首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NPHS2 gene encoding the podocin protein was causally linked to the autosomal recessive type of steroid-resistant nephrotic syndrome. In this study, we investigated the consequence of the R138Q mutation of podocin, one of the most common missense mutations in the NPHS2 gene, by examining the expression of the wild-type and R138Q mutant podocins in mammalian cells. Either myc- or FLAG-tagged wild-type podocin was strongly stained in plasma membrane, particularly in the fine processes wherein the protein was colocalized with actin stress fibers. On the other hand, the R138Q mutant podocin was completely retained intracellularly and colocalized with the endoplasmic reticulum (ER) marker, calnexin. These results suggest that the R138Q mutation affected podocin protein folding, thereby interfering with the mutant protein's departure from the ER. To determine if the ER retention of R138Q mutant is correctable, cells were incubated with the chemical chaperones glycerol, trimethylamine-N-oxide, and DMSO. Using these two methods, namely, cell surface labeling with sulfo-NHS-S-S-biotin and Alexa 488-streptavidin, and immunostaining to detect the podocin protein close to the plasma membrane, we confirmed that these chemical chaperone treatments elicit a cellular redistribution of R138Q podocin. Our results reveal defective cellular processing of the mutant podocin, and provide evidence for pharmacological correction of the processing defect.  相似文献   

2.
Mutations of NPHS1 or NPHS2, the genes encoding nephrin and podocin, as well as the targeted disruption of CD2-associated protein (CD2AP), lead to heavy proteinuria, suggesting that all three proteins are essential for the integrity of glomerular podocytes, the visceral glomerular epithelial cells of the kidney. It has been speculated that these proteins participate in common signaling pathways; however, it has remained unclear which signaling proteins are actually recruited by the slit diaphragm protein complex in vivo. We demonstrate that both nephrin and CD2AP interact with the p85 regulatory subunit of phosphoinositide 3-OH kinase (PI3K) in vivo, recruit PI3K to the plasma membrane, and, together with podocin, stimulate PI3K-dependent AKT signaling in podocytes. Using two-dimensional gel analysis in combination with a phosphoserine-specific antiserum, we demonstrate that the nephrin-induced AKT mediates phosphorylation of several target proteins in podocytes. One such target is Bad; its phosphorylation and inactivation by 14-3-3 protects podocytes against detachment-induced cell death, suggesting that the nephrin-CD2AP-mediated AKT activity can regulate complex biological programs. Our findings reveal a novel role for the slit diaphragm proteins nephrin, CD2AP, and podocin and demonstrate that these three proteins, in addition to their structural functions, initiate PI3K/AKT-dependent signal transduction in glomerular podocytes.  相似文献   

3.
Interaction with podocin facilitates nephrin signaling   总被引:72,自引:0,他引:72  
Mutations of NPHS1 or NPHS2, the genes encoding for the glomerular podocyte proteins nephrin and podocin, cause steroid-resistant proteinuria. In addition, mice lacking CD2-associated protein (CD2AP) develop a nephrotic syndrome that resembles NPHS mutations suggesting that all three proteins are essential for the integrity of glomerular podocytes. Although the precise glomerular function of either protein remains unknown, it has been suggested that nephrin forms zipper-like interactions to maintain the structure of podocyte foot processes. We demonstrate now that nephrin is a signaling molecule, which stimulates mitogen-activated protein kinases. Nephrin-induced signaling is greatly enhanced by podocin, which binds to the cytoplasmic tail of nephrin. Mutational analysis suggests that abnormal or inefficient signaling through the nephrin-podocin complex contributes to the development of podocyte dysfunction and proteinuria.  相似文献   

4.
5.
Podocytes are specialized epithelial cells covering the basement membrane of the glomerulus in the kidney. The molecular mechanisms underlying the role of podocytes in glomerular filtration are still largely unknown. We generated podocin-deficient (Nphs2-/-) mice to investigate the function of podocin, a protein expressed at the insertion of the slit diaphragm in podocytes and defective in a subset of patients with steroid-resistant nephrotic syndrome and focal and segmental glomerulosclerosis. Nphs2-/- mice developed proteinuria during the antenatal period and died a few days after birth from renal failure caused by massive mesangial sclerosis. Electron microscopy revealed the extensive fusion of podocyte foot processes and the lack of a slit diaphragm in the remaining foot process junctions. Using real-time PCR and immunolabeling, we showed that the expression of other slit diaphragm components was modified in Nphs2-/- kidneys: the expression of the nephrin gene was downregulated, whereas that of the ZO1 and CD2AP genes appeared to be upregulated. Interestingly, the progression of the renal disease, as well as the presence or absence of renal vascular lesions, depends on the genetic background. Our data demonstrate the crucial role of podocin in the establishment of the glomerular filtration barrier and provide a suitable model for mapping and identifying modifier genes involved in glomerular diseases caused by podocyte injuries.  相似文献   

6.
Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocinP118L) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2P134S). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. PodocinP118L and MEC-2P134S did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier.  相似文献   

7.
8.
Interallelic interactions of membrane proteins are not taken into account while evaluating the pathogenicity of sequence variants in autosomal recessive disorders. Podocin, a membrane-anchored component of the slit diaphragm, is encoded by NPHS2, the major gene mutated in hereditary podocytopathies. We formerly showed that its R229Q variant is only pathogenic when trans-associated to specific 3′ mutations and suggested the causal role of an abnormal C-terminal dimerization. Here we show by FRET analysis and size exclusion chromatography that podocin oligomerization occurs exclusively through the C-terminal tail (residues 283–382): principally through the first C-terminal helical region (H1, 283–313), which forms a coiled coil as shown by circular dichroism spectroscopy, and through the 332–348 region. We show the principal role of the oligomerization sites in mediating interallelic interactions: while the monomer-forming R286Tfs*17 podocin remains membranous irrespective of the coexpressed podocin variant identity, podocin variants with an intact H1 significantly influence each other's localization (r2?=?0.68, P?=?9.2?×?10?32). The dominant negative effect resulting in intracellular retention of the pathogenic F344Lfs*4-R229Q heterooligomer occurs in parallel with a reduction in the FRET efficiency, suggesting the causal role of a conformational rearrangement. On the other hand, oligomerization can also promote the membrane localization: it can prevent the endocytosis of F344Lfs*4 or F344* podocin mutants induced by C-terminal truncation. In conclusion, C-terminal oligomerization of podocin can mediate both a dominant negative effect and interallelic complementation. Interallelic interactions of NPHS2 are not restricted to the R229Q variant and have to be considered in compound heterozygous individuals.  相似文献   

9.
The molecular nature of the glomerular slit diaphragm, the site of renal ultrafiltration, has until recently remained a mystery. However, the identification of the gene affected in congenital nephrotic syndrome has revealed the presence of a novel protein, possibly specific for the slit diaphragm. This protein, which has been termed nephrin, is a transmembrane protein that probably forms the main building block of an isoporous zipper-like slit diaphragm filter structure. Defects in nephrin lead to abnormal or absent slit diaphragm leading to massive proteinuria and renal failure. The discovery of nephrin sheds new light on the glomerular filtration barrier, provides new insight into the pathomechanisms of proteinuria, and even opens up possibilities for the development of novel therapies for this common and severe kidney complication.  相似文献   

10.
Here we address the assumption that the massive intact albuminuria accompanying mutations of structural components of the slit diaphragm is due to changes in glomerular permeability. The increase in intact albumin excretion rate in Cd2ap knockout mice by >100-fold was not accompanied by equivalent changes in urine flow rate, glomerular filtration rate or increases in dextran plasma clearance rate, which demonstrates that changes in glomerular permeability alone could not account for the increase in intact albumin excretion. The albuminuria could be accounted for by inhibition of the tubule degradation pathway associated with degrading filtered albumin. There are remarkable similarities between these results and all types of podocytopathies in acquired and toxin-induced renal disease, and nephrotic states seen in mice with podocyte mutations.  相似文献   

11.
12.
Filtrin is a novel member of nephrin-like proteins   总被引:11,自引:0,他引:11  
NPHS1 encodes nephrin, the core protein of the interpodocyte slit diaphragm of the kidney glomerulus. NPHS1 is the causative gene for congenital nephrotic syndrome of the Finnish type (CNF) with massive, treatment resistant proteinuria. We report here the establishment of a novel nephrin-like gene, NLG1 encoding filtrin, a protein with substantial homology to human nephrin. Filtrin is a type I transmembrane protein consisting of 708 amino acids. Together with the recently cloned NEPH1, NLG1 establishes a new nephrin-like subgroup of genes belonging to the immunoglobulin superfamily of cell adhesion molecules. The RNA dot blot experiment revealed that the NLG1 mRNA expression is widely distributed but most prominently observed in the pancreas and lymph nodes. The expression of NLG1 mRNA in kidney glomeruli was verified with RT-PCR. Further immunoblotting studies with antifiltrin antibody showed a specific band at 107kDa in the human and rat glomeruli. In immunofluorescence microscopy specific staining of glomeruli but also proximal and distal parts of the nephron was seen in human kidney cortex. Due to its structural similarity and sequence homology as well as partially consistent expression pattern with nephrin we propose that filtrin belongs to a functionally important complex of proteins of the glomerular filtration barrier.  相似文献   

13.
ROR2 is a member of the cell surface receptor tyrosine kinase (RTKs) family of proteins and is involved in the developmental morphogenesis of the skeletal, cardiovascular and genital systems. Mutations in ROR2 have been shown to cause two distinct human disorders, autosomal recessive Robinow syndrome and dominantly inherited Brachydactyly type B. The recessive form of Robinow syndrome is a disorder caused by loss-of-function mutations whereas Brachydactyly type B is a dominant disease and is presumably caused by gain-of-function mutations in the same gene. We have previously established that all the missense mutations causing Robinow syndrome in ROR2 are retained in the endoplasmic reticulum and therefore concluded that their loss of function is due to a defect in their intracellular trafficking. These mutations were in the distal portion of the frizzled-like cysteine rich domain and kringle domain. Here we report the identification of two novel mutations in the frizzled-like cysteine-rich domain of ROR2 causing Robinow syndrome. We establish the retention of the mutated proteins in the endoplasmic reticulum of HeLa cells and therefore failure to reach the plasma membrane. The clustering of Robinow-causing mutations in the extracellular frizzled-like cysteine-rich domain of ROR2 suggests a stringent requirement for the correct folding of this domain prior to export of ROR2 from the endoplasmic reticulum to the plasma membrane. GenBank accession number ROR2, M97639.  相似文献   

14.
The slit diaphragm (SD) is an intercellular junction between renal glomerular epithelial cells (podocytes) that is essential for permselectivity in glomerular ultrafiltration. The SD components, nephrin and Neph1, assemble a signaling complex in a tyrosine phosphorylation dependent manner, and regulate the unique actin cytoskeleton of podocytes. Mutations in the NPHS1 gene that encodes nephrin cause congenital nephrotic syndrome (CNS), which is characterized by the loss of the SD and massive proteinuria. Recently, we have identified the expression of the transmembrane glycoprotein signal regulatory protein α (SIRPα) at the SD. In the present study, we analyzed the expression of SIRPα in developing kidneys, in kidneys from CNS patients and in proteinuric rat models. The possibility that SIRPα interacts with known SD proteins was also investigated. SIRPα was concentrated at the SD junction during the maturation of intercellular junctions. In the glomeruli of CNS patients carrying mutations in NPHS1, where SD formation is disrupted, the expression of SIRPα as well as Neph1 and nephrin was significantly decreased, indicating that SIRPα is closely associated with the nephrin complex. Indeed, SIRPα formed hetero-oligomers with nephrin in cultured cells and in glomeruli. Furthermore, the cytoplasmic domain of SIRPα was highly phosphorylated in normal glomeruli, and its phosphorylation was dramatically decreased upon podocyte injury in?vivo. Thus, SIRPα interacts with nephrin at the SD, and its phosphorylation is dynamically regulated in proteinuric states. Our data provide new molecular insights into the phosphorylation events triggered by podocyte injury. Structured digital abstract ? Sirp-alpha?physically interacts?with?Nephrin?by?anti bait coimmunoprecipitation?(View interaction) ? Sirp-alpha?physically interacts?with?Nephrin?by?anti tag coimmunoprecipitation?(View interaction).  相似文献   

15.
Glomerular biology is dependent on tightly controlled signal transduction networks that control phosphorylation of signaling proteins such as cytoskeletal regulators or slit diaphragm proteins of kidney podocytes. Cross‐species comparison of phosphorylation events is a powerful mean to functionally prioritize and identify physiologically meaningful phosphorylation sites. Here, we present the result of phosphoproteomic analyses of cow and rat glomeruli to allow cross‐species comparisons. We discovered several phosphorylation sites with potentially high biological relevance, e.g. tyrosine phosphorylation of the cytoskeletal regulator synaptopodin and the slit diaphragm protein neph‐1 (Kirrel). Moreover, cross‐species comparisons revealed conserved phosphorylation of the slit diaphragm protein nephrin on an acidic cluster at the intracellular terminus and conserved podocin phosphorylation on the very carboxyl terminus of the protein. We studied a highly conserved podocin phosphorylation site in greater detail and show that phosphorylation regulates affinity of the interaction with nephrin and CD2AP. Taken together, these results suggest that species comparisons of phosphoproteomic data may reveal regulatory principles in glomerular biology. All MS data have been deposited in the ProteomeXchange with identifier PXD001005 ( http://proteomecentral.proteomexchange.org/dataset/PXD001005 ).  相似文献   

16.
Glomerular visceral epithelial cells (podocytes) contain interdigitated processes that form specialized intercellular junctions, termed slit diaphragms, which provide a selective filtration barrier in the renal glomerulus. Analyses of disease-causing mutations in familial nephrotic syndromes and targeted mutagenesis in mice have revealed critical roles of several proteins in the assembly of slit diaphragms. The nephrin–podocin complex is the main constituent of slit diaphragms. However, the molecular mechanisms regulating these proteins to maintain the slit diaphragms are still largely unknown. Here, we demonstrate that the PAR3–atypical protein kinase C (aPKC)–PAR6β cell polarity proteins co-localize to the slit diaphragms with nephrin. Furthermore, selective depletion of aPKCλ in mouse podocytes results in the disassembly of slit diaphragms, a disturbance in apico-basal cell polarity, and focal segmental glomerulosclerosis (FSGS). The aPKC–PAR3 complex associates with the nephrin–podocin complex in podocytes through direct interaction between PAR3 and nephrin, and the kinase activity of aPKC is required for the appropriate distribution of nephrin and podocin in podocytes. These observations not only establish a critical function of the polarity proteins in the maintenance of slit diaphragms, but also imply their potential involvement in renal failure in FSGS.  相似文献   

17.
Accumulation of plasma advanced oxidation protein products(AOPPs) promotes progression of proteinuria and glomerulo-sclerosis.To investigate the molecular basis of AOPPs-induced proteinuria,normal Sprague-Dawley rats were treated with AOPPs-modified rat serum albumin.The expression of glomerular podocyte slit diaphragm(PSD)-associated proteins,nephrin and podocin,was significantly decreased coincident with the onset of albuminuria in rats treated with AOPPs.Chronic inhibi-tion of NADPH oxidase by apocynin p...  相似文献   

18.
The main manifestations of nephrotic syndrome include proteinuria, hypoalbuminemia, edema, hyperlipidemia and lipiduria. Common causes of nephrotic syndrome are diabetic nephropathy, minimal change disease (MCD), focal and segmental glomerulosclerosis (FSGS) and membranous nephropathy. Among the primary glomerular diseases, MCD is usually sensitive to glucocorticoid treatment, whereas the other diseases show variable responses. Despite the identification of key structural proteins in the glomerular capillary loop which may contribute to defects in ultrafiltration, many of the disease mechanisms of nephrotic syndrome remain unresolved. In this study, we show that the glomerular expression of angiopoietin-like-4 (Angptl4), a secreted glycoprotein, is glucocorticoid sensitive and is highly upregulated in the serum and in podocytes in experimental models of MCD and in the human disease. Podocyte-specific transgenic overexpression of Angptl4 (NPHS2-Angptl4) in rats induced nephrotic-range, and selective, proteinuria (over 500-fold increase in albuminuria), loss of glomerular basement membrane (GBM) charge and foot process effacement, whereas transgenic expression specifically in the adipose tissue (aP2-Angptl4) resulted in increased circulating Angptl4, but no proteinuria. Angptl4(-/-) mice that were injected with lipopolysaccharide (LPS) or nephritogenic antisera developed markedly less proteinuria than did control mice. Angptl4 secreted from podocytes in some forms of nephrotic syndrome lacks normal sialylation. When we fed the sialic acid precursor N-acetyl-D-mannosamine (ManNAc) to NPHS2-Angptl4 transgenic rats it increased the sialylation of Angptl4 and decreased albuminuria by more than 40%. These results suggest that podocyte-secreted Angptl4 has a key role in nephrotic syndrome.  相似文献   

19.
The NPHS2 gene, encoding the slit diaphragm protein podocin, accounts for genetic and sporadic forms of nephrotic syndrome (NS). Patients with NS often present symptoms of volume retention, such as oedema formation or hypertension. The primary dysregulation in sodium handling involves an inappropriate activation of the epithelial sodium channel, ENaC. Plasma proteases in a proteinuria‐dependent fashion have been made responsible; however, referring to the timeline of symptoms occurring and underlying mechanisms, contradictory results have been published. Characterizing the mouse model of podocyte inactivation of NPHS2 (Nphs2?pod) with respect to volume handling and proteinuria revealed that sodium retention, hypertension and gross proteinuria appeared sequentially in a chronological order. Detailed analysis of Nphs2?pod during early sodium retention, revealed increased expression of full‐length ENaC subunits and αENaC cleavage product with concomitant increase in ENaC activity as tested by amiloride application, and augmented collecting duct Na+/K+‐ATPase expression. Urinary proteolytic activity was increased and several proteases were identified by mass spectrometry including cathepsin B, which was found to process αENaC. Renal expression levels of precursor and active cathepsin B were increased and could be localized to glomeruli and intercalated cells. Inhibition of cathepsin B prevented hypertension. With the appearance of gross proteinuria, plasmin occurs in the urine and additional cleavage of γENaC is encountered. In conclusion, characterizing the volume handling of Nphs2?pod revealed early sodium retention occurring independent to aberrantly filtered plasma proteases. As an underlying mechanism cathepsin B induced αENaC processing leading to augmented channel activity and hypertension was identified.  相似文献   

20.
We used immunocytochemical and fluorescence assays to investigate the subcellular location of the protein encoded by Down syndrome critical region gene 2 (DSCR2) in transfected cells. It was previously suggested that DSCR2 is located in the plasma membrane as an integral membrane protein. Interestingly, we observed this protein in the endoplasmic reticulum (ER) of cells. We also studied whether the truncated forms of DSCR2 showed different subcellular distributions. Our observations indicate that DSCR2 probably is not inserted into the membrane of the endoplasmic reticulum since the fragments lacking the predicted transmembrane (TM) helices remained associated with the ER. Our analyses suggest that, although DSCR2 is associated with the endoplasmic reticulum, it is not an integral membrane protein and it is maintained on the cytoplasmic side of the ER by indirect interaction with the ER membrane or with another protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号