differential effect of these two zooplankton species on planktonic algae deserve further consideration in similar lakes where phytoplankton and zooplankton tend to be tightly coupled.  相似文献   

11.
To assess whether and how zooplankton communities respond to variations in temperature and how these assemblages change with eutrophication, we performed a large‐scale, monthly survey from August 2011 to July 2012 to determine the seasonal and spatial variations in these communities in a high‐altitude lake. A detrended correspondence analysis and a path analysis demonstrated that temperature and chlorophyll a were important factors influencing zooplankton. The path diagram showed that Daphnia was negatively affected directly by chlorophyll a and indirectly by temperature, whereas Bosmina was directly and positively affected by temperature. Daphnia spp. decreased in both absolute and relative biomass during warm seasons, whereas Bosmina spp. showed the opposite trend. Moreover, the lowest Daphnia spp. biomass was observed in the southern region, which was the most eutrophic. Our results indicate that increasing temperatures will continue to shift the dominant genus from Daphnia to Bosmina, and this change will be exacerbated by eutrophication. In addition, the zooplankton of Lake Erhai have shifted to smaller species over time as temperature and eutrophication have increased, which implies that zooplankton succession to small cladocerans may be markedly accelerated under further climate change and the increased eutrophication that has been observed in recent decades.  相似文献   

12.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

13.
We analysed the spatio-temporal distribution of zooplankton along a profile of 10 stations from the shore to the pelagic zone from April to September 1988, the period when the larvae and juveniles Rutilus rutilus, the most abundant species in the Lake, are in the littoral zone. The digestive tracts of the young roach were analysed. They fed essentially on rotifers and on cladocerans. For comparison, zooplankton was also analysed at one littoral area without fish fry. There was an increase of cladoceran density from the vegetated nearshore zone to the offshore zone. Considering the density of Bosmina longirostris, Daphnia longispina, Chydorus sphaericus and Ceriodaphnia quadrangula, we observed a different distribution pattern in the course of the year. In the nearshore zone, the relative abundance of small species, Bosmina and Chydorus, was much higher than that of the larger Daphnia. From April to September, predation pressure mainly affected the smallest species: in contrast to the inshore station without fish fry, the density of Bosmina decreased in May in the littoral with fish. Chydorus was concentrated in the littoral between February and April, then grew into the pelagic zone, where predation pressure obviously was low during the warm season. The number of Daphnia, which was eaten by the fish fry at any time, remained low in the nearshore zone, which suggests that the presence of fish may cause Daphnia to avoid this zone. Ceriodaphnia which was not affected by this predation, was scarce in the nearshore zone during mid-summer. The low density of the cladocerans in the nearshore zone is likely associated with vertebrate predation by roach fry and juveniles, the result of such a process being either a depletion in density of the prey, or an avoidance behaviour.  相似文献   

14.
1. Visually foraging fish typically exclude large zooplankton from clear‐water lakes and reservoirs. Do fish have the same effect in turbid waters, or does turbidity provide a refuge from visual predation? 2. To test the hypothesis that fish exclude large zooplankton species from turbid sites, I searched for populations of medium or large Daphnia species in turbid, fish‐containing reservoirs of south‐central Oklahoma and north‐central Texas, U.S.A., and surveyed the literature for accounts of Daphnia species in turbid habitats worldwide. 3. Only small Daphnia species and the exuberantly spined Daphnia lumholtzi were detected in the turbid reservoirs. The Daphnia species in the reservoirs are smaller than other Daphnia species that occur in the area but were not detected. An extensive survey of the literature suggests that large Daphnia may be found in the lakes of extreme turbidity [Secchi disk depth (SD) < 0.2 m] but that only small and spiny Daphnia are likely to occur in more typical turbid locations (1.0 m > SD > 0.2 m) unless some additional factor reduces the influence of fish predation in such sites. 4. The field samples from Texas and Oklahoma together with the literature review suggest that the effect of visually foraging planktivorous fish on the size structure of turbid‐water zooplankton communities may often be as strong or even stronger than the effect of fish on clear‐water zooplankton communities.  相似文献   

15.
The Sudbury, Ontario, Canada area offers a unique opportunity to develop our understanding of biotic and abiotic lake recovery processes in industrially damaged natural systems. In recent decades, lakes in the Sudbury area have shown improvements in water quality due to decreases in sulfur (S) and metal emissions from area smelters, and reduced acid deposition from more distant sources. However, biological recovery is lagging and mechanisms controlling the lag are not yet clear. Our study examines the roles of two factors, residual metal contamination and altered fish predation, on zooplankton community recovery. Data collected over three decades on six study lakes were analyzed using redundancy analysis (RDA) and partial RDA's to assess historical and present relationships of water chemistry and fish abundance with zooplankton community recovery. Continuing metal toxicity appears to be the primary cause of the absence of some zooplankton species, particularly Daphnia spp. from metal‐contaminated lakes. Conversely, once water quality is suitable and abundant planktivores reestablish, fish planktivory becomes a factor affecting Daphnia spp. establishment. The introduction of piscivores into these lakes may be necessary to facilitate the return of many Daphnia species. Further reductions in metal toxicity will also assist with the complete recovery of zooplankton communities. Studying natural systems over several decades allows us to better understand the intricate steps involved with recovery of industrially damaged lakes, and this knowledge will greatly benefit future restoration efforts in other industrially damaged systems .  相似文献   

16.
We report here the results of an experimental study designed to compare algal responses to short-term manipulations of zooplankton in three California lakes which encompass a broad range of productivity (ultra-oligotrophic Lake Tahoe, mesotrophic Castle Lake, and strongly eutrophic Clear Lake). To assess the potential strength of grazing in each lake, we evaluated algal responses to a 16-fold range of zooplankton biomass. To better compare algal responses among lakes, we determined algal responses to grazing by a common grazer (Daphnia sp.) over a range ofDaphnia densities from 1 to 16 animals per liter. Effects of both ambient grazers andDaphnia were strong in Castle Lake. However, neither ambient zooplankton norDaphnia had much impact on phytoplankton in Clear Lake. In Lake Tahoe, no grazing impacts could be demonstrated for the ambient zooplankton butDaphnia grazing had dramatic effects. These results indicate weak coupling between phytoplankton and zooplankton in Clear Lake and Lake Tahoe, two lakes which lie near opposite extremes of lake trophic status for most lakes. These observations, along with work reported by other researchers, suggest that linkages between zooplankton and phytoplankton may be weak in lakes with either extremely low or high productivity. Biomanipulation approaches to recover hypereutrophic lakes which aim only to alter zooplankton size structure may be less effective if algal communities are dominated by large, inedible phytoplankton taxa.  相似文献   

17.
1. Stocking of lakes with rainbow trout is a common practice that presents a potential conflict for lake managers who must balance the interests of anglers with those concerned that zooplanktivory by trout may trigger a trophic cascade and result in decreased water clarity. 2. This study examined how the timing of trout stocking (autumn versus spring) in a Minnesota (U.S.A.) lake affected (i) the population dynamics of their zooplankton food supply (Daphnia pulicaria), (ii) phytoplankton biomass and water clarity and (iii) trout survival. Sizes of both Daphnia and trout populations were estimated acoustically with high‐frequency (192 kHz) sonar. 3. Daphnia were nearly eliminated from the lake during winters after trout were stocked in autumn. In both of these years (1996 and 1997), the Daphnia population was small in the spring, and grew during the summer and into the autumn as the trout population diminished. 4. The lake was then stocked in spring for 2 years (1998 and 1999). This fisheries manipulation alleviated predation over the winter, but increased predation on D. pulicaria during the spring, summer and autumn. However, the high mortality caused by the spring‐stocked trout was offset by even higher rates of reproduction by the relatively large populations of fecund Daphnia that survived the winter in 1998 and 1999. 5. Grazing by these dense populations of Daphnia produced clear‐water phases during May and June that were inhibited in autumn stocking years. In addition, the large Daphnia populations present during the spring and early summer of 1998 and 1999 provided abundant forage for trout. 6. This fisheries manipulation achieved seemingly mutually exclusive management objectives: a robust planktivorous sport fishery, and clear water for other forms of recreation.  相似文献   

18.
1. The coexistence of Bosmina and Ceriodaphnia was studied in relation to phytoplankton succession in a small lake (Laguna Ezquerra) in the araucanian region of Argentina. 2. The study involved field sampling and single species cultures of each of the two cladocerans in lake water under laboratory conditions. 3. Ceriodaphnia showed a unimodal cycle while Bosmina had a bimodal pattern during 4 months of coexistence. Ceriodaphnia exhibited a direct relationship between clutch size and biovolume of edible algae, whereas Bosmina's fecundity was related to the density of flagellates. 4. We found that the fecundity of these species responded differently to laboratory and field conditions. The fecundity of Ceriodaphnia followed the same pattern in both the field and laboratory, whereas Bosmina showed higher fecundity values in laboratory experiments. 5. Our results are in good agreement with predictions derived from Northern Hemisphere studies, indicating that food-limited populations of daphnids and Bosmina can coexist for extended periods in spatially homogeneous environments. 6. The variation in food availability, measured as biovolume of edible algae, determines the loss of Ceriodaphnia and the persistence of Bosmina.  相似文献   

19.
20.
1. Strong vertical gradients in light, water temperature, oxygen, algal concentration and predator encounters during summer in stratified lakes may influence patterns of depth selection in crustacean zooplankton, especially Daphnia species. 2. To test how crustacean depth selection varies among lakes along a gradient of catchment disturbance by recent residential development and land use change, we calculated the weighted mean depth distribution of the biomass of crustaceans by day and night in eight nutrient‐poor boreal lakes. 3. Generally, the greatest biomass of crustaceans was located at the metalimnion or at the lower boundary of the euphotic zone during thermal stratification in July. The crustacean zooplankton avoided warm surface layers and tended to stay in colder deep waters by both day and night. They also remained at greater depths in lakes with a more extensive euphotic zone. 4. There was some evidence of upward nocturnal migrations of large Daphnia and copepods in some lakes, and one case of downward migration in a lake inhabited by chaoborid larvae. 5. Multivariate regression trees (MRT) were used to cluster crustaceans and Daphnia species in homogeneous groups based on lake natural and disturbance factors. For crustaceans, the depth of the euphotic zone, the sampling depth (epilimnion, metalimnion and hypolimnion), time (day or night) of sampling and the biomass of chlorophyll a were the main driving factors. For Daphnia species, the drainage area, the sampling depth, the cleared land surface area within the catchment and the concentration of total dissolved phosphorus were the main factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号