首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of Ca2+ level regulation in the cytoplasm by neurotransmitters, hormones, and growth factors and described. The role of G-proteins, second messengers and protein kinases in the regulation of activity of Ca2+ channels and pumps is discussed. The contributions of the endoplasmic reticulum, plasma membrane, nucleus, mitochondria and other intercellular compartments to the increase in the cytoplasmic Ca2+ concentration are estimated. The data concerning the relationships between the activities of systems of active and passive Ca2+ transport across the membrane are reviewed. The general mechanisms of intracellular Ca2+ oscillation are summarized, and a possible role of this process in the neuroendocrine signal transduction is discussed.  相似文献   

2.
3.
4.
In contracting cardiac myocytes, the rapid changes in cytosolic and nuclear Ca2+ make it difficult to determine whether the nuclear Ca2+ transient is caused by diffusion from the cytosol or by Ca2+ release channels on the inner nuclear membrane, or both. The propagation mechanism in the nucleoplasm also remains unknown. We have developed an ultra-fast Nipkow confocal imaging system able to acquire two-dimensional images at approximately 4 ms/full frame speed and employed it to analyze Ca2+ waves and the dynamics of the cytosolic and nuclear Ca2+ transients after electrical stimulation of cardiac myocytes. The pattern of nuclear Ca2+ upon stimulation was well described by a mathematical model of Ca2+ diffusion across the nuclear envelope. No evidence of Ca2+ release from perinuclear Ca2+ stores was obtained. The Ca2+ diffusion constant appeared to change during contraction, with essentially free diffusion of Ca2+ through nuclear pore complexes at low cytosolic Ca2+ and partially restricted diffusion at high cytosolic Ca2+. The Ca2+ in the nucleoplasm propagated by diffusion and no Ca2+ release phenomena were seen in the nucleus.  相似文献   

5.
6.
Na(+)/K(+)-ATPase as a signal transducer.   总被引:19,自引:0,他引:19  
  相似文献   

7.
Subcellular fractionation revealed that a significant fraction of total sphingosine kinase, the enzyme that phosphorylates sphingosine to form the bioactive lipid metabolite sphingosine-1-phosphate, resides in the nuclei of Swiss 3T3 cells, localized to both the nuclear envelope and the nucleoplasm. Platelet-derived growth factor, in addition to rapidly stimulating cytosolic sphingosine kinase, also induced a large increase in nucleoplasm-associated activity after 12-24 h that correlated with progression of cells to the S-phase of the cell cycle and translocation of sphingosine kinase-green fluorescent protein fusion protein to the nuclear envelope. Our results add sphingosine kinase to the growing list of lipid-metabolizing enzymes associated with the nucleus, and suggest that sphingosine-1-phosphate may also play a role in signal transduction in the nucleus.  相似文献   

8.
9.
Outer nuclear membrane is endowed with a SERCA type Ca(2+)-ATPase which pumps calcium into the nuclear envelope lumen and creates calcium stores. Variation in this calcium pool, among other things, regulates nuclear transport. The transport of Nuclear Localization Signal (NLS)-containing molecules into the nucleus is well established. Intermediate size molecules lacking an NLS translocate to the nucleus and its mechanism remains obscure. It is observed here that the treatment of HEK 293 cells in culture with dibutyryl cyclic AMP (db-cAMP) or forskolin (FK) triggered transport of Calcium Green 10 kDa dextran into the nucleus. Under similar conditions Fluo-3-AM accumulated around the nuclei. cAMP-dependent protein kinase phosphorylated 105 kDa nuclear Ca(2+)-ATPase (NCA) which served as a trigger for NLS-independent transport into the nucleus.  相似文献   

10.
Intracellular targeting may enable protein kinases with broad substrate- specificities, such as multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) to achieve a selectivity of action in vivo. We have examined the intracellular targeting of three delta-CaM kinase isoforms. The delta B-CaM kinase isoform is targeted to the nucleus in transfected cells while the delta A- and delta C-CaM kinase isoforms are cytosolic/cytoskeletal. A chimeric construct of alpha-CaM kinase containing the delta B-CaM kinase variable domain is rerouted to the nucleus while the native alpha-CaM kinase and chimeras of alpha-CaM kinase which contain the delta A- or delta C-CaM kinase variable domains are retained in the cytoplasm. Using site-directed mutagenesis, we have defined a nuclear localization signal (NLS) within an 11-amino acid sequence, likely inserted by alternative splicing, in the variable domain of delta B-CaM kinase. Isoform-specific nuclear targeting of CaM kinase is probably a key mechanism in the selective regulation of nuclear functions by CaM kinase. CaM kinase is a multimer that can be composed of several isoforms. We find that when cells express two different isoforms of CaM kinase, cellular targeting is determined by the ratio of the isoforms. When an excess of the cytoplasmic isoform of CaM kinase is coexpressed along with the nuclear isoform, both isoforms are localized in the cytoplasm. Conversely an excess of the nuclear isoform can reroute the cytoplasmic isoform to the nucleus. The nuclear isoform likely coassembles with the cytosolic isoform, to form a heteromultimeric holoenzyme which is transported into the nucleus. These experiments demonstrate isoform-specific targeting of CaM kinase and indicate that such targeting can be modified by the expression of multiple isoforms of the enzyme.  相似文献   

11.
12.
13.
14.
15.
16.
Calcium is an important regulator of a variety of neuronal activities including gene expression. However, it is not clear how Ca2+ influx affects intracellular Ca2+ concentration [( Ca2+]i) in the nucleus. We have taken advantage of laser photometry, the Ca2(+)-sensitive dye Indo-1 that allows ratio imaging, and confocal microscopy to eliminate the influences of unequal cell geometry and dye distribution. We show that Ca2+ influx into sympathetic neurons causes a significantly greater and faster increase in [Ca2+]i in the nucleus than in the cytosol. The differential increase in nuclear [Ca2+]i was apparent when Ca2+ entered from the extracellular medium during K+ depolarization, ionomycin or acetylcholine treatment, and brief periods of electrical stimulation. When intracellular Ca2+ was mobilized by caffeine the rise in nuclear [Ca2+]i was again greater than in any other region of the neuron. The increased nuclear Ca2+ levels were uniform throughout the nucleus and not associated with the nuclear envelope. The differential rise in nuclear Ca2+ was eliminated by acridine orange binding to nucleic acids. Nonexcitable cells (astrocytes, oligodendrocytes, and fibroblasts) did not show differential distribution of Ca2+ after ionomycin treatment. These results support the idea that activity-dependent gene regulation in sympathetic neurons may be mediated by changes in Ca2+ concentration at the level of the chromatin material.  相似文献   

17.
18.
19.
Aldosterone and nuclear signaling in kidney.   总被引:2,自引:0,他引:2  
H Oberleithner 《Steroids》1999,64(1-2):42-50
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号